1. Field of the Invention
The present invention relates generally to pumps and, more specifically, to a system and method for preventing floating rod effect in a reciprocating pump having a pump rod.
2. Description of the Related Art
This section is intended to introduce the reader to aspects of art that may be related to aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
A pump typically is used to lift oil from a subterranean oil reservoir to the surface. There are many different types of pumps that have been used to pump oil from an oil well. A commonly used type of pump for retrieving oil from a wellbore is known as a “sucker rod” pump unit. A sucker rod pump unit is a system that operates a downhole reciprocating pump linked to a surface prime mover by a rod string. The pump produces well fluids to the surface through production tubing. The rod string runs inside the production tubing and is connected to a piston within the downhole pump. The rod string is immersed in the well fluids. The opposite end of the sucker rod is supported by a bridle coupled to a reciprocating unit. The reciprocating unit lifts the bridle and the sucker rod string to produce an upward stroke of the downhole reciprocating pump. The downward stroke of the downhole reciprocating pump is achieved by letting gravity pull the rod string downward. The downhole pump may include a piston having a check valve. As the sucker rod string is lifted upward, the check valve is closed, and oil and other wellbore fluids are lifted by the plunger upward towards the surface. As the sucker rod falls downward, the check valve opens and oil and other well fluids are allowed to flow into the pump above the piston.
Because the rod string is immersed in the well fluids in the production tubing, the ability of the sucker rod to fall through the well fluids is effected by the viscosity of the well fluids. When the bridle that supports the sucker rod descends faster than the sucker rod string, the bridle may separate from the sucker rod string. When the reciprocating unit begins lifting the bridle, the sucker rod may still be descending. This can cause a violent impact when the bridle engages the sucker rod, leading to failure of the sucker rod or the bridle. It also means that the pumping unit is not producing oil during a full upward stroke. This condition is known as “floating rod effect”.
The techniques described below address one or more of the problems associated with “floating rod effect”.
A system and method for pumping formation fluids from a well using a sucker rod pumping system that prevents the pumping system from experiencing floating rod effect. The sucker rod pumping system comprises a pump drive system, a rod string, and a downhole reciprocating pump driven by the rod string. The pump drive system is coupled to the rod string by a bridle. In addition, the sucker rod pumping system comprises a drive control system that controls the speed of the pump drive system during the upstroke and downstroke. The drive control system is coupled to a load cell configured to provide a signal representative of load on the rod string. The drive control system controls the speed of the pump drive system during the downstroke based on the load on the rod string so that the rod string does not experience a floating rod condition.
Advantages of the invention may become apparent upon reading the following detailed description and upon reference to the drawings in which:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill in the art and having the benefit of this disclosure.
Referring generally to
The drive system 14 comprises a number of components configured to reciprocate the rod string 18. The drive system 14 comprises a pump motor 20 that is coupled to a gearbox 22. The gearbox 22 drives a counterweight 24 around a hub 26. The counterweight 24 is coupled to one end of a beam 28 by a crank 30. The crank 30 is offset from the hub 26. The beam 28 balances the weight between the counterweight 24 and the rod string 18, which may be several thousands of feet long. The beam 28 is mounted to a support base 32 with a rotatable connection 34. A horse head 36 is mounted to the end of the beam 28 opposite the crank 30. As the motor 20 drives the gearbox 22, the counterweight 24 is rotated and the crank 30 raises and lowers one end of the beam 28 causing the horse head 36 at the opposite end of the beam 28 to move up and down. The horse head 36 is coupled to the rod string 18 by a bridle 38. When the horse head 36 moves up, the bridle 38 lifts the rod string 18 upward. When the horse head moves down, the bridle 38 lowers and gravity pulls the weight of the rod string 18 down. In the illustrated embodiment, a load cell 40 is provided to measure the load on the rod string 18.
The drive system 14 comprises a number of components that are configured to control the speed of the rod string 18 to prevent a floating rod condition from occurring. In particular, the drive system 14 of the illustrated embodiment comprises a drive control system 42. The drive control system 42 that controls power to the motor 20 and, thereby, the speed that the drive system 14 raises and lowers the bridle 38. The drive control system 42 receives a signal from the load cell 40. In addition, an inclinometer 43 is provided to provide a signal representative of beam 28 inclination angle to the drive control system 42. This information can be used to determine the position of the rod string 18, as ‘well, and thus providing an indication of a defined point in the pumping cycle to the drive control system 42. In this embodiment, a position sensor 44 is provided as an alternative to the inclinometer 43. The position sensor 44 provides a signal to the drive control system 42 when the counterweight 24 is passing a defined point as the counterweight 24 is rotated, indicating the end of the downstroke of the pump 12.
In the illustrated embodiment, the downhole pump 12 comprises a tubing string 45. The rod string 18 extends through the tubing string 44. The tubing string 45, in turn, is disposed within casing 46 secured into the ground and defining the wellbore. Perforations 48 are created in the casing 46 to enable formation fluids to flow into the interior of the casing 46 from the formation 50 stuffing box 52 is provided on the top of the casing 46 to enable the rod string 18 to enter the casing 46 while maintaining a seal around the rod string 18. In the illustrated embodiment, this portion of the rod string 18 is a polished rod 54. As will be discussed in more detail below, fluids, represented generally by arrow 56, are pumped from upward through the tubing string 45 and out of the casing 46 through a wellhead 58.
Referring generally to
Referring generally to
Referring generally to
Referring generally to
Referring generally to
Where:
FRN(L)=FR(L)α (2)
Where:
Referring generally to
In the illustrated method, the method comprises establishing whether the value of FRN(L) is less than 0, as represented by block 120. If the value of FRN(L) based on the load is less than 0, then the value for FRN(L) is set at 0, as represented by block 122. However, if the value of FRN(L) is not less than 0, then the drive control system 42 established the motor 20 speed as a function of FRN(L) and the RPC speed, as represented by block 124. In the illustrated embodiment, the drive control system 42 establishes the motor 20 speed as a function of FRN(L) and the RPC speed, as follows:
Speed=RPC speed*FRN(L) (3)
In the illustrated embodiment, the motor 20 speed is filtered with an IIR exponential smoothing filter, as represented by block 126. The user sets a decay constant for the IIR exponential smoothing filter in the illustrated embodiment.
In this embodiment, there are two additional speed parameters that are utilized to control the speed of the motor 20 during a downstroke. These two parameters are the Minimum Speed Rail (MSR) and the Absolute Minimum Speed (AMS). The MSR is employed to prevent the system from slowing down unnecessarily quickly due to a spurious or isolated signal from the load cell indicating that the load has momentarily increased; this could be introduced by spurious or dynamic transients high load readings during the down stroke. This is employed to ensure that the floating rod algorithm helps the rod pump system to achieve optimal production while protecting the mechanical components from the effects of striking the fluid column too quickly. The system may be configured to slow to a speed of 0 or to an AMS. The MSR value is calculated during the downstroke every scan (PLC cycle) and is a function of the rod position (P) and of the last calculated speed for the upstroke (RPC speed). The AMS, which may be zero, is a speed required for the safe mechanical operation of the system; since gearbox lubrication for some rod pumps requires a minimum speed. In the Illustrated embodiment, if the MSR is less than the AMS, then the MSR is set to the AMS, as represented by block 128.
In the illustrated embodiment, the speed is compared to the MSR I and if the speed is less than the MSR, then the speed is set at the MSR, as represented by block 129.
At the end of the downstroke, the scan cycle is finished and the process is returned to the beginning of a scan cycle, as represented by reference numeral 130. The scan cycle returns to block 90 and repeats the process for the next scan cycle.
Referring generally to
Referring generally to
MSR=(P(x)Analog Speed Exponent)*RPC speed (4)
Where:
Referring generally to
As noted above, one or more specific embodiments of the present invention were provided above. In an effort to provide a concise description of these embodiments, not all features of an actual implementation were described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless he a routine undertaking of design, fabrication, and manufacture for those of ordinary skill h art and having the benefit of this disclosure.
This application claims priority to U.S. Provisional Patent Application No. 62/271,931 filed on Dec. 28, 2015, which is hereby expressly incorporated herein.
Number | Date | Country | |
---|---|---|---|
62271931 | Dec 2015 | US |