System and method for patient medical care initiation based on physiological monitoring data with the aid of a digital computer

Information

  • Patent Grant
  • 10869601
  • Patent Number
    10,869,601
  • Date Filed
    Monday, August 26, 2019
    4 years ago
  • Date Issued
    Tuesday, December 22, 2020
    3 years ago
Abstract
Individuals who suffer from certain kinds of medical conditions, particularly conditions that only sporadically exhibit measurable symptoms, can feel helpless in their attempts to secure access to medical care because, at least in part, they are left to the mercy of their condition to present symptoms at the right time to allow diagnosis and treatment. Providing these individuals with ambulatory extended-wear health monitors that record ECG and physiology, preferably available over-the-counter and without health insurance preauthorization, is a first step towards addressing their needs. In addition, these individuals need a way to gain entry into the health care system once a medically-actionable medical condition has been identified. Here, the ECG and physiology is downloaded and evaluated post-monitoring against medical diagnostic criteria. Medical specialists are pre-identified and paired up with key diagnostic findings, such that an individual whose monitoring data indicates a medical concern will be automatically referred and treated.
Description
FIELD

This application relates in general to wearable health monitors and, in particular, to a system and method for patient medical care initiation based on physiological monitoring data with the aid of a digital computer.


BACKGROUND

Ensuring ready access to health care remains a pressing concern in our increasingly fast-paced society, but the ever climbing costs of health care makes having health insurance or similar financial arrangements all but essential for practically everyone except the wealthy or destitute. For the insured, the average health insurance carrier effectively serves as the gatekeeper that controls entry into the health care system and who manages the provisioning or denial of health care by stipulating the terms under which benefits will be paid. Thusly, health insurance subscribers (or enrollees) are at times caught in the middle between the dictates of their insurer and their ability to readily address their health concerns. On the one hand, a subscriber who bypasses his primary care provider, as typically required by an insurer as a first contact, and instead seeks out a medical specialist on his own may be taking a financial risk, as a health insurer could deny coverage. On the other hand, the primary care provider may not always offer a satisfactory or practicable solution, particularly in situations where a condition has symptoms that are transient or infrequent, or which underlies a disorder with a long incubatory or onset period, as can happen with certain chronic conditions.


For instance, cardiac rhythm disorders may present with lightheadedness, fainting, chest pain, hypoxia, syncope, palpitations, and congestive heart failure (CHF), yet cardiac rhythm disorders are often sporadic in occurrence and may not show up in-clinic during a conventional 12-second electrocardiogram (ECG). Moreover, some types of cardiac rhythm disorders may warrant immediate subspecialist care, such as heart blockage, tachycardia and bradycardia, which require the attention of an electrophysiologist. Continuous ambulatory ECG monitoring over an extended period is more apt to capture sporadic cardiac events, yet health insurers often require a primary care referral to a monitoring laboratory before underwriting long-term ECG monitoring and access to a specialist may be delayed or denied, depending upon the ECG monitoring results.


Notwithstanding, if a subscriber's ECG could be recorded in an ambulatory setting over a prolonged time period, particularly for as long as seven days or more, thereby allowing the subscriber to engage in activities of daily living, the chances of acquiring meaningful medical information and capturing an abnormal event while the subscriber is engaged in normal activities are vastly improved. Unfortunately, few, if any, options for long-term ambulatory ECG monitoring that a subscriber could undertake on his own are available, and existing ECG monitoring solutions require physician involvement with tacit insurer approval. For instance, Holter monitors are widely used for extended ECG monitoring, typically for 24-48 hour time periods. A typical Holter monitor is a wearable and portable version of an ECG and, as such, is cumbersome, expensive and typically available for use only through a prescription, which limits their usability, and the discretion to refer the subscriber still remains with the attending physician.


Similarly, the ZIO XT Patch and ZIO Event Card devices, manufactured by iRhythm Tech., Inc., San Francisco, Calif., are wearable monitoring devices that are typically worn on the upper left pectoral region to respectively provide continuous and looping ECG recording. The location is used to simulate surgically implanted monitors. The ZIO XT Patch device is limited to a 14-day period, while just the electrodes of the ZIO Event Card device can be worn for up to 30 days. Both devices represent compromises between length of wear and quality of ECG monitoring. Moreover, both of these devices are also prescription-only, which limits their usability and, the same as a Holter monitor, the discretion to refer the subscriber remains with the attending physician.


Therefore, a need remains for a low cost monitor for recording an ECG and other physiology that can be used by an individual on their own, without health insurance pre-authorization, yet which can identify and generate an actionable, health condition-specific (and ideally health insurance-payable) referral to a medical specialist when medically appropriate.


SUMMARY

Certain kinds of medical conditions, particularly conditions that only sporadically exhibit measurable symptoms, defy conventional forms of medical diagnosis centered on in-clinic testing. Individuals who suffer from such conditions can feel helpless in their attempts to secure access to medical care because, at least in part, they are left to the mercy of their condition to present symptoms at the right time to allow diagnosis and treatment. Moreover, such individuals may present to a physician or other health care provider unable to provide state-of-the-art care for cardiac conditions, especially cardiac rhythm disorders. Providing these individuals with ambulatory extended-wear health monitors that record ECG and physiology, preferably available over-the-counter and without health insurance preauthorization, is a first step towards addressing their needs expeditiously. In addition, these individuals need a way to gain entry into the health care system once a medically-actionable medical condition has been identified. Here, the ECG and physiology is downloaded and evaluated post-monitoring against medical diagnostic criteria. Medical specialists are pre-identified and paired up with key diagnostic findings, such that an individual whose monitoring data indicates a medical concern will be automatically referred and scheduled for a consultation, thereby removing delays and bypassing intermediaries who will not provide definitive interventions for the patient.


In one embodiment, a system and method for patient medical care initiation based on physiological monitoring data with the aid of a digital computer are provided. Physiology of a patient is sensed by a physiological monitor that includes a sealed housing and an electronic circuitry included within the sealed housing, the electronic circuitry configured to sense via at least a pair of electrocardiographic electrodes the physiology of the patient, the electronic circuitry including an onboard memory configured to store the recorded physiology. The physiology sensed by the physiological monitor is received by a download station. The received physiology is processed by an at least one computer, including: storing the received physiology and medical diagnostic criteria in a database; generating a diagnostic overread of the physiology using the medical diagnostic criteria; and initiating medical care of the patient with one or more pre-identified care providers based on the overread.


Still other embodiments will become readily apparent to those skilled in the art from the following detailed description, wherein are described embodiments by way of illustrating the best mode contemplated. As will be realized, other and different embodiments are possible and the embodiments' several details are capable of modifications in various obvious respects, all without departing from their spirit and the scope. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a process flow diagram showing, by way of example, one prior art approach to addressing medical conditions in a managed care model of health insurance.



FIGS. 2 and 3 are diagrams showing, by way of examples, an extended wear electrocardiography and physiological wearable monitor respectively fitted to the sternal region of a female patient and a male patient.



FIG. 4 is a perspective view showing a contact-activated extended wear electrode patch with a monitor recorder inserted.



FIG. 5 is a perspective view showing the monitor recorder of FIG. 4.



FIG. 6 is a functional block diagram showing a system for addressing medical conditions with the aid of a digital computer through the monitor recorder of FIG. 4, in accordance with one embodiment.



FIG. 7 is a process flow diagram showing a method addressing medical conditions through a wearable health monitor with the aid of a digital computer in accordance with one embodiment.





DETAILED DESCRIPTION

For certain types of medical conditions, gaining access to health care can be a time-consuming and often frustrating experience. In the case of cardiac rhythm disorders, such delays can cause death. One possible reason stems from the restrictions often imposed on subscribers of both private and government mandated health insurance, especially when provided in the form of managed care, which employs a network of contracted health care providers and medical facilities that are structured to control costs and help to improve overall quality of care. FIG. 1 is a process flow diagram showing, by way of example, one prior art approach to addressing medical conditions in a managed care model 1 of health insurance. In this model, the average health insurance carrier, such as those provided by the Affordable Care Act, effectively serves as the gatekeeper that controls entry into the health care system and who manages the provisioning or denial of health care by stipulating the terms under which benefits will be paid. At times, the goals of the health insurer as the arbiter of benefits can be at odds with the medical concerns of their subscribers, who are generally expected to comply with their insurer's guidelines to receive care for non-urgent health conditions, or to seek an exception, preferably beforehand.


The managed care model 1 of health insurance can work well in providing access to care for those subscribers who are able to be served by the network of health care providers and facilities that has been set up by the health insurer to address the majority of expected health concerns. For example, for non-urgent, undiagnosed physical ailments and health conditions, a health insurer will generally require a subscriber suffering symptoms (step 2) to see their primary care provider first (step 3). The subscriber may undergo testing (step 4) and follow up with the primary care provider (step 3) with the expectation that most health conditions can be resolved without departing from the primary care level. When circumstances dictate, the subscriber may be referred to a medical specialist (step 5); ordinarily, a showing of medical necessity will be required before the health insurer will be contractually obligated to pay benefits. The type of medical specialist to whom the subscriber is referred is based upon the primary care provider's understanding of the health condition, experience, and referral network, which may be biased towards the health care provider network already set in place. At its best, such a system may still cause considerable delays in diagnosis and management of a cardiac rhythm disorder or other serious physiological condition.


The managed care model 1 can begin to fail when health insurance subscribers encounter medical conditions that depart from the expected norm, particularly medical conditions whose symptoms are transient or infrequent, or which underlie a disorder with a long incubatory or onset period, such as heart disease, diabetes mellitus, epilepsy, Parkinson's disease, and Alzheimer's disease. The cycle of having symptoms (step 2), seeing a primary care provider (step 3), undergoing testing (step 4), and perhaps receiving a medical specialist referral (step 5) may be repeated several times until the health condition either resolves on its own (step 2), is diagnosed and treated at the primary care level (step 3), or possibly worsens, perhaps significantly, such that intervention by a medical specialist is necessary (step 6), albeit at the cost of potentially complicating treatment, endangering cure or effective management, increasing medical costs, and negatively affecting quality or duration of life.


In these situations, access to care is hindered, at least in part, by the difficulty of or inability to narrow down the cause of the symptoms through in-clinic testing. Repetitions of the primary care cycle may not always be efficacious; for example, in-clinic testing of a subscriber is only effective if administered coincident to the timely occurrence of a sporadically-occurring medical condition, yet such conditions, such as an abnormal heart rhythm or syncope, rarely occur on demand or when needed for present diagnosis. In addition, some health conditions may require a level of care or medical specialization with which the primary care provider is unversed, and a referral may not provide the relief ultimately sought. In some situations, the cycle of testing and follow up may be repeatedly revisited; the subscriber may be forced to undergo more testing and delay until and if an appropriate medical specialist becomes involved. Misdiagnosis or maldiagnosis remain potential risks.


As an example, consider the potentially life-threatening problem of syncope, or loss of consciousness. Syncope affects millions of Americans annually. Syncope also can be extremely difficult to diagnose because the condition is intermittent and gives no warning. Causes can range from the relatively trivial, such as fainting from emotional excitement, to a life-threatening cardiac rhythm disorder, like transient heart block, that if the condition were to persist, would result in death, and not just transient loss of consciousness. Atrial fibrillation, another potential cause of syncope, is extremely common and is an occult and leading cause of stroke. Most patients with syncope never see a physician because they either dismiss the condition as a one-time event, rationalizing its import away, or struggle to see a physician of some sort, almost always a generalist, for help. Many such physicians either inappropriately dismiss the patient as anxious or begin the long-process to getting at the root cause. At minimum, this process requires referral to a cardiologist, who then prescribes an ECG monitor, usually the traditional 24-hour Holter monitor, which in turn must be interpreted. The patient must then return for evaluation and possible therapy. The delay for each of these steps can take weeks. Often, the patient (or sometimes the doctor) gives up and returns to his “normal” life only to experience a second episode of syncope or something worse, like a stroke or death. The better way to deal with syncope is for the patient to self-apply an over-the-counter ECG monitor at modest personal expense, yielding valuable data in a fraction of the time and cost of the traditional approach, potential preventing a stroke or even saving the patient's life.


The shortcomings of the managed care model 1, as well as other types of health care provisioning arrangements that mandate who an individual must see first for non-urgent, undiagnosed medical conditions, can be significantly overcome by empowering the patient with basic self-help tools that improve access to health care. These tools include the ability to perform self-monitoring of personal physiology, including ECG monitoring, as described in the previous paragraph, and to be able to tap into an automated referral network that, when medically appropriate, will connect the individual with the right specialist for the medical conditions observed and diagnosed. Such physiological monitoring can be provided through a wearable monitor that can be interfaced with a diagnostics computer system that can download physiology recorded by the wearable monitor and generate a medically-actionable diagnostic overread, all without requiring the constant oversight or active involvement of a health insurer or managed care system.


By way of example, using the heretofore referenced problem of syncope resulting from a cardiac rhythm disorder, the wearable monitor includes two components, a flexible extended wear electrode patch and a removable reusable monitor recorder. FIGS. 2 and 3 are diagrams showing, by way of example, an extended wear electrocardiography and physiological wearable monitor 12, including a monitor recorder 14 in accordance with one embodiment, respectively fitted to the sternal region of a female patient 10 and a male patient 11. Both the monitor recorder 14 and the electrode patch 15 are optimized to capture electrical signals from the propagation of low amplitude, relatively low frequency content cardiac action potentials, particularly the P-waves generated during atrial activation. The wearable monitor 12 could include additional sensors to monitor and record other types of physiology, including blood pressure, respiratory rate, temperature, and blood glucose, either in addition to or in lieu of heart rate.


The wearable monitor 12 sits centrally (in the midline) on the patient's chest over the mid-sternum 13 oriented top-to-bottom with the monitor recorder 14 preferably situated towards the patient's head. The electrode patch 15 is shaped to fit comfortably, conforming to the contours of the patient's chest approximately centered on the sternal midline 16 (or immediately to either side of the sternum 13). The distal end of the electrode patch 15 extends towards the xiphoid process and, depending upon the patient's build, may straddle the region over the xiphoid process. The proximal end of the electrode patch 15, located under the monitor recorder 14, is below the manubrium and, depending upon patient's build, may straddle the region over the manubrium.


During ECG monitoring, the amplitude and strength of action potentials sensed on the body's surface are affected to varying degrees by cardiac, cellular, and extracellular structure and activity, vector of current flow, and physical factors, like obesity, dermatitis, large breasts, and high impedance skin, as can occur in dark-skinned individuals. Sensing along the sternal midline 16 (or immediately to either side of the sternum 13) significantly improves the ability of the wearable monitor 12 to cutaneously sense cardiac electric signals, particularly the P-wave (or atrial activity) and, to a lesser extent, the QRS interval signals in the ECG waveforms that indicate ventricular activity by countering some of the effects of these factors, such as described in commonly-assigned U.S. Pat. No. 9,700,227, issued Jul. 11, 2017, the disclosure of which is incorporated by reference, while simultaneously facilitating comfortable long-term wear for many weeks. The sternum 13 overlies the right atrium of the heart and the placement of the wearable monitor 12 in the region of the sternal midline 16 puts the ECG electrodes of the electrode patch 15 in a location better adapted to sensing and recording P-wave signals than other placement locations, say, the upper left pectoral region or lateral thoracic region or the limb leads. In addition, placing the lower or inferior pole (ECG electrode) of the electrode patch 15 over (or near) the xiphoid process facilitates sensing of ventricular activity and provides excellent recordation of the QRS interval as the xiphoid process overlies the apical region of the ventricles.


During use, the electrode patch 15 is first adhered to the skin along the sternal midline 16 (or immediately to either side of the sternum 13). A monitor recorder 14 is then snapped into place on the electrode patch 15 to initiate ECG monitoring, with the monitoring being initiated upon the recorder 14 detecting contact with the patient. (Note that the monitor can also be snapped into place on a table prior to removing adhesive liner and application of the electrode patch to the skin.) FIG. 4 is a perspective view showing a contact-activated extended wear electrode patch 15 with a monitor recorder 14 inserted. The body of the electrode patch 15 is preferably constructed using a flexible backing 20 formed as an elongated strip 21 of wrap knit or similar stretchable material with a narrow longitudinal mid-section 23 evenly tapering inward from both sides. A pair of cut-outs 22 between the distal and proximal ends of the electrode patch 15 create a narrow longitudinal midsection 23 or “isthmus” and defines an elongated “hourglass”-like shape, when viewed from above. The upper part of the “hourglass” is sized to allow an electrically non-conductive receptacle 25, sits on top of the outward-facing surface of the electrode patch 15, to be affixed to the electrode patch 15 with an ECG electrode placed underneath on the patient-facing underside, or contact, surface of the electrode patch 15; the upper part of the “hourglass” has a longer and wider profile (but still rounded and tapered to fit comfortably between the breasts) than the lower part of the “hourglass,” which is sized primarily to allow just the placement of an ECG electrode of appropriate shape and surface area to record the P-wave and the QRS signals sufficiently given the inter-electrode spacing.


The electrode patch 15 incorporates features that significantly improve wearability, performance, and patient comfort throughout an extended monitoring period for men or women. During wear, the electrode patch 15 is susceptible to pushing, pulling, and torquing movements, including compressional and torsional forces when the patient bends forward, and tensile and torsional forces when the patient leans backwards or twists their thorax. To counter these stress forces, the electrode patch 15 incorporates strain and crimp reliefs, such as described in commonly-assigned U.S. Pat. Nos. 9,545,204, and 9,433,380, the disclosures of which are incorporated by reference. In addition, the cut-outs 22 and longitudinal midsection 23 help minimize interference with and discomfort to breast tissue, particularly in women (and gynecomastic men). The cut-outs 22 and longitudinal midsection 23 further allow better conformity of the electrode patch 15 to sternal bowing and to the narrow isthmus of flat skin that can occur along the bottom of the intermammary cleft between the breasts, especially in buxom women. The cut-outs 22 and longitudinal midsection 23 help the electrode patch 15 fit nicely between a pair of female breasts in the intermammary cleft. Still other shapes, cut-outs and conformities to the electrode patch 15 are possible.


The monitor recorder 14 removably and reusably snaps into an electrically non-conductive receptacle 25 during use. The monitor recorder 14 contains electronic circuitry for recording and storing the patient's electrocardiography as sensed via a pair of ECG electrodes provided on the electrode patch 15, such as described in commonly-assigned U.S. Pat. No. 9,730,593, issued Aug. 15, 2017, the disclosure which is incorporated by reference. The non-conductive receptacle 25 is provided on the top surface of the flexible backing 20 with a retention catch 26 and tension clip 27 molded into the non-conductive receptacle 25 to conformably receive and securely hold the monitor recorder 14 in place.


The monitor recorder 14 includes a sealed housing that snaps into place in the non-conductive receptacle 25. FIG. 5 is a perspective view showing the monitor recorder 14 of FIG. 4. The sealed housing 50 of the monitor recorder 14 has a rounded isosceles trapezoidal-like shape 52, for comfort with women, when viewed from above, such as described in commonly-assigned U.S. Design Pat. No. D717,955, entitled “Electrocardiography Monitor,” issued Nov. 18, 2014, the disclosure of which is incorporated by reference. In addition, a label, barcode, QR code, or other visible or electronic indicia can be printed on the outside of, applied to the outside of, or integrated into the sealed housing 50 to uniquely identify the monitor recorder 14 and can include a serial number, manufacturing lot number, date of manufacture, and so forth. The edges 51 along the top and bottom surfaces are rounded for patient comfort. The sealed housing 50 is approximately 47 mm long, 23 mm wide at the widest point, and 7 mm high, excluding a patient-operable tactile-feedback button 55. The sealed housing 50 can be molded out of polycarbonate, ABS, or an alloy of those two materials. The button 55 is waterproof and the button's top outer surface is molded silicon rubber or similar soft pliable material. A retention detent 53 and tension detent 54 are molded along the edges of the top surface of the housing 50 to respectively engage the retention catch 26 and the tension clip 27 molded into non-conductive receptacle 25. Other shapes, features, and conformities of the sealed housing 50 are possible.


The electrode patch 15 is intended to be disposable. The monitor recorder 14, however, is reusable and can be transferred to successive electrode patches 15 to ensure continuity of monitoring. The placement of the wearable monitor 12 in a location at the sternal midline 16 (or immediately to either side of the sternum 13) benefits long-term extended wear by removing the requirement that ECG electrodes be continually placed in the same spots on the skin throughout the monitoring period. Instead, the patient is free to place an electrode patch 15 anywhere within the general region of the sternum 13.


As a result, at any point during ECG monitoring, the patient's skin is able to recover from the wearing of an electrode patch 15, which increases patient comfort and satisfaction, while the monitor recorder 14 ensures ECG monitoring continuity with minimal effort. A monitor recorder 14 is merely unsnapped from a worn out electrode patch 15, the worn out electrode patch 15 is removed from the skin, a new electrode patch 15 is adhered to the skin, possibly in a new spot immediately adjacent to the earlier location, and the same monitor recorder 14 is snapped into the new electrode patch 15 to reinitiate and continue the ECG monitoring.


When operated standalone, the monitor recorder 14 senses and records the patient's ECG and physiology data into an onboard memory, which can be downloaded and evaluated to identify and generate an actionable, health condition-specific (and ideally health insurance-payable) referral to a medical specialist when medically appropriate. In addition, the wearable monitor 12 can interoperate with other devices, which further improves upon a patient's ability to address medical conditions on his own. FIG. 6 is a functional block diagram showing a system 60 for addressing medical conditions with the aid of a digital computer 62 through the monitor recorder 14 of FIG. 4, in accordance with one embodiment. In one form, the monitor recorder 14 is a reusable component that can be fitted during patient monitoring into a non-conductive receptacle provided on the electrode patch 15, and later removed for offloading of stored ECG data or to receive revised programming. The monitor recorder 14 can then be connected to a download station 65, which could be a dedicated programmer or other device, including a digital computer, such as personal computer 76, that permits the retrieval of stored ECG monitoring data, execution of diagnostics on or programming of the monitor recorder 14, or performance of other functions.


To facilitate physical connection with a download station 65, the monitor recorder 14 has a set of electrical contacts (not shown) that enable the monitor recorder 14 to physically interface to a set of terminals 68 on a paired receptacle 67 of the download station 65. In turn, the download station 65 executes a communications or offload program 66 (“Offload”) or similar program that interacts with the monitor recorder 14 via the physical interface to retrieve the stored ECG and physiology monitoring data. The download station 65 could be a server, personal computer, such as personal computer 76, tablet or handheld computer, smart mobile device, or purpose-built device designed specific to the task of interfacing with a monitor recorder 14. Still other forms of download station 65 are possible. In a further embodiment, the data from the monitor 12 can be offloaded wirelessly and the monitor 12 can interface with the download station 65 wirelessly.


The ECG and physiology data retrieved from the monitor recorder 14 by the download station 65 can, in turn, be retrieved from the download station 65 over a hard link 75 using a control program 77 (“Ctl”) or analogous application executing on a personal computer 76 or other connectable computing device, via a communications link (not shown), whether wired or wireless, or by physical transfer of storage media (not shown). The personal computer 76 or other connectable device may also execute middleware that converts ECG and physiology data and other information into a format suitable for use by a third-party post-monitoring analysis program. Formatted data stored on the personal computer 76 is maintained and safeguarded in the same manner as electronic medical records (EMRs) 74 are protected in the secure database 64, as further discussed infra. In a further embodiment, the download station 65 is able to directly interface with other devices over a computer communications network 61, which could be some combination of a local area network and a wide area network, including the Internet or another telecommunications network, over a wired or wireless connection.


A client-server model could be used for ECG and physiology data download and analysis. In this model, a server 62 remotely interfaces with the download station 65, by way of the personal computer 76, over the network 61 and retrieves the formatted data or other information. The server 62 executes a patient management program 63 (“Mgt”) or similar application that stores the retrieved formatted data and other information in a secure database 64 cataloged in that patient's EMRs 74. Patients' EMRs can be supplemented with other information, such as medical history, testing results, and so forth, which can be factored into automated diagnosis and referral. In addition, the patient management program 63 could manage a subscription service that authorizes a monitor recorder 14 to operate for a set period of time or under pre-defined operational parameters.


The patient management program 63, or other trusted application, also maintains and safeguards the secure database 64 to limit access to patient EMRs 74 to only authorized parties for appropriate medical or other uses, such as mandated by state or federal law, such as under the Health Insurance Portability and Accountability Act (HIPAA) or per the European Union's Data Protection Directive. For example, a physician may seek to review and evaluate his patient's ECG monitoring data, as securely stored in the secure database 64. The physician would execute an application program 70 (“Pgm”), such as a post-monitoring ECG analysis program, on a personal computer 69 or other connectable computing device, and, through the application program 70, coordinate access to his patient's EMRs 74 with the patient management program 63. Other schemes and safeguards to protect and maintain the integrity of patient EMRs 74 are possible.


In a further embodiment, the wearable monitor 12 can interoperate wirelessly with other wearable physiology monitors and activity sensors 71, such as activity trackers worn on the wrist or body, and with mobile devices 72, including smart watches and smartphones. Wearable physiology monitors and activity sensors 71 encompass a wide range of wirelessly interconnectable devices that measure or monitor a patient's physiological data, such as heart rate, temperature, blood pressure, respiratory rate, blood pressure, blood sugar (with appropriate subcutaneous probe), oxygen saturation, minute ventilation, and so on; physical states, such as movement, sleep, footsteps, and the like; and performance, including calories burned or estimated blood glucose level. The physiology sensors in non-wearable mobile devices, particularly smartphones, are generally not meant for continuous tracking and do not provide medically precise and actionable data sufficient for a physician to prescribe a surgical or serious drug intervention; such data can be considered screening information that something may be wrong, but not data that provides the highly precise information that may allow for a surgery, such as implantation of a pacemaker for heart block or a defibrillator for ventricular tachycardia, or the application of serious medications, like blood thinners for atrial fibrillation or a cardiac ablation procedure. Such devices, like smartphones, are better suited to pre- and post-exercise monitoring or as devices that can provide a signal that something is wrong, but not in the sufficient detail and medico-legal validation to allow for medical action. Conversely, medically actionable wearable sensors and devices sometimes provide continuous recording for relatively short time periods, but must be paired with a smartphone or computer to offload and evaluate the recorded data, especially if the data is of urgent concern, such as mobile cardiac outpatient telemetry devices.


Wearable physiology monitors and activity sensors 71, also known as “activity monitors,” and to a lesser extent, “fitness” sensor-equipped mobile devices 72, can trace their life-tracking origins to ambulatory devices used within the medical community to sense and record traditional medical physiology that could be useful to a physician in arriving at a patient diagnosis or clinical trajectory, as well as from outside the medical community, from, for instance, sports or lifestyle product companies who seek to educate and assist individuals with self-quantifying interests. Data is typically tracked by the wearable physiology monitors or activity sensors 71 and mobile device 72 for only the personal use of the wearer. The physiological monitoring is usually considered informational only, even where a device originated within the medical or health care community, in part, because the data has not been (and is not intended to be) time-correlated to physician-supervised monitoring. Importantly, medically-significant events, such as cardiac rhythm disorders, including tachyarrhythmias, like ventricular tachycardia or atrial fibrillation, and bradyarrhythmias, like heart block, while potentially detectable with the appropriate diagnostic heuristics, are neither identified nor acted upon by the wearable physiology monitors and activity sensors 71 and the mobile device 72. Nevertheless, wearable physiology monitors or activity sensors 71 and mobile device 72 may play a role in helping a patient start to address a medical concern at a lay level.


Frequently, wearable physiology monitors and activity sensors 71 are capable of wirelessly interfacing with mobile devices 72, particularly smart mobile devices, including so-called “smartphones” and “smart watches,” as well as with personal computers and tablet or handheld computers, to download monitoring data either in real-time or in batches. The wireless interfacing of such activity monitors is generally achieved using transceivers that provide low-power, short-range wireless communications, such as Bluetooth, although some wearable physiology monitors and activity sensors 71, like their mobile device cohorts, have transceivers that provide true wireless communications services, including 4G or better mobile telecommunications, over a telecommunications network. Other types of wireless and wired interfacing are possible.


Where the wearable physiology monitors and activity sensors 71 are paired with a mobile device 72, the mobile device 72 executes an application (“App”) that can retrieve the data collected by the wearable physiology monitor and activity sensor 71 and evaluate the data to generate information of interest to the wearer, such as an estimation of the effectiveness of the wearer's exercise efforts. Where the wearable physiology monitors and activity sensors 71 has sufficient onboard computational resources, the activity monitor itself executes an app without the need to relay data to a mobile device 72. Generally, such more computationally-capable wearable physiology monitors and activity sensors are also equipped with wireless communications services transceivers, such as found in some smart watches that combine the features of activity monitors with mobile devices. Still other activity monitor and mobile device functions on the collected data are possible.


In a further embodiment, a wearable physiology monitor, activity sensor 71, or mobile device 72 worn or held by the patient 10, or otherwise be used proximal to the patient's body, can be used to first obtain and then work collaboratively with a more definitive (medical grade) monitor recorder 14 to enable the collection of physiology by the monitor recorder 14 before, during, and after potentially medically-significant events. The wearable physiology monitor, activity sensor 71, or mobile device 72 must be capable of sensing cardiac activity, particularly heart rate or rhythm, or other types of physiology or measures, either directly or upon review of relayed data. Where the wearable physiology monitor or activity sensor 71 is paired with a mobile device 72, the mobile device 72 serves as a relay device and executes an application that will trigger the dispatch of a monitor recorder 14 to the patient 10 upon detecting potentially medically-significant events in the data provided by the paired activity monitor, such as cardiac rhythm disorders, including tachyarrhythmias and bradyarrhythmias, which are readily identifiable respectively based on abnormally rapid or slow heart rate. If the mobile device 72 is itself performing the monitoring of the patient's physiology, the mobile device 72 executes an application that will trigger the dispatch of a monitor recorder 14 to the patient 10 in near-real time upon detecting potentially medically-significant events, thereby avoiding the delay incurred by data relay from an activity monitor. Finally, if the wearable physiology monitor or activity sensor 71 has sufficient onboard computational resources and also is equipped with a wireless communications services transceiver, the wearable physiology monitor or activity sensor 71 effectively becomes the mobile device 72 and executes an application that will trigger the dispatch of a monitor recorder 14 to the patient 10 in near-real time upon detecting potentially medically-significant events without the need to first interface with a mobile device 72. Still other configurations of the detection application are possible.


The act of triggering the dispatch of a monitor recorder 14 represents the first step in a cascade of possible medical interventions of potentially increasing seriousness and urgency. Sensors 71 and devices 73 are generally considered not to be capable of detecting and recording medically precise and actionable data, whereas, as a device designed and approved for extended wear, the monitor recorder 14 continually monitors the patient's physiology over a long time period and will capture any medically-actionable data leading up to, throughout the occurrence of, and following an event of potential medical concern.


The monitoring data recorded by the monitor recorder 14 can be uploaded directly into the patient's EMRs 74, either by using a mobile device 72 as a conduit for communications with a server 62 coupled to a secure database 64 within which the patient's EMRs 74 are stored, or directly to the server 62, if the monitor recorder 14 is appropriately equipped with a wireless transceiver or similar external data communications interface, as further described infra. Thus, the data recorded by the monitor recorder 14 would directly feed into the patient's EMRs 74, thereby allowing the data to be made certifiable for immediate use by a physician or healthcare provider. No intermediate steps would be necessary when going from cutaneously sensing cardiac electric signals and collecting the patient's physiology using a monitor recorder 14 to presenting that recorded data to a physician or healthcare provider for medical diagnosis and care. The direct feeding of data from the monitor recorder 14 to the EMRs 74 clearly establishes the relationship of the data, as recorded by the monitor recorder 14, to the patient 10 that the physician is seeing and appropriately identifies any potentially medically-significant event recorded in the data as originating in the patient 10 and nobody else.


Based on the monitoring ECG and physiology data, physicians and healthcare providers can rely on the data as certifiable and can directly proceed with determining the appropriate course of treatment for the patient 10, including undertaking further medical interventions as appropriate. The server 62 executes a patient diagnosis program 78 (“Dx”) or similar application that can evaluate the recorded physiology 79, as fed into the patient's EMRs 74. The patient diagnosis program 78 compares the recorded physiology 79 of each patient to a set of medical diagnostic criteria 80, from which a diagnostic overread 82 is generated. Each diagnostic overread 82 includes one or more diagnostic findings 81 that are rated by degree of severity. If at least one of the diagnostic findings 81 for a patient exceed a threshold level of tolerance, which may be tailored to a specific client, disease or medical condition group, or applied to a general patient population, a referral 83, which can include orders to seek immediate treatment, is generated on behalf of the patient to a pre-identified care provider for medical care and the patient is notified.


The referral 83 is an actionable, health condition-specific form of communication that is electronically dispatched directly to a care provider. The care provider is reached through a care provider network server 84, or other patient referral system, that executes an external patient care program (“Ext”) and which interfaces over the network 61 to the patient diagnosis program 78 executing on the server 62. In a further embodiment, the care provider and patient could also be reached using social media, provided the necessary patient privacy permissions are in place. The referral 83 represents a request on behalf of the patient to an appropriate type of care provider, which could be a general practice physician if the patient's physiology 79 represents normal tracings or a medical specialist, for instance, a cardiac electrophysiologist referral when the physiology 79 includes a diagnostic finding 81 of an event of sufficient potential severity to warrant the possible implantation of a pacemaker for heart block or a defibrillator for ventricular tachycardia. A further example would be the direct referral to a cardiologist for the finding of atrial fibrillation for the initiation of blood thinners and possibly an ablation procedure.


Other uses of the data recorded by the monitor recorder 14 and other devices are possible. For instance, a patient 10 who has previously suffered heart failure is particularly susceptible to ventricular tachycardia following a period of exercise or strenuous physical activity. A wearable sensor 71 or device 73 that includes a heart rate monitor would be able to timely detect an irregularity in heart rhythm. The application executed by the sensor 71 or device 73 allows those devices to take action by triggering the dispatch of a monitor recorder 14 to the patient 10, even though the data recorded by the sensor 71 or device 73 is itself generally medically-insufficient for purposes of diagnosis and care. Thus, rather than passively recording patient data, the sensor 71 or device 73 takes on an active role in initiating the provisioning of medical care to the patient 10 and starts a cascade of appropriate medical interventions under the tutelage of and followed by physicians and trained healthcare professionals.


In a still further embodiment, the monitor recorder 14 could upload an event detection application to the sensor 71 or device 73 to enable those devices to detect those types of potentially medically-significant events, which would trigger the dispatch of a monitor recorder 14 to the patient 10. Alternatively, the event detection application could be downloaded to the sensor 71 or device 73 from an online application store or similar online application repository. Finally, the monitor recorder 14 could use the sensor 71 or device 73 to generate an appropriate alert, including contacting the patient's physician or healthcare services, via wireless (or wired) communications, upon detecting a potentially medically-significant event or in response to a patient prompting.


The patient 10 could be notified by the sensor 71 or device 73, through the sensor's or device's user interface, that an event of potential medical concern has been detected coupled with an offer to have a monitor recorder 14 sent out to the patient 10, assuming that the patient 10 is not already wearing a monitor recorder 14. Alternatively, the sensor 71 or device 73 could unilaterally send out a request for a monitor recorder 14. The request for a monitor recorder 14 could be sent via wireless (or wired) communications to the patient's physician, a medical service provider organization, a pharmacy, an emergency medical service, or other appropriate healthcare entity that would, in turn, physically provide the patient with a monitor recorder 14. The patient 10 could also be told to pick up a monitor recorder 14 directly from one of the above-identified sources.


Conventional Holter monitors, as well as the ZIO XT Patch and ZIO Event Card devices, described supra, are currently available only by a physician's prescription for a specific patient 10. As a result, the physiological data recorded by these monitors and devices are assumed by healthcare professional to belong to the patient 10. In this prescriptive medicine context, grave questions as to the authenticity of the patient's identity and the data recorded do not generally arise, although current medical practice still favors requesting affirmative patient and caregiver identification at every step of healthcare provisioning. As a device intended for adoption and usage broader than prescriptive medicine, the monitor recorder 14 carries the potential to be used by more than one individual, which can raise concerns as to the veracity of the data recorded.


In a still further embodiment, the mobile device 72, or, if properly equipped, the activity monitor, can be used to help authenticate the patient 10 at the outset of and throughout the monitoring period. The mobile device 72 (or activity monitor) must be appropriately equipped with a digital camera or other feature capable of recording physical indicia located within the proximity of the mobile device 72. For instance, the Samsung Galaxy S5 smartphone has both a biometric fingerprint reader and autofocusing digital camera built in. Upon receipt of a monitor recorder 14, the patient 10 can use the photographic or other recording features of the mobile device 72 (or activity monitor) to physically record the placement and use of the monitor recorder 14. For instance, the patient 10 could take a picture or make a video of the monitor recorder 14 using as applied to the chest using the built-in digital camera. The patient 10 could also swipe a finger over the biometric fingerprint reader. Preferably, the patient 10 would include both his or her face or similar uniquely-identifying marks or indicia, such as a scar, tattoo, body piercing, or RFID chip, plus any visible or electronic indicia on the outside of the monitor recorder's housing, as further described infra with reference to FIG. 5, in the physical recording. The physical recording would then be sent by the mobile device 72 (or activity monitor) via wireless (or wired) communications to the patient's physician's office or other appropriate caregiver, thereby facilitating the authentication of the data recorded by the monitor recorder 14. Alternatively, the physical recording could be securely stored by the monitor recorder 14 as part of the monitoring ECG and physiology data set.


The mobile device 72 could also serve as a conduit for providing the data collected by the wearable physiology monitor or activity sensor 71 to the server 62, or, similarly, the wearable physiology monitor or activity sensor 71 could itself directly provide the collected data to the server 62. The server 62 could then merge the collected data into the wearer's EMRs 74 in the secure database 64, if appropriate (and permissible), or the server 62 could perform an analysis of the collected data, perhaps based by comparison to a population of like wearers of the wearable physiology monitor or activity sensor 71. Still other server 62 functions on the collected data are possible.


Finally, the monitor recorder 14 can also be equipped with a wireless transceiver. Thus, when wireless-enabled, both wearable physiology monitors, activity sensors 71, and mobile devices 72 can wirelessly interface with the monitor recorder 14, which could either provide data or other information to, or receive data or other information from an interfacing device for relay to a further device, such as the server 62, analysis, or other purpose. In addition, the monitor recorder 14 could wirelessly interface directly with the server 62, personal computer 69, or other computing device connectable over the network 61, when the monitor recorder 14 is appropriately equipped for interfacing with such devices. In one embodiment, network 61 can be a telecommunications network, such as the Internet or a cellular network, and the wireless transceiver can have at least some cellular phone capabilities, such as by being able to connect to the telecommunications networks. For example, if implemented using the standard such as Bluetooth® 4.2 standard or a Wi-Fi standard, the transceiver can connect to the Internet. Similarly, if implemented using a cellular standard and including a cellular chipset, the transceiver can connect to a cellular network as further described below. Once connected, the monitor recorder 14 can interface with the above-described devices via connecting to the telecommunications network. Still other types of remote interfacing of the monitor recorder 14 are possible.


The wearable monitor 12 records a patient's cardiac activity, with an emphasis on sensing atrial activity and, to a lesser extent, ventricular activity, over an extended period of monitoring. The wearable monitor 12 could include additional sensors to monitor and record other types of physiology, including blood pressure, respiratory rate, temperature, and blood glucose, either in addition to or in lieu of heart rate. FIG. 7 is a process flow diagram showing a method 100 addressing medical conditions through a wearable health monitor 12 with the aid of a digital computer 62 in accordance with one embodiment. The method 100 can be implemented with the aid of software, firmware or hardware and execution of the method 100 can be performed in salient part on a download station 65, which could be a programmer or other device, or a digital computer, including a server 62 or personal computer 76, as a series of process or method modules or steps. For convenience, the method 100 will be described in the context of being performed by a digital computer. Execution of the method 100 by other types of computing devices would be analogous mutatis mutandis.


At the outset, a patient suffering symptoms indicative of a non-urgent physical ailment or health condition (step 101) will obtain a wearable monitor 12, or similar device, and initiate self-monitoring (step 102). The wearable monitor 12 will record the patient's ECG and physiology data over a monitoring period and the data will be recorded into an onboard memory. Upon completion of the monitoring period, the ECG and physiology data will be downloaded into a digital computer with, for instance, the assistance of a download station 65 or similar device, or via wireless connection, if the wearable monitor 12 is so equipped.


The ECG and physiology data 79 retrieved from the wearable monitor 12 is evaluated to identify situations in which the patient requires specific actionable health care. The digital computer generates a diagnostic overread (step 103) of the ECG and physiology data 79 by comparing the data to a set of diagnostic criteria 80. The ECG and physiology data 79 may be structured along a temporal spectrum that reflects changes in physiology over time, or could be structured on a per event basis where a change in physiology alone suffices to raise a concern. A diagnostic criteria 80 can be defined generally for classes of health conditions, such as cardiac disorder, respiratory distress, hypoglycemia, and hypoxia, or for specific medical conditions, for instance, light headedness that consists of near syncope, atrial fibrillation that consists of episodes longer than 1 minute, ectopy that consists, on average, of over 3 PVCs per minute, palpitations that consist of rapid fluttering over the left side of the chest, supraventricular tachycardia that consists of rates greater than 180 bpm, ventricular tachycardia that consists of more than 3 ventricular beats in a row, bradycardia that consists of pauses greater than 3 seconds, or heart blockage that consists of unconducted normal sinus impulses. Other diagnostic criteria are possible.


Diagnostic findings 81 are made for each of the diagnostic criteria 80. The diagnostic findings 81 are rated by the digital computer by degree of severity and compared to a threshold level of tolerance for each finding. The diagnostic findings 81 may be tailored to a specific client, disease or medical condition group, or applied to a general patient population. If any of the diagnostic findings 81 rate severely enough to warrant medical attention, a referral 83 is automatically generated on behalf of the patient to a pre-identified care provider (step 104) primarily when the patient's medical condition is novel and has not previously been noted in the patient's medical history, although a referral may still be appropriate in some situations where the medical condition has already presented. When the patient's medical condition is pre-existing, the patient may be told to seek immediate medical treatment with a pre-identified medical facility (step 105), thereby bypassing the sequential and laggard referral route, although a referral and immediate medical treatment could both be triggered regardless of medical condition, should the patient so desire, regardless of monitoring outcome. In this instance, where the monitor shows only normal activity or unactionable activity, the patient will likely be referred to a general practitioner.


The foregoing solution to addressing a patient's medical conditions can happen without having to preemptively involve health insurance. Moreover, the wearable monitor 12 works particularly well with medical conditions that defy in-clinic testing. In addition, a database of pre-identified care providers ordered by medical specialty or other selection criteria can be paired with the diagnostic criteria to ensure that a patient gains access to the appropriate type of medical care required based on the diagnostic findings made for his medical condition. In a further embodiment, quality assurance can be performed (step 106) following the dispatch of a referral to rate the health care received by the patient using metrics such as quality, efficiency, and expediency. Other quality assurance metrics are possible. Still other operations and steps are possible.


While the invention has been particularly shown and described as referenced to the embodiments thereof, those skilled in the art will understand that the foregoing and other changes in form and detail may be made therein without departing from the spirit and scope.

Claims
  • 1. A system for patient medical care initiation based on physiological monitoring data with the aid of a digital computer, comprising: a physiological monitor, comprising: a sealed housing shaped to insert into a receptacle on an extended wear electrode patch; andan electronic circuitry comprised within the sealed housing and configured to sense via at least a pair of electrocardiographic electrodes provided on the extended wear electrode patch physiology of a patient, the electronic circuitry comprising an onboard memory configured to store the sensed physiology; anda download station configured to receive the physiology sensed by the physiological monitor;at least one computer, comprising: a database configured to store the received physiology and medical diagnostic criteria; anda processor and a memory configured to store code executable by the processor, the processor configured to: generate a diagnostic overread of the physiology using the medical diagnostic criteria; andinitiate medical care of the patient with one or more pre-identified care providers based on the overread.
  • 2. A system according to claim 1, wherein the diagnostic overread comprises one or more diagnostic findings that are rated by degrees of severity.
  • 3. A system according to claim 2, the processor further configured to: compare the ratings of the diagnostic findings to a threshold, wherein the initiation of the diagnostic treatment comprises generating orders to seek immediate treatment based on the comparison.
  • 4. A system according to claim 2, wherein the diagnostic findings are associated with a treatment, the processor further configured to: select the one or more pre-identified health care providers based on the treatments associated with the one or more diagnostic findings.
  • 5. A system according to claim 1, the processor further configured to: obtain physiological data associated with a population of individuals similar to the patient, wherein the diagnostic overread is further generated based on the physiological data associated with the population of individuals similar to the patient.
  • 6. A system according to claim 1, wherein at one of: the received physiology is structured along a temporal spectrum that reflects a change in the received physiology over time; andthe received physiology is structured on a per event basis.
  • 7. A system according to claim 6, wherein the classes of medical conditions comprise cardiac disorder, respiratory distress, hypoglycemia, and hypoxia.
  • 8. A system according to claim 1, wherein each of the medical diagnostic criteria are associated with at least one of a class of health conditions and a specific medical condition.
  • 9. A system according to claim 1, the physiological monitor further comprising one or more of a blood pressure sensor, respiratory rate sensor, a temperature sensor, and a blood glucose sensor.
  • 10. A method for patient medical care initiation based on physiological monitoring data with the aid of a digital computer, comprising: sensing physiology of a patient by a physiological monitor that comprises a sealed housing shaped to insert into a receptacle on an extended wear electrode patch and an electronic circuitry comprised within the sealed housing, the electronic circuitry configured to sense via at least a pair of electrocardiographic electrodes provided on the extended wear electrode patch the physiology of the patient, the electronic circuitry comprising an onboard memory configured to store the sensed physiology; andreceiving by a download station the physiology sensed by the physiological monitor; andprocessing the received physiology by an at least one computer, comprising: storing the received physiology and medical diagnostic criteria in a database;generating a diagnostic overread of the physiology using the medical diagnostic criteria; andinitiating medical care of the patient with one or more pre-identified care providers based on the overread.
  • 11. A method according to claim 10, wherein the diagnostic overread comprises one or more diagnostic findings that are rated by degrees of severity.
  • 12. A method according to claim 11, further comprising: comparing by the at least one computer the ratings of the diagnostic findings to a threshold, wherein the initiation of the diagnostic treatment comprises generating orders to seek immediate treatment based on the comparison.
  • 13. A method according to claim 11, wherein the diagnostic findings are associated with a treatment, further comprising selecting the one or more pre-identified health care providers based on the treatments associated with the one or more diagnostic findings.
  • 14. A method according to claim 10, the processor further configured to: obtaining physiological data associated with a population of individuals similar to the patient, wherein the diagnostic overread is further generated based on the physiological data associated with the population of individuals similar to the patient.
  • 15. A method according to claim 10, wherein at one of: the received physiology is structured along a temporal spectrum that reflects a change in the received physiology over time; andthe received physiology is structured on a per event basis.
  • 16. A method according to claim 15, wherein the classes of medical conditions comprise cardiac disorder, respiratory distress, hypoglycemia, and hypoxia.
  • 17. A method according to claim 10, wherein each of the medical diagnostic criteria are associated with at least one of a class of health conditions and a specific medical condition.
  • 18. A method according to claim 10, the physiological monitor further comprising one or more of a blood pressure sensor, respiratory rate sensor, a temperature sensor, and a blood glucose sensor.
  • 19. A method according to claim 10, further comprising: generating a referral to the one or more pre-identified care providers; andnotifying the patient of the referral.
CROSS-REFERENCE TO RELATED APPLICATION

This non-provisional patent application is a continuation of U.S. patent application Ser. No. 16/186,392, filed Nov. 9, 2018, pending, which is a continuation of U.S. Pat. No. 10,123,703, issued Nov. 13, 2018, which is a continuation of U.S. Pat. No. 9,936,875, issued Apr. 10, 2018, which is a continuation of U.S. Pat. No. 9,788,722, issued Oct. 17, 2017, which is a divisional of U.S. Pat. No. 9,504,423, issued Nov. 29, 2016, the disclosures of which are incorporated by reference.

US Referenced Citations (487)
Number Name Date Kind
3215136 Holter et al. Nov 1965 A
3569852 Berkovits Mar 1971 A
3602215 Parnell Aug 1971 A
3699948 Ota et al. Oct 1972 A
3718772 Sanctuary Feb 1973 A
3893453 Goldberg Jul 1975 A
4123785 Cherry et al. Oct 1978 A
4151513 Menken et al. Apr 1979 A
4328814 Arkans May 1982 A
4441500 Sessions et al. Apr 1984 A
4532934 Kelen Aug 1985 A
4546342 Weaver et al. Oct 1985 A
4550502 Grayzel Nov 1985 A
4580572 Granek et al. Apr 1986 A
4635646 Gilles et al. Jan 1987 A
4653022 Koro Mar 1987 A
4716903 Hansen Jan 1988 A
4809705 Ascher Mar 1989 A
4915656 Alferness Apr 1990 A
5007429 Treatch et al. Apr 1991 A
5025794 Albert et al. Jun 1991 A
5107480 Naus Apr 1992 A
5168876 Quedens et al. Dec 1992 A
5215098 Steinhaus Jun 1993 A
5231990 Gauglitz Aug 1993 A
D341423 Bible Nov 1993 S
5263481 Axelgaard Nov 1993 A
5265579 Ferrari Nov 1993 A
5333615 Craelius et al. Aug 1994 A
5341806 Gadsby et al. Aug 1994 A
5348008 Bomn et al. Sep 1994 A
5355891 Wateridge et al. Oct 1994 A
5365934 Leon et al. Nov 1994 A
5365935 Righter et al. Nov 1994 A
5392784 Gudaitis Feb 1995 A
D357069 Plahn et al. Apr 1995 S
5402780 Faasse, Jr. Apr 1995 A
5402884 Gilman et al. Apr 1995 A
5450845 Axelgaard Sep 1995 A
5451876 Sendford et al. Sep 1995 A
5458141 Neil Oct 1995 A
5473537 Glazer et al. Dec 1995 A
5483969 Testerman et al. Jan 1996 A
5511553 Segalowitz Apr 1996 A
5540733 Testerman et al. Jul 1996 A
5546952 Erickson Aug 1996 A
5549655 Erickson Aug 1996 A
5579919 Gilman et al. Dec 1996 A
5582181 Ruess Dec 1996 A
D377983 Sabri et al. Feb 1997 S
5601089 Bledsoe et al. Feb 1997 A
5623935 Faisandier Apr 1997 A
5682901 Kamen Nov 1997 A
5697955 Stolte Dec 1997 A
5724967 Venkatachalam Mar 1998 A
5749902 Olsen et al. May 1998 A
5788633 Mahoney Aug 1998 A
5817151 Olsen et al. Oct 1998 A
5819741 Karlsson et al. Oct 1998 A
5850920 Gilman et al. Dec 1998 A
5860918 Schradi et al. Jan 1999 A
D407159 Roberg Mar 1999 S
5876351 Rohde Mar 1999 A
5906583 Rogel May 1999 A
5951598 Bishay et al. Sep 1999 A
5957857 Hartley Sep 1999 A
5984102 Tay Nov 1999 A
6032064 Devlin et al. Feb 2000 A
6038469 Karlsson et al. Mar 2000 A
6101413 Olsen et al. Aug 2000 A
6115638 Groenke Sep 2000 A
6117077 Del Mar et al. Sep 2000 A
6134479 Brewer et al. Oct 2000 A
6148233 Owen et al. Nov 2000 A
6149602 Arcelus Nov 2000 A
6149781 Forand Nov 2000 A
6188407 Smith et al. Feb 2001 B1
D443063 Pisani et al. May 2001 S
6245025 Torok et al. Jun 2001 B1
6246330 Nielsen Jun 2001 B1
6249696 Olson et al. Jun 2001 B1
D445507 Pisani et al. Jul 2001 S
6269267 Bardy et al. Jul 2001 B1
6272385 Bishay et al. Aug 2001 B1
6298255 Cordero et al. Oct 2001 B1
6301502 Owen et al. Oct 2001 B1
6304773 Taylor et al. Oct 2001 B1
6304780 Owen et al. Oct 2001 B1
6304783 Lyster et al. Oct 2001 B1
6374138 Owen et al. Apr 2002 B1
6381482 Jayaraman et al. Apr 2002 B1
6416471 Kumar et al. Jul 2002 B1
6418342 Owen et al. Jul 2002 B1
6424860 Karlsson et al. Jul 2002 B1
6427083 Owen et al. Jul 2002 B1
6427085 Boon et al. Jul 2002 B1
6454708 Ferguson et al. Sep 2002 B1
6456872 Faisandier Sep 2002 B1
6463320 Xue et al. Oct 2002 B1
6546285 Owen et al. Apr 2003 B1
6605046 Del Mar Aug 2003 B1
6607485 Bardy Aug 2003 B2
6611705 Hopman et al. Aug 2003 B2
6671545 Fincke Dec 2003 B2
6671547 Lyster et al. Dec 2003 B2
6694186 Bardy Feb 2004 B2
6704595 Bardy Mar 2004 B2
6705991 Bardy Mar 2004 B2
6719701 Lade Apr 2004 B2
6754523 Toole Jun 2004 B2
6782293 Dupelle et al. Aug 2004 B2
6856832 Matsumura Feb 2005 B1
6860897 Bardy Mar 2005 B2
6866629 Bardy Mar 2005 B2
6887201 Bardy May 2005 B2
6893397 Bardy May 2005 B2
6895261 Palamides May 2005 B1
6904312 Bardy Jun 2005 B2
6908431 Bardy Jun 2005 B2
6913577 Bardy Jul 2005 B2
6944498 Owen et al. Sep 2005 B2
6960167 Bardy Nov 2005 B2
6970731 Jayaraman et al. Nov 2005 B1
6978169 Guerra Dec 2005 B1
6993377 Flick et al. Jan 2006 B2
7020508 Stivoric et al. Mar 2006 B2
7027864 Snyder et al. Apr 2006 B2
7065401 Worden Jun 2006 B2
7085601 Bardy et al. Aug 2006 B1
7104955 Bardy Sep 2006 B2
7134996 Bardy Nov 2006 B2
7137389 Berthon-Jones Nov 2006 B2
7147600 Bardy Dec 2006 B2
7215991 Besson et al. May 2007 B2
7248916 Bardy Jul 2007 B2
7257438 Kinast Aug 2007 B2
7277752 Matos Oct 2007 B2
7294108 Bornzin et al. Nov 2007 B1
D558882 Brady Jan 2008 S
7328061 Rowlandson et al. Feb 2008 B2
7412395 Rowlandson et al. Aug 2008 B2
7429938 Corndorf Sep 2008 B1
7552031 Vock et al. Jun 2009 B2
D606656 Kobayashi et al. Dec 2009 S
7706870 Shieh et al. Apr 2010 B2
7756721 Falchuk et al. Jul 2010 B1
7787943 McDonough Aug 2010 B2
7874993 Bardy Jan 2011 B2
7881785 Nassif et al. Feb 2011 B2
D639437 Bishay et al. Jun 2011 S
7959574 Bardy Jun 2011 B2
8108035 Bharmi Jan 2012 B1
8116841 Bly et al. Feb 2012 B2
8135459 Bardy et al. Mar 2012 B2
8172761 Rulkov et al. May 2012 B1
8180425 Selvitelli et al. May 2012 B2
8200320 Kovacs Jun 2012 B2
8231539 Bardy Jul 2012 B2
8231540 Bardy Jul 2012 B2
8239012 Felix et al. Aug 2012 B2
8249686 Libbus et al. Aug 2012 B2
8260414 Nassif et al. Sep 2012 B2
8266008 Siegal et al. Sep 2012 B1
8277378 Bardy Oct 2012 B2
8285356 Bly et al. Oct 2012 B2
8285370 Felix et al. Oct 2012 B2
8308650 Bardy Nov 2012 B2
8366629 Bardy Feb 2013 B2
8374688 Libbus et al. Feb 2013 B2
8412317 Mazar Apr 2013 B2
8460189 Libbus et al. Jun 2013 B2
8473047 Chakravarthy et al. Jun 2013 B2
8478418 Fahey Jul 2013 B2
8538503 Kumar et al. Sep 2013 B2
8554311 Warner et al. Oct 2013 B2
8560046 Kumar et al. Oct 2013 B2
8591430 Amurthur et al. Nov 2013 B2
8594763 Bibian et al. Nov 2013 B1
8600486 Kaib et al. Dec 2013 B2
8613708 Bishay et al. Dec 2013 B2
8613709 Bishay et al. Dec 2013 B2
8620418 Kuppuraj et al. Dec 2013 B1
8626277 Felix et al. Jan 2014 B2
8628020 Beck Jan 2014 B2
8668653 Nagata et al. Mar 2014 B2
8684925 Manicka et al. Apr 2014 B2
8688190 Libbus et al. Apr 2014 B2
8718752 Libbus et al. May 2014 B2
8744561 Fahey Jun 2014 B2
8774932 Fahey Jul 2014 B2
8790257 Libbus et al. Jul 2014 B2
8790259 Katra et al. Jul 2014 B2
8795174 Manicka et al. Aug 2014 B2
8798729 Kaib et al. Aug 2014 B2
8798734 Kuppuraj et al. Aug 2014 B2
8818478 Scheffler et al. Aug 2014 B2
8818481 Bly et al. Aug 2014 B2
8823490 Libbus et al. Sep 2014 B2
8938287 Felix et al. Jan 2015 B2
8948935 Peeters Feb 2015 B1
8965492 Baker et al. Feb 2015 B2
9066664 Karjalainen Jun 2015 B2
9155484 Baker et al. Oct 2015 B2
9204813 Kaib et al. Dec 2015 B2
9241649 Kumar et al. Jan 2016 B2
9259154 Miller et al. Feb 2016 B2
9277864 Yang et al. Mar 2016 B2
9339202 Brockway et al. May 2016 B2
9375179 Schultz et al. Jun 2016 B2
9414786 Brockway et al. Aug 2016 B1
9439566 Arne et al. Sep 2016 B2
9597004 Hughes et al. Mar 2017 B2
9603542 Veen et al. Mar 2017 B2
9700222 Quinlan et al. Jul 2017 B2
9770182 Bly et al. Sep 2017 B2
10034614 Edic et al. Jul 2018 B2
10045708 Dusan Aug 2018 B2
10049182 Chefles et al. Aug 2018 B2
20020013538 Teller Jan 2002 A1
20020013717 Ando et al. Jan 2002 A1
20020016798 Sakai Feb 2002 A1
20020103422 Harder et al. Aug 2002 A1
20020109621 Khair et al. Aug 2002 A1
20020120310 Linden et al. Aug 2002 A1
20020128686 Minogue et al. Sep 2002 A1
20020184055 Naghavi et al. Dec 2002 A1
20020193668 Munneke Dec 2002 A1
20030004547 Owen et al. Jan 2003 A1
20030028811 Walker et al. Feb 2003 A1
20030073916 Yonce Apr 2003 A1
20030083559 Thompson May 2003 A1
20030097078 Maeda May 2003 A1
20030139785 Riff Jul 2003 A1
20030176802 Galen et al. Sep 2003 A1
20030211797 Hill et al. Nov 2003 A1
20040008123 Carrender Jan 2004 A1
20040019288 Kinast Jan 2004 A1
20040034284 Aversano et al. Feb 2004 A1
20040049120 Cao et al. Mar 2004 A1
20040049132 Barron et al. Mar 2004 A1
20040073127 Istvan et al. Apr 2004 A1
20040087836 Green et al. May 2004 A1
20040088019 Rueter et al. May 2004 A1
20040093192 Hasson et al. May 2004 A1
20040116784 Gavish Jun 2004 A1
20040148194 Wellons et al. Jul 2004 A1
20040163034 Colbath et al. Aug 2004 A1
20040167416 Lee Aug 2004 A1
20040207530 Nielsen Oct 2004 A1
20040210165 Marmaropoulos et al. Oct 2004 A1
20040236202 Burton Nov 2004 A1
20040243435 Williams Dec 2004 A1
20040256453 Lammle Dec 2004 A1
20040260188 Syed Dec 2004 A1
20040260192 Yamamoto Dec 2004 A1
20050010139 Aminian et al. Jan 2005 A1
20050096717 Bishay et al. May 2005 A1
20050108055 Ott et al. May 2005 A1
20050113661 Nazeri May 2005 A1
20050151640 Hastings Jul 2005 A1
20050154267 Bardy Jul 2005 A1
20050182308 Bardy Aug 2005 A1
20050182309 Bardy Aug 2005 A1
20050215918 Frantz et al. Sep 2005 A1
20050222513 Hadley et al. Oct 2005 A1
20050228243 Bardy Oct 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050261564 Ryu et al. Nov 2005 A1
20050275416 Hervieux et al. Dec 2005 A1
20060025696 Kurzweil et al. Feb 2006 A1
20060025824 Freeman et al. Feb 2006 A1
20060030767 Lang et al. Feb 2006 A1
20060030904 Quiles Feb 2006 A1
20060041201 Behbehani et al. Feb 2006 A1
20060054737 Richardson Mar 2006 A1
20060084883 Linker Apr 2006 A1
20060100530 Kliot et al. May 2006 A1
20060111642 Baura et al. May 2006 A1
20060122469 Martel Jun 2006 A1
20060124193 Orr et al. Jun 2006 A1
20060224072 Shennib Oct 2006 A1
20060229522 Barr Oct 2006 A1
20060235320 Tan et al. Oct 2006 A1
20060253006 Bardy Nov 2006 A1
20060264730 Stivoric et al. Nov 2006 A1
20060264767 Shennib Nov 2006 A1
20070003115 Patton et al. Jan 2007 A1
20070038057 Nam et al. Feb 2007 A1
20070050209 Yered Mar 2007 A1
20070078324 Wijisiriwardana Apr 2007 A1
20070078354 Holland Apr 2007 A1
20070088406 Bennett et al. Apr 2007 A1
20070089800 Sharma Apr 2007 A1
20070093719 Nichols, Jr. et al. Apr 2007 A1
20070100248 Van Dam et al. May 2007 A1
20070100667 Bardy May 2007 A1
20070123801 Goldberger et al. May 2007 A1
20070131595 Jansson et al. Jun 2007 A1
20070136091 McTaggart Jun 2007 A1
20070179357 Bardy Aug 2007 A1
20070185390 Perkins et al. Aug 2007 A1
20070203415 Bardy Aug 2007 A1
20070203423 Bardy Aug 2007 A1
20070208232 Kovacs Sep 2007 A1
20070208233 Kovacs Sep 2007 A1
20070208266 Hadley Sep 2007 A1
20070225611 Kumar et al. Sep 2007 A1
20070244405 Xue et al. Oct 2007 A1
20070249946 Kumar et al. Oct 2007 A1
20070255153 Kumar et al. Nov 2007 A1
20070265510 Bardy Nov 2007 A1
20070270678 Fadem Nov 2007 A1
20070276270 Tran Nov 2007 A1
20070276275 Proctor et al. Nov 2007 A1
20070293738 Bardy Dec 2007 A1
20070293739 Bardy Dec 2007 A1
20070293740 Bardy Dec 2007 A1
20070293741 Bardy Dec 2007 A1
20070293772 Bardy Dec 2007 A1
20070299325 Farrell et al. Dec 2007 A1
20070299617 Willis Dec 2007 A1
20080027337 Dugan Jan 2008 A1
20080027339 Nagai et al. Jan 2008 A1
20080051668 Bardy Feb 2008 A1
20080058661 Bardy Mar 2008 A1
20080088467 Al-Ali et al. Apr 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091097 Linti et al. Apr 2008 A1
20080108890 Teng et al. May 2008 A1
20080114232 Gazit May 2008 A1
20080139953 Baker et al. Jun 2008 A1
20080143080 Burr Jun 2008 A1
20080194927 KenKnight et al. Aug 2008 A1
20080208009 Shklarski Aug 2008 A1
20080208014 KenKnight et al. Aug 2008 A1
20080284599 Zdeblick et al. Nov 2008 A1
20080288026 Cross et al. Nov 2008 A1
20080294024 Cosentino et al. Nov 2008 A1
20080177168 Callahan et al. Dec 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20080309481 Tanaka et al. Dec 2008 A1
20080312522 Rowlandson et al. Dec 2008 A1
20090009342 Karjalainen Jan 2009 A1
20090012412 Wiesel Jan 2009 A1
20090012979 Bateni et al. Jan 2009 A1
20090054952 Glukhovsky et al. Feb 2009 A1
20090062670 Sterling Mar 2009 A1
20090062897 Axelgaard Mar 2009 A1
20090069867 KenKnight et al. Mar 2009 A1
20090073991 Landrum et al. Mar 2009 A1
20090076336 Mazar et al. Mar 2009 A1
20090076341 James et al. Mar 2009 A1
20090076342 Amurthur et al. Mar 2009 A1
20090076343 James et al. Mar 2009 A1
20090076346 James et al. Mar 2009 A1
20090076349 Libbus et al. Mar 2009 A1
20090076397 Libbus et al. Mar 2009 A1
20090076401 Mazar et al. Mar 2009 A1
20090076559 Libbus et al. Mar 2009 A1
20090088652 Tremblay Apr 2009 A1
20090112116 Lee et al. Apr 2009 A1
20090131759 Sims et al. May 2009 A1
20090156908 Belalcazar et al. Jun 2009 A1
20090216132 Orbach Aug 2009 A1
20090270708 Shen et al. Oct 2009 A1
20090270747 Van Dam et al. Oct 2009 A1
20090292194 Libbus et al. Nov 2009 A1
20100007413 Herleikson et al. Jan 2010 A1
20100022897 Parker et al. Jan 2010 A1
20100056881 Libbus et al. Mar 2010 A1
20100081913 Cross et al. Apr 2010 A1
20100174229 Hsu et al. Jul 2010 A1
20100177100 Carnes et al. Jul 2010 A1
20100185063 Bardy Jul 2010 A1
20100185076 Jeong et al. Jul 2010 A1
20100191154 Berger et al. Jul 2010 A1
20100191310 Bly Jul 2010 A1
20100223020 Goetz Sep 2010 A1
20100234715 Shin et al. Sep 2010 A1
20100234716 Engel Sep 2010 A1
20100280366 Arne et al. Nov 2010 A1
20100312188 Robertson et al. Dec 2010 A1
20100324384 Moon et al. Dec 2010 A1
20110021937 Hugh et al. Jan 2011 A1
20110054286 Crosby et al. Mar 2011 A1
20110060215 Tupin et al. Mar 2011 A1
20110066041 Pandia et al. Mar 2011 A1
20110077497 Oster et al. Mar 2011 A1
20110105861 Derchak et al. May 2011 A1
20110144470 Mazar et al. Jun 2011 A1
20110160548 Forster Jun 2011 A1
20110224564 Moon et al. Sep 2011 A1
20110237922 Parker, III et al. Sep 2011 A1
20110237924 McGusty et al. Sep 2011 A1
20110245699 Snell et al. Oct 2011 A1
20110245711 Katra et al. Oct 2011 A1
20110288605 Kaib et al. Nov 2011 A1
20110313305 Rantala Dec 2011 A1
20120003933 Baker et al. Jan 2012 A1
20120029306 Paquet et al. Feb 2012 A1
20120029315 Raptis et al. Feb 2012 A1
20120029316 Raptis et al. Feb 2012 A1
20120035432 Katra et al. Feb 2012 A1
20120059668 Baldock et al. Mar 2012 A1
20120078127 McDonald et al. Mar 2012 A1
20120088998 Bardy et al. Apr 2012 A1
20120088999 Bishay et al. Apr 2012 A1
20120089000 Bishay et al. Apr 2012 A1
20120089001 Bishay et al. Apr 2012 A1
20120089037 Bishay et al. Apr 2012 A1
20120089412 Bardy et al. Apr 2012 A1
20120089417 Bardy et al. Apr 2012 A1
20120095352 Tran Apr 2012 A1
20120101358 Boettcher et al. Apr 2012 A1
20120101396 Solosko et al. Apr 2012 A1
20120165645 Russel et al. Jun 2012 A1
20120306662 Vosch et al. Jun 2012 A1
20120172695 Ko et al. Jul 2012 A1
20120184207 Gaines Jul 2012 A1
20120220835 Chung Aug 2012 A1
20120232929 Experton Sep 2012 A1
20120238910 Nordstrom Sep 2012 A1
20120253847 Dell'Anno et al. Oct 2012 A1
20120302906 Felix et al. Nov 2012 A1
20120330126 Hoppe et al. Dec 2012 A1
20130041272 Javier et al. Feb 2013 A1
20130077263 Oleson et al. Mar 2013 A1
20130079611 Besko Mar 2013 A1
20130085347 Manicka et al. Apr 2013 A1
20130085403 Gunderson et al. Apr 2013 A1
20130087609 Nichol et al. Apr 2013 A1
20130096395 Katra et al. Apr 2013 A1
20130116533 Lian et al. May 2013 A1
20130123651 Bardy May 2013 A1
20130158361 Bardy Jun 2013 A1
20130172763 Wheeler Jul 2013 A1
20130197380 Oral et al. Aug 2013 A1
20130225963 Kodandaramaiah et al. Aug 2013 A1
20130225966 Macia Barber et al. Aug 2013 A1
20130231947 Shusterman Sep 2013 A1
20130243105 Lei et al. Sep 2013 A1
20130274584 Finlay et al. Oct 2013 A1
20130275158 Fahey Oct 2013 A1
20130324809 Lisogurski et al. Dec 2013 A1
20130324855 Lisogurski et al. Dec 2013 A1
20130324856 Lisogurski et al. Dec 2013 A1
20130325081 Karst et al. Dec 2013 A1
20130325359 Jarverud et al. Dec 2013 A1
20130331665 Libbus et al. Dec 2013 A1
20130338448 Libbus et al. Dec 2013 A1
20130338472 Macia Barber et al. Dec 2013 A1
20140012154 Mazar et al. Jan 2014 A1
20140031663 Gallego Jan 2014 A1
20140056452 Moss et al. Feb 2014 A1
20140088399 Lian et al. Mar 2014 A1
20140107509 Banet et al. Apr 2014 A1
20140140359 Kalevo et al. May 2014 A1
20140180027 Buller Jun 2014 A1
20140189928 Oleson et al. Jul 2014 A1
20140194760 Albert Jul 2014 A1
20140206977 Bahney et al. Jul 2014 A1
20140214134 Peterson Jul 2014 A1
20140215246 Lee et al. Jul 2014 A1
20140249852 Proud Sep 2014 A1
20140296651 Stone Oct 2014 A1
20140297310 Collins Oct 2014 A1
20140343390 Berzowska et al. Nov 2014 A1
20140358193 Lyons et al. Dec 2014 A1
20140364756 Brockway et al. Dec 2014 A1
20150048836 Guthrie et al. Feb 2015 A1
20150065842 Lee et al. Mar 2015 A1
20150094558 Russell Apr 2015 A1
20150142090 Duijsens et al. May 2015 A1
20150164349 Gopalakrishnan et al. Jun 2015 A1
20150165211 Naqvi et al. Jun 2015 A1
20150177175 Elder et al. Jun 2015 A1
20150250422 Bay Sep 2015 A1
20150257670 Ortega et al. Sep 2015 A1
20150305676 Shoshani Nov 2015 A1
20150359489 Baudenbacher et al. Dec 2015 A1
20160135746 Kumar et al. May 2016 A1
20160144190 Cao et al. May 2016 A1
20160144192 Sanghera et al. May 2016 A1
20160217691 Kadobayashi et al. Jul 2016 A1
20160235318 Sarkar Aug 2016 A1
20170056650 Cohen et al. Mar 2017 A1
20190021671 Kumar et al. Jan 2019 A1
Foreign Referenced Citations (33)
Number Date Country
19955211 May 2001 DE
1859833 Nov 2007 EP
2438851 Apr 2012 EP
2438852 Apr 2012 EP
2465415 Jun 2012 EP
2589333 May 2013 EP
H06319711 Nov 1994 JP
H11188015 Jul 1999 JP
2004129788 Apr 2004 JP
2007082938 Apr 2007 JP
2009219554 Oct 2009 JP
199852463 Nov 1998 WO
0078213 Dec 2000 WO
2003032192 Apr 2003 WO
2006009767 Jan 2006 WO
2006014806 Feb 2006 WO
2007066270 Jun 2007 WO
2007092543 Aug 2007 WO
2008010216 Jan 2008 WO
2008057884 May 2008 WO
2008092098 Jul 2008 WO
2009036306 Mar 2009 WO
2009036313 Mar 2009 WO
2009036327 Mar 2009 WO
2009112976 Sep 2009 WO
2009112978 Sep 2009 WO
2009112979 Sep 2009 WO
2009142975 Nov 2009 WO
2010066507 Jun 2010 WO
2010105045 Sep 2010 WO
2011047207 Apr 2011 WO
2012140559 Oct 2012 WO
2012146957 Nov 2012 WO
Non-Patent Literature Citations (46)
Entry
Wallot et al., “Using Complexity Metrics With R-R Intervals and BPM Heart Rate Measures,” Frontiers in Physiology, vol. 4, Article 211, pp. 1-8, Aug. 13, 2013. 2013.
https://fccid.io/LF524950/User-Manual/User-Manual-1944573 © Medtronic, Inc. 2012.
15 of the Hottest Wearable Gadgets, URL <http://thehottestgadgets.com/2008/09/the-15-hottest-wearable-gadgets-001253> (Web page cached on Sep. 27, 2008).
Alivecor, URL <http://www.businesswire.com/news/home/20121203005545/en/AliveCor%E2%80%99s-Heart-Monitor-iPhone-Receives-FDA-Clearance#.U7rtq7FVTyF> (Dec. 3, 2012).
Bharadwaj et al., Techniques for Accurate ECG signal processing, EE Times, URL <www.eetimes.com/document.asp?doc_id=1278571> (Feb. 14, 2011).
Chen et al. “Monitoring Body Temperature of Newborn Infants At Neonatal Intensive Care Units Using Wearable Sensors,” BodyNets 2010, Corfu Island, Greece. Sep. 10-12, 1210.
Epstein, Andrew E. et al.; ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities. J. Am. Coll. Cardiol. 2008; 51; el-e62, 66 Pgs.
Fitbit Tracker, URL <http://www.fitbit.com/> (Web page cached on Sep. 10, 2008.).
Smith, Jawbone Up, URL <http://www.businessinsider.com/fitbit-flex-vs-jawbone-up-2013-5?op=1> (Jun. 1, 2013).
Kligfield, Paul et al., Recommendations for the Standardization and Interpretation of the Electrocardiogram: Part I. J.Am.Coll. Cardiol; 2007; 49; 1109-27, 75 Pgs.
Lauren Gravitz, “When Your Diet Needs a Band-Aid,” Technology Review, MIT. (May 1, 2009).
Lieberman, Jonathan, “How Telemedicine Is Aiding Prompt ECG Diagnosis in Primary Care,” British Journal of Community Nursing, vol. 13, No. 3, Mar. 1, 2008 (Mar. 1, 2008), pp. 123-126, XP009155082, ISSN: 1462-4753.
McManus et al., “A Novel Application for the Detection of an Irregular Pulse using an iPhone 4S in Patients with Atrial Fibrillation,” vol. 10(3), pp. 315-319 (Mar. 2013.).
Nike+ Fuel Band, URL <http://www.nike.com/us/en_us/c/nikeplus-fuelband> (Web page cached on Jan. 11, 2013.).
P. Libby et al.,“Braunwald's Heart Disease—A Textbook of Cardiovascular Medicine,” Chs. 11, pp. 125-148 and 12, pp. 149-193 (8th ed. 2008), American Heart Association.
Initial hands-on with Polar Loop activity tracker, URL <http://www.dcrainmaker.com/2013/09/polar-loop-firstlook.html> (Sep. 17, 2013).
Seifert, Dan, Samsung dives into fitness wearable with the Gear Fit/ The Verge, URL <http://www.theverge.com/2014/2/24/5440310/samsung-dives-into-fitness-wearables-with-the-gear-fit> (Feb. 24, 2014).
Soper, Taylor, Samsung's new Galaxy S5 flagship phone has fingerprint reader, heart rate monitor, URL <http://www.geekwire.com/2014/samsung-galaxy-s5-fingerprint> (Feb. 24, 2014).
Dolcourt, See the Samsung Galaxy S5's Heart rate monitor in action, URL <http://www.cnet.com/news/see-the-samsung-galaxy-s5s-heart-rate-monitor-in-action> (Feb. 25, 2014).
Sittig et al., “A Computer-Based Outpatient Clinical Referral System,” International Journal of Medical Informatics, Shannon, IR, vol. 55, No. 2, Aug. 1, 1999, pp. 149-158, X0004262434, ISSN: 1386-5056(99)00027-1.
Sleepview, URL <http://www.clevemed.com/sleepview/overview.shtml> (Web page cached on Sep. 4, 2013.).
Actigraphy/ Circadian Rhythm SOMNOwatch, URL <http://www.somnomedics.eu/news-events/publications/somnowatchtm.html> (Web page cached on Jan. 23, 2010).
Zio Event Card, URL <http://www.irhythmtech.com/zio-solution/zio-event/> (Web page cached on Mar. 11, 2013.).
Zio Patch System, URL <http://www.irhythmtech.com/zio-solution/zio-system/index.html> (Web page cached on Sep. 8, 2013.).
Saadi et al. “Heart Rhythm Analysis Using ECG Recorded With a Novel Sternum Based Patch Technology—A Pilot Study.” Cardio technix 2013—Proceedings of the International Congress on Cardiovascular Technologies, Sep. 20, 2013.
Anonymous. Omegawave Launches Consumer App 2.0 in U.S. “Endurance Sportswire—Endurance Sportswire.” Jul. 11, 2013. URL:http://endurancesportswire.com/omegawave-launches-consumer-app-2-0-in-u-s/.
Chan et al. “Wireless Patch Sensor for Remote Monitoring of Heart Rate, Respiration, Activity, and Falls.” pp. 6115-6118. 2013 35th Annual International Conference of the IEEE Engineering in Medical and Biology Society. Jul. 1, 2013.
Wei et al. “A Stretchable and Flexible System for Skin-Mounted Measurement of Motion Tracking and Physiological Signals.” pp. 5772-5775. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Aug. 26, 2014.
Daoud et al. “Fall Detection Using Shimmer Technology and Multiresolution Analysis.” Aug. 2, 2013. URL: https://decibel.ni.com/content/docs/DOC-26652.
Libbus. “Adherent Cardiac Monitor With Wireless Fall Detection for Patients With Unexplained Syncope.” Abstracts of the First AMA-IEEE Medical Technology Conference on Individualized Healthcare. May 22, 2010.
Duttweiler et al., “Probability Estimation in Arithmetic and Adaptive-Huffman Entropy Coders,” IEEE Transactions on Image Processing. vol. 4, No. 3, Mar. 1, 1995, pp. 237-246.
Gupta et al., “An ECG Compression Technique for Telecardiology Application,” India Conference (INDICON), 2011 Annual IEEE, Dec. 16, 2011, pp. 1-4.
Nave et al., “ECG Compression Using Long-Term Prediction,” IEEE Transactions on Biomedical Engineering, IEEE Service Center, NY, USA, vol. 40, No. 9, Sep. 1, 1993, pp. 877-885.
Skretting et al., “Improved Huffman Coding Using Recursive Splitting,” NORSIG, Jan. 1, 1999.
A Voss et al., “Linear and Nonlinear Methods for Analyses of Cardiovascular Variability in Bipolar Disorders,” Bipolar Disorders, votl. 8, No. 5p1, Oct. 1, 2006, pp. 441-452, XP55273826, DK ISSN: 1398-5647, DOI: 10.1111/i.1399-5618.2006.00364.x.
Varicrad-Kardi Software User's Manual Rev. 1.1, Jul. 8, 2009 (Jul. 8, 2009), XP002757888, retrieved from the Internet: URL:http://www.ehrlich.tv/KARDiVAR-Software.pdf [retrieved on May 20, 2016].
Vedapulse UK, Jan. 1, 2014 (Jan. 1, 2014), XP002757887, Retrieved from the Internet: URL:http://www.vedapulseuk.com/diagnostic/ [retrieved on May 19, 2016].
http://www.originlab.com/origin#Data_Exploration 2015.
https://web.archive.org/web/20130831204020/http://www.biopac.com/research.asp?CatID=37&Main=Software (Aug. 2013).
Adinstruments:ECG Analysis Module for LabChart & PowerLab, 2008.
Biopac Systems, Inc. #AS148-Automated ECG Analysis , Mar. 24, 2006.
Health Research—Hexoskin Biometric Shirt | Hexoskin URL:http://www.hexoskin.com/pages/health-research (Web page cached on Dec. 2, 2014).
Jacob Kastrenakes, “Apple Watch uses four sensors to detect your pulse,” Sep. 9, 2014. URL: http://www.theverge.com/2014/9/9/6126991/apple-watch-four-back-sensors-detect-activity.
Nicole Lee, “Samsung Gear S review: an ambitious and painfully flawed smartwatch,” Dec. 1, 2014. URL: http://www.engadget.com/2014/12/01/samsung-gear-s-review/.
G. G. Ivanov, “HRV Analysis Under the Usage of Different Electrocardiopraphy Systems,” Apr. 15, 2008 (Apr. 15, 2008), XP55511209, Retrieved from the Internet: URL:http://www.drkucera.eu/upload_doc/hrv_analysis_(methodical_recommendations).pdf [retrieved on Oct. 1, 2018].
http://www.gtec.at/Products/Software/g.BSanalyze-Specs-Features (2014).
Related Publications (1)
Number Date Country
20190380581 A1 Dec 2019 US
Divisions (1)
Number Date Country
Parent 14875622 Oct 2015 US
Child 15362743 US
Continuations (4)
Number Date Country
Parent 16186392 Nov 2018 US
Child 16551213 US
Parent 15948915 Apr 2018 US
Child 16186392 US
Parent 15785317 Oct 2017 US
Child 15948915 US
Parent 15362743 Nov 2016 US
Child 15785317 US