System and method for proxying HTTP single sign on across network domains

Information

  • Patent Grant
  • 10015286
  • Patent Number
    10,015,286
  • Date Filed
    Wednesday, June 23, 2010
    14 years ago
  • Date Issued
    Tuesday, July 3, 2018
    6 years ago
Abstract
A system and method to establish and maintain access between a secured network and a remote client device communicating with different security protocols. Once the system and method verify that the remote client device had the requisite credentials to access the secured network domain, the system and method are delegated to fetch a service ticket to one or more dedicated servers on behalf of remote client device. The system and method receives a service ticket from the dedicated server and forwards the service ticket to the remote client device to use the service.
Description
TECHNOLOGICAL FIELD

This technology generally relates to network communication security, and more particularly, to a system and method for allowing a remote client device to access a secure network domain.


BACKGROUND

It is common for companies and universities as well as governmental institutions to have secure local network domains which allow users, once logged into the secured network domain, to access services and other objects which are securely held within the domain. A common example of a service which is utilized by a logged-in user is to print documents to a network printer. Many network systems, such as Windows™ Server 2003, utilize security features which require the user to initially provide login and password information to access the secured network domain. Once the user's credentials are verified, the user is able to subsequently access desired services within the network domain without having to continually provide password information. For example, a network system, such as the Windows™ Server system, utilizes the Kerberos security protocol to establish the logon session with the user and allows the user to access the network's services without requiring any servers to know or store that user's password.


However, current network systems that utilize internal security protocols do not provide the means to allow the user to login into the network when the user is accessing the network remotely. For example, the user may have difficulty accessing the network's authentication service when the user's computer is not directly connected to a dedicated network connection (e.g. no connected work Ethernet cable) or does not have an established VPN connection to the network. Further, current network systems do not operate to allow the user to access service resources when the user is not directly logged into the network.


What is needed is a system and method which allows a remote client device to access the network domain remotely and continually functions as a proxy to enable the remote client device to access and utilize network services without having to continually provide login credentials.


SUMMARY

In an aspect, a method for establishing and maintaining access between a secured network and a remote client device. The method comprises receiving a request from a remote client device to access a secured network domain, wherein the login request includes a user's client certificate encrypted with a first security protocol. The method comprises verifying the client certificate to determine whether the user can access the secured network domain, wherein the secured network domain is accessed using a second security protocol different from the first security protocol. The method comprises establishing a connection between the remote client device and a dedicated server of the secured network domain after the user has been verified to access the secured network domain. The method comprises receiving a service request from the remote client device to obtain a network service from a resource server in the secured network domain. The method comprises fetching a service ticket from the dedicated server for the service request. The method comprises forwarding the service ticket to the remote client device, wherein the remote client device receives the network service from the resource server.


In an aspect, a machine readable medium having stored thereon instructions for establishing and maintaining access between a secured network and a remote client device. The medium comprises machine executable code which when executed by at least one machine, causes the machine to receive a login request from a remote client device, wherein the login request includes authentication information encrypted with a first security protocol. The machine receives a request from a remote client device to access a secured network domain, wherein the login request includes a user's client certificate encrypted with a first security protocol. The machine verifies the client certificate to determine whether the user can access the secured network domain, wherein the secured network domain is accessed using a second security protocol different from the first security protocol. The machine establishes a connection between the remote client device and a dedicated server of the secured network domain after the user has been verified to access the secured network domain. The machine receives a service request from the remote client device to obtain a network service from a resource server in the secured network domain. The machine fetches a service ticket from the dedicated server for the service request. The machine forwards the service ticket to the remote client device, wherein the remote client device receives the network service from the resource server.


In an aspect, a network traffic manager for establishing and maintaining access between a secured network and a remote client device. The network traffic manager comprises a server interface configured to communicate with a dedicated server and a resource server in a secured network. A network interface coupled to a remote client device via a network, the network interface receiving a login request from the remote client device, wherein the login request includes authentication information, the authentication information encrypted with a first security protocol. A controller is coupled to the server interface and the network interface. The controller is operative to receive a request from a remote client device to access a secured network domain, wherein the login request includes a user's client certificate encrypted with a first security protocol. The controller is operative to verify the client certificate to determine whether the user can access the secured network domain, wherein the secured network domain is accessed using a second security protocol different from the first security protocol. The controller is operative to establish a connection between the remote client device and a dedicated server of the secured network domain after the user has been verified to access the secured network domain. The controller is operative to receive a service request from the remote client device to obtain a network service from a resource server in the secured network domain. The controller is operative to fetch a service ticket from the dedicated server for the service request. The controller is operative to forward the service ticket to the remote client device, wherein the remote client device receives the network service from the resource server.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of an example system environment that includes a network traffic manager in accordance with an aspect of the present disclosure;



FIG. 2 is a block diagram of the network traffic manager shown in FIG. 1;



FIG. 3 is a diagram of an example system environment that includes a network traffic manager in accordance with an aspect of the present disclosure; and



FIG. 4 is an example flow chart diagram depicting portions of processes for initiating connection and proxying requests and services between a remote client device and the network domain.





While these examples are susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail preferred examples with the understanding that the present disclosure is to be considered as an exemplification and is not intended to limit the broad aspect to the embodiments illustrated.


DETAILED DESCRIPTION

Referring now to FIG. 1, an example system environment 100 employs a network traffic management device 110 that is capable of proxying one or more remote client devices 106 into a network domain. The example system environment 100 includes one or more servers 102, one or more client devices 106 and the traffic management device 110, although the environment 100 could include other numbers and types of devices in other arrangements. The network traffic management device 110 is coupled to the server(s) 102 and the via local area network (LAN) 104 and client devices 106 via network 108. Generally, requests sent over the network 108 from client devices 106 towards the servers 102 are received by traffic management device 110.


Client devices 106 comprise computing devices capable of connecting to other computing devices, such as the network traffic management device 110 and the servers 102. Such connections are performed over wired and/or wireless networks, such as network 108, to send and receive data. Such connections include, but are not limited to, sending Web-based requests, receiving responses to requests and/or performing other tasks. Non-limiting and non-exhausting examples of such devices include personal, commercial or industrial specific computers (e.g., desktops, laptops), mobile, kiosks, and/or smart phones and the like. In an example, client devices 106 can run Web browsers that may provide an interface for operators, such as human users, to interact with for making requests for resources to different web server-based applications or Web pages via the network 108, although other server resources may be requested by clients. One or more Web-based applications may run on the web application server 102 that provide the requested data back to one or more exterior network devices (e.g. client devices 106).


Network 108 comprises a publicly accessible network, such as the Internet, which includes client devices 106. However, it is contemplated that the network 108 may comprise other types of private and public networks that include other devices. Communications, such as requests from clients 106 and responses from servers 102, take place over the network 108 according to standard network protocols, such as the HTTP and TCP/IP protocols in this example. However, the principles discussed herein are not limited to this example and can include other protocols. Further, it should be appreciated that network 108 may include local area networks (LANs), wide area networks (WANs), direct connections and any combination thereof, as well as other types and numbers of network types. On an interconnected set of LANs or other networks, including those based on differing architectures and protocols, routers, switches, hubs, gateways, bridges, and other intermediate network devices may act as links within and between LANs and other networks to enable messages and other data to be sent from and to network devices. Also, communication links within and between LANs and other networks typically include twisted wire pair (e.g., Ethernet), coaxial cable, analog telephone lines, full or fractional dedicated digital lines including T1, T2, T3, and T4, Integrated Services Digital Networks (ISDNs), Digital Subscriber Lines (DSLs), wireless links including satellite links and other communications links known to those skilled in the relevant arts. In essence, the network 108 includes any communication method by which data may travel between client devices 106, Web application servers 102 and network traffic management device 110, and the like.


LAN 104 comprises a private local area network that includes the network traffic management device 110 coupled to the one or more servers 102, although the LAN 104 may comprise other types of private and public networks with other devices. Networks, including local area networks, besides being understood by those skilled in the relevant arts, have already been generally described above in connection with network 108 and thus will not be described further.


The server 102 comprises one or more server computing machines capable of operating one or more Web-based or non-Web-based applications that may be accessed by network devices in the network 108. Such network devices include client devices 106, via the network traffic management device 110, and may provide other data representing requested resources, such as particular Web page(s), image(s) of physical objects, and any other objects resources (e.g., printers) and/or security principals (e.g. user or computer accounts and groups). It should be noted that the server 102 may perform other tasks and provide other types of resources. It should be noted that while only two servers 102 are shown in the environment 100 depicted in FIG. 1, other numbers and types of servers may be coupled to the network traffic management device 110. It is also contemplated that one or more of the servers 102 may be a cluster of servers managed by the network traffic management device 110.


As per the TCP/IP protocols, requests from the requesting client devices 106 may be sent as one or more streams of data packets over network 108 to the network traffic management device 110 and/or the servers 102. Such protocols can establish connections, send and receive data for existing connections, and the like. It is to be understood that the one or more Web application servers 102 may be hardware and/or software, and/or may represent a system with multiple servers that may include internal or external networks. In this example, the Web application servers 102 may be any version of Microsoft® IIS servers or Apache® servers, although other types of servers may be used. Further, additional servers may be coupled to the network 108 and many different types of applications may be available on servers coupled to the network 108.


Each of the Web application servers 102 and client devices 106 may include one or more central processing units (CPUs), one or more computer readable media (i.e., memory), and interface systems that are coupled together by internal buses or other links as are generally known to those of ordinary skill in the art.


As shown in the example environment 100 depicted in FIG. 1, the network traffic management device 110 is interposed between client devices 106 in network 108 and the servers 102 in LAN 104. Again, the environment 100 could be arranged in other manners with other numbers and types of devices. Also, the network traffic management device 110 is coupled to network 108 by one or more network communication links and intermediate network devices (e.g. routers, switches, gateways, hubs and the like) (not shown). It should be understood that the devices and the particular configuration shown in FIG. 1 are provided for exemplary purposes only and thus are not limiting.


Generally, the network traffic management device 110 manages network communications, which may include one or more client requests and server responses, from/to the network 108 between the client devices 106 and one or more of the Web application servers 102 in LAN 104. These requests may be destined for one or more servers 102, and may take the form of one or more TCP/IP data packets originating from the network 108. The requests pass through one or more intermediate network devices and/or intermediate networks, until they ultimately reach the traffic management device 110. In any case, the network traffic management device 110 may manage the network communications by performing several network traffic related functions involving the communications. Such functions include, but are not limited to, load balancing, access control, and validating HTTP requests using JavaScript code that are sent back to requesting client devices 106 in accordance with the processes described further below.


Referring now to FIG. 2, an example network traffic management device 110 includes a device processor 200, device I/O interfaces 202, network interface 204 and device memory 218, which are coupled together by bus 208. It should be noted that the device 110 could include other types and numbers of components.


Device processor 200 comprises one or more microprocessors configured to execute computer/machine readable and executable instructions stored in device memory 218. Such instructions implement network traffic management related functions of the network traffic management device 110. In addition, the instructions implement the security module 210 to perform one or more portions of the processes illustrated in FIG. 3 for protecting the system. It is understood that the processor 200 may comprise other types and/or combinations of processors, such as digital signal processors, micro-controllers, application specific integrated circuits (“ASICs”), programmable logic devices (“PLDs”), field programmable logic devices (“FPLDs”), field programmable gate arrays (“FPGAs”), and the like. The processor is programmed or configured according to the teachings as described and illustrated below.


Device I/O interfaces 202 comprise one or more user input and output device interface mechanisms. The interface may include a computer keyboard, mouse, display device, and the corresponding physical ports and underlying supporting hardware and software to enable the network traffic management device 110 to communicate with the outside environment. Such communication may include accepting user data input and to provide user output, although other types and numbers of user input and output devices may be used. Additionally or alternatively, as will be described in connection with network interface 204 below, the network traffic management device 110 may communicate with the outside environment for certain types of operations (e.g., configuration) via a network management port.


Network interface 204 comprises one or more mechanisms that enable network traffic management device 110 to engage in TCP/IP communications over LAN 104 and network 108. However, it is contemplated that the network interface 204 may be constructed for use with other communication protocols and types of networks. Network interface 204 is sometimes referred to as a transceiver, transceiving device, or network interface card (NIC), which transmits and receives network data packets to one or more networks, such as LAN 104 and network 108. In an example where the network traffic management device 110 includes more than one device processor 200 (or a processor 200 has more than one core), each processor 200 (and/or core) may use the same single network interface 204 or a plurality of network interfaces 204. Further, the network interface 204 may include one or more physical ports, such as Ethernet ports, to couple the network traffic management device 110 with other network devices, such as the servers 102. Moreover, the interface 204 may include certain physical ports dedicated to receiving and/or transmitting certain types of network data, such as device management related data for configuring the network traffic management device 110.


Bus 208 may comprise one or more internal device component communication buses, links, bridges and supporting components, such as bus controllers and/or arbiters. The bus enables the various components of the network traffic management device 110, such as the processor 200, device I/O interfaces 202, network interface 204, and device memory 218, to communicate with one another. However, it is contemplated that the bus may enable one or more components of the network traffic management device 110 to communicate with components in other devices as well. Example buses include HyperTransport, PCI, PCI Express, InfiniBand, USB, Firewire, Serial ATA (SATA), SCSI, IDE and AGP buses. However, it is contemplated that other types and numbers of buses may be used, whereby the particular types and arrangement of buses will depend on the particular configuration of the network traffic management device 110.


Device memory 218 comprises computer readable media, namely computer readable or processor readable storage media, which are examples of machine-readable storage media. Computer readable storage/machine-readable storage media may include volatile, nonvolatile, removable, and non-removable media implemented in any method or technology for storage of information. Such storage media contains computer readable/machine-executable instructions, data structures, program modules, or other data, which may be obtained and/or executed by one or more processors, such as device processor 200. Such instructions allow the processor to perform actions, including implementing an operating system for controlling the general operation of network traffic management device 110 to manage network traffic and implementing security module 210 to perform one or more portions of the process discussed below.


Examples of computer readable storage media include RAM, BIOS, ROM, EEPROM, flash/firmware memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic storage devices, or any other medium which can be used to store the desired information. Such desired information includes data and/or computer/machine-executable instructions and which can be accessed by a computing or specially programmed device, such as network traffic management device 110. Security module 210 is depicted in FIG. 2 as being within memory 218 for exemplary purposes only; it should be appreciated the module 210 may be alternatively located elsewhere.


Although an example of the server 102, network traffic device 110, and client devices 106 are described and illustrated herein in connection with FIGS. 1 and 2, each of the computers of the system 100 could be implemented on any suitable computer system or computing device. It is to be understood that the example devices and systems of the system 100 are for exemplary purposes, as many variations of the specific hardware and software used to implement the system 100 are possible, as will be appreciated by those skilled in the relevant art(s).


In addition, two or more computing systems or devices may be substituted for any one of the devices in the system 100. Accordingly, principles and advantages of distributed processing, such as redundancy, replication, and the like, also can be implemented, as desired, to increase the robustness and performance of the devices and systems of the system 100. The system 100 may also be implemented on a computer system or systems that extend across any network environment using any suitable interface mechanisms and communications technologies including, for example telecommunications in any suitable form (e.g., voice, modem, and the like), Public Switched Telephone Network (PSTNs), Packet Data Networks (PDNs), the Internet, intranets, a combination thereof, and the like.



FIG. 3 illustrates an example system environment which employs a network traffic management device 110 that is capable of proxying one or more remote non-domain client devices 106B outside an established network domain 101 to access and obtain services from the domain 101 with a single sign credentials. In an example aspect, the network domain 101 includes one or more network domain-dedicated servers 102A (hereinafter “dedicated server”); one or more network domain-resource servers 102B (hereinafter “resource server”); and one or more network traffic management devices 110 which communicate with the dedicated server 102A and the resource server 102B via the LAN 104.


In an aspect, the dedicated server 102A operates as a Key Distribution Center (KDC) and has two server components: an active directory server (AS) 103A and ticket granting server (TGS) 103B. The dedicated server 102A maintains a database of secret keys, each of which is specific to a particular entity in the network 101, whether it is a client device 106A or a server 102B. Thus, when client device 106A communicates with the dedicated server 102A, both the server 102A and the device 106A a common secret key known only to the device 106A and the server 102A. Thus, knowledge of this key serves to prove the client device's identity to the dedicated server 102A.


When a client device 106A needs to communicate with another entity in the domain 101, such as requesting a service from the resource server 102B, the dedicated server 102A will generate a session key, in response to a request from the client device 106A, which can be used to secure communications between the two entities. Thus, the client device 106A can access one or more services from the resource server 102B only after it has received the service ticket from the dedicated server 102A.


In particular, the resource server 102B allows the client device 106A to access one or more network resources or services (e.g. domain secured web applications, printers, shared folders, email server) and/or security principals (e.g. user accounts, computer accounts and groups).


When the client device 106A initially logs on to the network domain 101, the user, via the client device 106A negotiates access to the network 101 by providing his or her username and password information. The client device 106A preferably performs a one-way function, such as a hash, on the entered password, whereby the hash becomes the secret key of the client device 106A or user. The dedicated server 102A and the client device 106A share the secret key information which is specific to the client device 106A to verify the user's credentials and ensure that the user is authorized to access the network 101. Once successfully authenticated, the client device 106A is logged into the network domain 101 and can request one or more services from the resource server 102B. In particular, if the user needs to access an available service from the resource server 102B (e.g. domain-based web page), the client device 106A requests a Ticket to Get Tickets (TGT) for that particular service from the TGS 103B of the dedicated server 102A.


The TGS 103B of the dedicated server 102A, already having verified that the user can request services from the resource server 102B, replies and provides the client device 106A a service ticket for the requested service. The service ticket has a lifetime of a predetermined amount (e.g. 10 hours) and may be renewed throughout the user's log-on session. In an aspect, the service ticket is cached locally on the client device 106A in which the service ticket can be repeatedly used to request and access services within the domain 101 without having to continually provide password information.


The client device 106A thereafter sends a service request to the resource server 102B along with the service ticket previously received from the TGS 103B. The resource server 102B, upon receiving the service request with the service ticket, provides the client device 106A with the access without having to verify that the client device 106A has access to the service.


As shown in FIG. 3, the network traffic management device 110 performs communications between the client device 106A and the dedicated server 102A as well as the resource server 102B. The network traffic management device 110, in accordance with the present disclosure, is configured to operate as a proxy server to allow a remote client device 106B that is not within the domain 101 to access the network domain 101 and receive one or more desired services from the resource server 102B.


In FIG. 3, the client device 106B is not within the network domain 101 and is thus not able to directly access the dedicated server 102A to request a ticket from the TGS 103B. In accordance with the present disclosure, the remote client device 106B connects to the network traffic management device 110 and sends a secure, encrypted client certificate to the network traffic management device 110 via the network in a secured manner. The client certificate is secured by a strong encryption technology (e.g. SSL) and can be in the form of a Common Access Card (CAC) reader, Federal Information Processing Standard (FIPS) verifier, PKI certificate or other appropriate like means.


In an aspect, the security protocol utilized between the remote client device 106B and the network domain 101 is the same as the security protocol utilized between entities within the network domain 101. However, it is contemplated, in an aspect, the security protocol utilized between the remote client device 106B and the network domain 101 (e.g. SSL) is different from the security protocol utilized between entities within the network domain 101 (Microsoft™ Active Directory). Nonetheless, the present disclosure allows communications between two or more entities by the use of protocol transitioning where the authentication information of the requesting user (e.g CAC information) is in the form which cannot be used to directly access and receive services within the network domain 101. It should be noted that although Active Directory and Kerberos protocols are discussed in the example above, other network services and authentication protocols may be used with the network traffic management device 110 acting as a proxy with the non-domain client device 106B.


The network traffic management device 110 is configured to receive the user's encrypted client certificate and processes the client certificate to verify that the user has clearance to access the network domain 101. In an aspect, all or a portion of the client certificate sent from the client device 106B is encrypted by the client device 106B with a private key. The network traffic management device 110 contains a stored public key which is used to decrypt the encrypted portion to verify that the user's credentials. In other words, if the public key, applied by the network traffic management device 110, is able to successfully decrypt the encrypted portion of the client certificate, the network traffic management device 110 will conclude that the user can access the network domain 101 requiring knowledge of the user's password or private key information.


Further, once the logon session has been established, the network traffic management device 110 functions as a proxy server between the remote client device 106B and the dedicated server 102A as well as the resource server 102B to allow the remote client device 106B to access and obtain services within the secured network domain 101 without requiring the remote client device 106B to provide authentication information every time a service is requested. In particular, the network traffic management device 110 communicates with the dedicated server 102A and requests or “fetches” a ticket from the TGS 103B on behalf of the remote client device 106B when the device 106B requests a network resource from the network domain 101. In particular, the request from the network traffic management device 100 will identify the verified entity requesting the service (e.g. client device 106B) as well as which entity the resource is requested from (e.g. resource server 102B). The network traffic management device 110, upon receiving the ticket, will forward the ticket to the remote client device 106B, whereby the remote client device 106B will then be able to access and receive appropriate services, in regards to the ticket, from the resource server 102B.



FIG. 4 illustrates an example flow chart diagram depicting portions of processes for initiating and maintaining connection as well as proxying requests and services between a remote client device 106B and the network domain 101. Initially, the network traffic management device 110 receives a login request from the remote client device 106B over the network 108 (block 300). The login request includes authentication information which is encrypted with a security protocol, such as a SSL protocol. Upon receiving the authentication information, the network traffic management device 110 verifies the authentication information, as described above, to ensure that the user has clearance to access the secured network domain 101 (Block 302). Upon confirming the user's credentials, the network traffic management device 110 establishes a connection between the remote client device 106B and the secured network 101 (Block 304).


When the user wishes to access a service within the network domain (e.g. retrieve email, print to a network printer), the remote client device 106B sends a service request to the network domain 101. The network traffic management device 110 receives the service request (Block 306) and knowing that the user has a trusted relationship with the network domain 101, performs protocol transitioning and fetches or requests a ticket from the dedicated server 102A (Block 308). As discussed above, the ticket granting request sent from the network traffic management device 110 is specific to the type of service that the remote client device 106B is trying to obtain and also identifies the requesting identity (e.g. 106B). In the example, the dedicated server 102A replies to the request and provides a service ticket in conformance with the network's security protocol which is received by the network traffic management device 110 (Block 310).


Thereafter, the network traffic management device 110 stores the service ticket locally (Block 312). This allows the service ticket to be repeatedly used to request and access services within the domain 101 without the remote client device 106B to continue to verified for all subsequent service requests, as the network traffic management device 110 will continue to act as a proxy for device 106B. Additionally, the network traffic management device 110 forwards the a service ticket to the remote client device 106B (Block 314). The service ticket provides the necessary information to allow the remote client device 106B to access the desired service from the resource server 102B. Thereafter, the remote client device 106B receives service access to the resource server (Block 316). As stated above, the service ticket has a lifetime of a predetermined amount (e.g. 10 hours) and may be renewed throughout the user's log-on session.


Having thus described the basic concepts, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the examples. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed system and/or processes to any order except as may be specified in the claims. Accordingly, the system and method is limited only by the following claims and equivalents thereto.

Claims
  • 1. A method, the comprising: authenticating, by a network traffic management device and utilizing a first security protocol, a user of a remote client device in response to receiving a login request from the remote client device to access a secured network domain, wherein the login request includes a client certificate, which is encrypted in the first security protocol;establishing, by the network traffic management device, a first connection between the remote client device and the secured network domain after the user has been verified to access the secured network domain;receiving, by the network traffic management device, a service request from the remote client device to obtain a network service from a resource server in the secured network domain, transitioning, by the network traffic management device, to a second security protocol, sending, by the network traffic management device, a ticket granting request that is specific to the type of service request to a dedicated server, obtaining, by the network traffic management device, a service ticket from the dedicated server in the secured network domain for the service request in the second security protocol, locally storing, by the network traffic management device, the service ticket to allow the service ticket to be repeatedly used to request and access services within the secured domain, and providing, by the network traffic management device, access to the network service using the service ticket in response to the service request;receiving, by the network traffic management device, another service request from the remote client device to obtain the network service from the resource server in the secured network domain; andproviding, by the network traffic management device, access to the network service using the stored service ticket in response to the another service request received from the remote client device to obtain the network service from the resource server and without communicating with the dedicated server from which the service ticket was previously obtained or authenticating the user.
  • 2. The method of claim 1, wherein the service ticket is valid for an amount of time and the method further comprises: storing the service ticket from the dedicated server for the service request as associated with the amount of time;determining when the service ticket is valid based on the amount of time; andsending the service ticket to the remote client device in response to the another service request, when the determining indicates the service ticket is valid based on the amount of time.
  • 3. The method of claim 1, wherein the second security protocol is a Kerberos-based authentication protocol or the client certificate is within a Common Access Card (CAC).
  • 4. The method of claim 1, wherein the first security protocol is different than the second security protocol.
  • 5. The method of claim 1, wherein the network service is a password protected web page.
  • 6. A non-transitory machine readable medium having stored thereon instructions for establishing access between a secured network and a remote client device, comprising machine executable code which when executed by one or more processors, causes the one or more processors to: authenticate, utilizing a first security protocol, a user of a remote client device in response to receiving a login request from the remote client device to access a secured network domain, wherein the login request includes a client certificate, which is encrypted in the first security protocol;establish a first connection between the remote client device and the secured network domain after the user has been verified to access the secured network domain;receive a service request from the remote client device to obtain a network service from a resource server in the secured network domain, transition to a second security protocol, send a ticket granting request that is specific to the type of service request to a dedicated server, obtain a service ticket from a dedicated server in the secured network domain for the service request in the second security protocol locally store the service ticket to allow the service ticket to be repeatedly used to request and access services within the secured domain, and provide access to the network service using the service ticket in response to the service request;receive another service request from the remote client device to obtain the network service from the resource server in the secured network domain; andprovide access to the network service using the stored service ticket in response to the another service request received from the remote client device to obtain the network service from the resource server and without communicating with the dedicated server from which the service ticket was previously obtained or authenticating the user.
  • 7. The machine readable medium of claim 6, wherein service ticket is valid for an amount of time and the machine executable code when executed by the one or more processors further causes the one or more processors to perform: store the service ticket from the dedicated server for the service request as associated with the predetermined amount of time;determine when the service ticket is valid based on the predetermined amount of time; andsend the service ticket to the remote client device in response to the another service request, when the determining indicates the service ticket is valid based on the predetermined amount of time.
  • 8. The machine readable medium of claim 6, wherein the second security protocol is a Kerberos-based authentication protocol or the client certificate is within a Common Access Card (CAC).
  • 9. The machine readable medium of claim 6, wherein the first security protocol is different than the second security protocol.
  • 10. The machine readable medium of claim 6, wherein the network service is a password protected web page.
  • 11. A network traffic management device comprising memory comprising programmed instructions stored thereon and at least one processor coupled to the memory and configured to be capable of executing the stored programmed instructions to: authenticate, utilizing a first security protocol, a user of a remote client device in response to receiving a login request from the remote client device to access a secured network domain, wherein the login request includes a client certificate, which is encrypted in the first security protocol;establish a first connection between the remote client device and the secured network domain after the user has been verified to access the secured network domain;receive a service request from the remote client device to obtain a network service from a resource server in the secured network domain, transition to a second security protocol, send a ticket granting request that is specific to the type of service request to a dedicated server, obtain a service ticket from a dedicated server in the secured network domain for the service request in the second security protocol, locally store the service ticket to allow the service ticket to be repeatedly used to request and access services within the secured domain, and provide access to the network service using the service ticket in response to the service request;receive another service request from the remote client device to obtain the network service from the resource server in the secured network domain; andprovide access to the network service using the stored service ticket in response to the another service request received from the remote client device to obtain the network service from the resource server and without communicating with the dedicated server from which the service ticket was previously obtained or authenticating the user.
  • 12. The device as set forth in claim 11 wherein the service ticket is valid for an amount of time and the processor is further configured to be capable of executing the stored programmed instructions to: store the service ticket from the dedicated server for the service request as associated with the amount of time;determine when the service ticket is valid based on the amount of time; andsend the service ticket to the remote client device in response to the another service request, when the determining indicates the service ticket is valid based on the amount of time.
  • 13. The device as set forth in claim 11 wherein the second security protocol is a Kerberos-based authentication protocol or the client certificate is within a Common Access Card (CAC).
  • 14. The device as set forth in claim 11 wherein the first security protocol is different than the second security protocol.
  • 15. The device as set forth in claim 11 wherein the network service is a password protected web page.
  • 16. A network traffic management system comprising one or more network traffic management devices, dedicated servers, or resource servers, the network traffic management system comprising memory comprising programmed instructions stored thereon and one or more processors configured to be capable of executing the stored programmed instructions to: authenticate, utilizing a first security protocol, a user of a remote client device in response to receiving a login request from the remote client device to access a secured network domain, wherein the login request includes a client certificate, which is encrypted in the first security protocol;establish a first connection between the remote client device and the secured network domain after the user has been verified to access the secured network domain;receive a service request from the remote client device to obtain a network service from a resource server in the secured network domain, transition to a second security protocol, send a ticket granting request that is specific to the type of service request to a dedicated server, obtain a service ticket from the dedicated server in the secured network domain for the service request in the second security protocol, locally store the service ticket to allow the service ticket to be repeatedly used to request and access services within the secured domain, and provide access to the network service using the service ticket in response to the service request;receive another service request from the remote client device to obtain the network service from the resource server in the secured network domain; andprovide access to the network service using the stored service ticket in response to the another service request received from the remote client device to obtain the network service from the resource server and without communicating with the dedicated server from which the service ticket was previously obtained or authenticating the user.
  • 17. The system of claim 16, wherein the service ticket is valid for an amount of time and the one or more processors are further configured to be capable of executing the stored programmed instructions to: store the service ticket from the dedicated server for the service request as associated with the amount of time; determine when the service ticket is valid based on the amount of time; andsend the service ticket to the remote client device in response to the another service request, when the determining indicates the service ticket is valid based on the amount of time.
  • 18. The system of claim 16, wherein the second security protocol is a Kerberos-based authentication protocol or the client certificate is within a Common Access Card (CAC).
  • 19. The system of claim 16, wherein the first security protocol is different than the second security protocol.
  • 20. The system of claim 16, wherein the network service is a password protected web page.
US Referenced Citations (494)
Number Name Date Kind
3950735 Patel Apr 1976 A
4644532 George et al. Feb 1987 A
4897781 Change et al. Jan 1990 A
4965772 Daniel et al. Oct 1990 A
5023826 Patel Jun 1991 A
5053953 Patel Oct 1991 A
5167024 Smith et al. Nov 1992 A
5299312 Rocco, Jr. Mar 1994 A
5327529 Fults et al. Jul 1994 A
5367635 Bauer et al. Nov 1994 A
5371852 Attanasio et al. Dec 1994 A
5406502 Haramaty et al. Apr 1995 A
5475857 Dally Dec 1995 A
5517617 Sathaye et al. May 1996 A
5519694 Brewer et al. May 1996 A
5519778 Leighton et al. May 1996 A
5521591 Arora et al. May 1996 A
5528701 Aref Jun 1996 A
5581764 Fitzgerald et al. Dec 1996 A
5596742 Agarwal et al. Jan 1997 A
5606665 Yang et al. Feb 1997 A
5611049 Pitts Mar 1997 A
5663018 Cummings et al. Sep 1997 A
5752023 Choucri et al. May 1998 A
5761484 Agarwal et al. Jun 1998 A
5768423 Aref et al. Jun 1998 A
5774660 Brendel et al. Jun 1998 A
5790554 Pitcher et al. Aug 1998 A
5802052 Venkataraman Sep 1998 A
5812550 Sohn et al. Sep 1998 A
5825772 Dobbins et al. Oct 1998 A
5832283 Chou et al. Nov 1998 A
5875296 Shi et al. Feb 1999 A
5892914 Pitts Apr 1999 A
5892932 Kim Apr 1999 A
5919247 Van Hoff et al. Jul 1999 A
5936939 Des Jardins et al. Aug 1999 A
5941988 Bhagwat et al. Aug 1999 A
5946690 Pitts Aug 1999 A
5949885 Leighton Sep 1999 A
5951694 Choquier et al. Sep 1999 A
5959990 Frantz et al. Sep 1999 A
5974460 Maddalozzo, Jr. et al. Oct 1999 A
5983281 Ogle et al. Nov 1999 A
5988847 McLaughlin et al. Nov 1999 A
6006260 Barrick, Jr. et al. Dec 1999 A
6006264 Colby et al. Dec 1999 A
6026452 Pitts Feb 2000 A
6028857 Poor Feb 2000 A
6051169 Brown et al. Apr 2000 A
6078956 Bryant et al. Jun 2000 A
6085234 Pitts et al. Jul 2000 A
6092196 Reiche Jul 2000 A
6094485 Weinstein et al. Jul 2000 A
6108703 Leighton et al. Aug 2000 A
6111876 Frantz et al. Aug 2000 A
6128279 O'Neil et al. Oct 2000 A
6128657 Okanoya et al. Oct 2000 A
6160874 Dickerman et al. Dec 2000 A
6170022 Linville et al. Jan 2001 B1
6178423 Douceur et al. Jan 2001 B1
6182139 Brendel Jan 2001 B1
6192051 Lipman et al. Feb 2001 B1
6219706 Fan et al. Apr 2001 B1
6233612 Fnichtman et al. May 2001 B1
6246684 Chapman et al. Jun 2001 B1
6253226 Chidambaran et al. Jun 2001 B1
6253230 Couland et al. Jun 2001 B1
6263368 Martin Jul 2001 B1
6289012 Harrington et al. Sep 2001 B1
6298380 Coile et al. Oct 2001 B1
6327622 Jindal et al. Dec 2001 B1
6343324 Hubis et al. Jan 2002 B1
6347339 Morris et al. Feb 2002 B1
6360270 Cherkasova et al. Mar 2002 B1
6374300 Masters Apr 2002 B2
6396833 Zhang et al. May 2002 B1
6401211 Brezak, Jr. Jun 2002 B1
6411986 Susai et al. Jun 2002 B1
6430562 Kardos et al. Aug 2002 B1
6434081 Johnson et al. Aug 2002 B1
6480476 Willars Nov 2002 B1
6484203 Porras et al. Nov 2002 B1
6484261 Wiegel Nov 2002 B1
6490624 Sampson et al. Dec 2002 B1
6510135 Almulhem et al. Jan 2003 B1
6510458 Berstis et al. Jan 2003 B1
6519643 Foulkes et al. Feb 2003 B1
6601084 Bhaskaran et al. Jul 2003 B1
6636503 Shiran et al. Oct 2003 B1
6636894 Short et al. Oct 2003 B1
6650640 Muller et al. Nov 2003 B1
6650641 Albert et al. Nov 2003 B1
6654701 Hailey Nov 2003 B2
6661802 Homberg et al. Dec 2003 B1
6683873 Kwok et al. Jan 2004 B1
6691165 Bruck et al. Feb 2004 B1
6694517 James et al. Feb 2004 B1
6708187 Shanumgam et al. Mar 2004 B1
6718380 Mohaban et al. Apr 2004 B1
6742045 Albert et al. May 2004 B1
6751663 Farrell et al. Jun 2004 B1
6754228 Ludwig Jun 2004 B1
6760775 Anerousis et al. Jul 2004 B1
6772219 Shobatake Aug 2004 B1
6779039 Bommareddy et al. Aug 2004 B1
6781986 Sabaa et al. Aug 2004 B1
6798777 Ferguson et al. Sep 2004 B1
6804542 Haartsen Oct 2004 B1
6816901 Sitaraman et al. Nov 2004 B1
6816977 Braknio et al. Nov 2004 B2
6826698 Minkin et al. Nov 2004 B1
6829238 Tokuyo et al. Dec 2004 B2
6868082 Allen, Jr. et al. Mar 2005 B1
6876629 Beshai et al. Apr 2005 B2
6876654 Hegde Apr 2005 B1
6888836 Cherkasova May 2005 B1
6928082 Liu et al. Aug 2005 B2
6947985 Hegli et al. Sep 2005 B2
6950434 Viswanath et al. Sep 2005 B1
6954780 Susai et al. Oct 2005 B2
6957272 Tallegas et al. Oct 2005 B2
6959394 Brickell et al. Oct 2005 B1
6975592 Seddigh et al. Dec 2005 B1
6978298 Kuehr-McLaren Dec 2005 B1
6986040 Kramer Jan 2006 B1
6987763 Rochberger et al. Jan 2006 B2
7007092 Peiffer Feb 2006 B2
7039946 Binding May 2006 B1
7058633 Gnagy et al. Jun 2006 B1
7113993 Cappiello et al. Sep 2006 B1
7133944 Song et al. Nov 2006 B2
7139792 Mishra et al. Nov 2006 B1
7185359 Schmidt et al. Feb 2007 B2
7228422 Morioka et al. Jun 2007 B2
7287082 O'Toole, Jr. Oct 2007 B1
7295827 Liu et al. Nov 2007 B2
7308703 Wright et al. Dec 2007 B2
7308709 Brezak et al. Dec 2007 B1
7310339 Powers et al. Dec 2007 B1
7319696 Inoue et al. Jan 2008 B2
7321926 Zhang et al. Jan 2008 B1
7333999 Njemanze Feb 2008 B1
7343413 Gilde et al. Mar 2008 B2
7349391 Ben-Dor et al. Mar 2008 B2
7383570 Pinkas et al. Jun 2008 B2
7395424 Ashley et al. Jul 2008 B2
7398552 Pardee et al. Jul 2008 B2
7430755 Hughes et al. Sep 2008 B1
7433962 Janssen et al. Oct 2008 B2
7437478 Yokota et al. Oct 2008 B2
7454480 Labio et al. Nov 2008 B2
7490162 Masters Feb 2009 B1
7500243 Huetsch et al. Mar 2009 B2
7500269 Huotari et al. Mar 2009 B2
7505795 Lim et al. Mar 2009 B1
7516492 Nisbet et al. Apr 2009 B1
7522581 Acharya et al. Apr 2009 B2
7526541 Roese et al. Apr 2009 B2
7558197 Sindhu et al. Jul 2009 B1
7580971 Gollapudi et al. Aug 2009 B1
7590732 Rune Sep 2009 B2
7624424 Morita et al. Nov 2009 B2
7644137 Bozak et al. Jan 2010 B2
7649998 Harran Jan 2010 B2
7668166 Rekhter et al. Feb 2010 B1
7680915 Still et al. Mar 2010 B2
7689710 Tang et al. Mar 2010 B2
7724657 Rao et al. May 2010 B2
7725093 Sengupta et al. May 2010 B2
7725657 Hasenplaugh et al. May 2010 B2
7778187 Chaturvedi et al. Aug 2010 B2
7801978 Susai et al. Sep 2010 B1
7808913 Ansari et al. Oct 2010 B2
7831662 Clark et al. Nov 2010 B2
7853782 Geddes Dec 2010 B1
7870380 VanHeyningen Jan 2011 B2
7908314 Yamaguchi et al. Mar 2011 B2
7925908 Kim Apr 2011 B2
7930365 Dixit et al. Apr 2011 B2
7933946 Livshits et al. Apr 2011 B2
7945908 Waldspurger et al. May 2011 B1
7984141 Gupta et al. Jul 2011 B2
7996886 Hughes et al. Aug 2011 B1
8041022 Andreasen et al. Oct 2011 B1
8103781 Wu et al. Jan 2012 B1
8130650 Allen, Jr. et al. Mar 2012 B2
8149819 Kobayashi et al. Apr 2012 B2
8185945 Eatough et al. May 2012 B1
8189567 Kavanagh et al. May 2012 B2
8199757 Pani et al. Jun 2012 B2
8205246 Shatzkamer et al. Jun 2012 B2
8239954 Wobber et al. Aug 2012 B2
8274895 Rahman et al. Sep 2012 B2
8321908 Gai et al. Nov 2012 B2
8351333 Rao et al. Jan 2013 B2
8380854 Szabo Feb 2013 B2
8417817 Jacobs Apr 2013 B1
8447871 Szabo May 2013 B1
8447970 Klein et al. May 2013 B2
8452876 Williams et al. May 2013 B1
8464265 Worley Jun 2013 B2
8468247 Richardson et al. Jun 2013 B1
8468267 Yigang Jun 2013 B2
8521851 Richardson et al. Aug 2013 B1
8521880 Richardson et al. Aug 2013 B1
8359224 Henderson et al. Sep 2013 B2
8539224 Henderson et al. Sep 2013 B2
8566474 Kanode et al. Oct 2013 B2
8578050 Craig et al. Nov 2013 B2
8606921 Vasquez et al. Dec 2013 B2
8613071 Day Dec 2013 B2
8615022 Harrison et al. Dec 2013 B2
8646067 Agarwal et al. Feb 2014 B2
8665868 Kay Mar 2014 B2
8701179 Penno et al. Apr 2014 B1
8725836 Lowery et al. May 2014 B2
8726338 Narayanaswamy et al. May 2014 B2
8737304 Karuturi et al. May 2014 B2
8745266 Agarwal Jun 2014 B2
8778665 Gilde et al. Jul 2014 B2
8788665 Gilde et al. Jul 2014 B2
8788669 Gilde et al. Jul 2014 B2
8804504 Chen Aug 2014 B1
8819109 Krishnamurthy et al. Aug 2014 B1
8819419 Carlson et al. Aug 2014 B2
8819768 Koeten et al. Aug 2014 B1
8830874 Cho et al. Sep 2014 B2
8873753 Parker Oct 2014 B2
8875274 Montemurro et al. Oct 2014 B2
8886981 Baumann et al. Nov 2014 B1
8908545 Chen et al. Dec 2014 B1
8954080 Janakiraman et al. Feb 2015 B2
9036529 Erickson et al. May 2015 B2
9037166 de Wit et al. May 2015 B2
9047259 Ho et al. Jun 2015 B1
9077554 Szabo Jul 2015 B1
9083760 Hughes et al. Jul 2015 B1
20010009554 Katseff et al. Jul 2001 A1
20010023442 Masters Sep 2001 A1
20020010783 Primak et al. Jan 2002 A1
20020032777 Kawata et al. Mar 2002 A1
20020046291 O'Callaghan et al. Apr 2002 A1
20020049842 Huetsch et al. Apr 2002 A1
20020059428 Susai et al. May 2002 A1
20020083067 Tamayo et al. Jun 2002 A1
20020095498 Chanda et al. Jul 2002 A1
20020112061 Shih et al. Aug 2002 A1
20020138615 Schmeling Sep 2002 A1
20020143785 Pugh Oct 2002 A1
20020161913 Gonzalez et al. Oct 2002 A1
20020178366 Ofir Nov 2002 A1
20020188753 Tang et al. Dec 2002 A1
20020194342 Lu et al. Dec 2002 A1
20020198993 Cudd et al. Dec 2002 A1
20030037070 Marston Feb 2003 A1
20030046291 Fascenda Mar 2003 A1
20030065653 Overton et al. Apr 2003 A1
20030065951 Igeta et al. Apr 2003 A1
20030069918 Lu et al. Apr 2003 A1
20030069974 Lu et al. Apr 2003 A1
20030070069 Belapurkar et al. Apr 2003 A1
20030086415 Bernhard et al. May 2003 A1
20030105807 Thompson et al. Jun 2003 A1
20030105983 Brakmo et al. Jun 2003 A1
20030108052 Inoue et al. Jun 2003 A1
20030120948 Schmidt et al. Jun 2003 A1
20030128708 Inoue et al. Jul 2003 A1
20030145062 Sharma et al. Jul 2003 A1
20030145233 Poletto et al. Jul 2003 A1
20030163576 Janssen et al. Aug 2003 A1
20030188193 Venkataramappa Oct 2003 A1
20030208596 Carolan et al. Nov 2003 A1
20030225485 Fritz et al. Dec 2003 A1
20040003287 Zissimopoulos Jan 2004 A1
20040010713 Vollbrecht Jan 2004 A1
20040072569 Omae et al. Apr 2004 A1
20040103283 Hornak May 2004 A1
20040111523 Hall et al. Jun 2004 A1
20040111621 Himberger et al. Jun 2004 A1
20040117493 Bazot et al. Jun 2004 A1
20040128499 Peterka Jul 2004 A1
20040151186 Akama Aug 2004 A1
20040192312 Li et al. Sep 2004 A1
20040199762 Carlson et al. Oct 2004 A1
20040210663 Phillips et al. Oct 2004 A1
20040255000 Sirnionescu et al. Dec 2004 A1
20040264472 Oliver et al. Dec 2004 A1
20040264481 Darling et al. Dec 2004 A1
20040267920 Hydrie et al. Dec 2004 A1
20040267948 Oliver et al. Dec 2004 A1
20040268118 Bazan Bejarano Dec 2004 A1
20040268152 Xia Dec 2004 A1
20040268358 Darling et al. Dec 2004 A1
20050004887 Igakura et al. Jan 2005 A1
20050005114 Medvinsky Jan 2005 A1
20050015585 Kurose Jan 2005 A1
20050021736 Carusi et al. Jan 2005 A1
20050027837 Roese Feb 2005 A1
20050027869 Johnson Feb 2005 A1
20050044213 Kobayashi et al. Feb 2005 A1
20050052440 Kim et al. Mar 2005 A1
20050055435 Gbadegesin et al. Mar 2005 A1
20050071283 Randle et al. Mar 2005 A1
20050078604 Yim Apr 2005 A1
20050108575 Yung May 2005 A1
20050122942 Rhee et al. Jun 2005 A1
20050122977 Lieberman Jun 2005 A1
20050138198 May Jun 2005 A1
20050154837 Keohane et al. Jul 2005 A1
20050187866 Lee Aug 2005 A1
20050188220 Nilsson Aug 2005 A1
20050198310 Kim et al. Sep 2005 A1
20050262238 Reeves et al. Nov 2005 A1
20050273592 Pryor et al. Dec 2005 A1
20050283823 Okajo et al. Dec 2005 A1
20050288939 Peled et al. Dec 2005 A1
20060031520 Bedekar et al. Feb 2006 A1
20060036764 Yokota et al. Feb 2006 A1
20060041761 Neumann Feb 2006 A1
20060059267 Cugi et al. Mar 2006 A1
20060077902 Kannan et al. Apr 2006 A1
20060077986 Rune Apr 2006 A1
20060083205 Buddhikot et al. Apr 2006 A1
20060095573 Carle et al. May 2006 A1
20060106802 Giblin et al. May 2006 A1
20060112176 Liu et al. May 2006 A1
20060112272 Morioka et al. May 2006 A1
20060129684 Datta Jun 2006 A1
20060135198 Lee Jun 2006 A1
20060156416 Huotari et al. Jul 2006 A1
20060161577 Kulkarni et al. Jul 2006 A1
20060168070 Thompson et al. Jul 2006 A1
20060171365 Borella Aug 2006 A1
20060179153 Lee et al. Aug 2006 A1
20060182103 Martini et al. Aug 2006 A1
20060184647 Dixit et al. Aug 2006 A1
20060209853 Hidaka et al. Sep 2006 A1
20060230148 Forecast et al. Oct 2006 A1
20060233106 Achlioptas et al. Oct 2006 A1
20060242300 Yumoto et al. Oct 2006 A1
20060268704 Ansari et al. Nov 2006 A1
20060291483 Sela Dec 2006 A1
20060294054 Kudo et al. Dec 2006 A1
20060294366 Nadalin et al. Dec 2006 A1
20070006293 Balakrishnan et al. Jan 2007 A1
20070016662 Desai et al. Jan 2007 A1
20070019658 Park et al. Jan 2007 A1
20070038853 Day Feb 2007 A1
20070297410 Yoon et al. Feb 2007 A1
20070050843 Manville et al. Mar 2007 A1
20070058670 Konduru et al. Mar 2007 A1
20070064661 Sood et al. Mar 2007 A1
20070083646 Miller et al. Apr 2007 A1
20070088822 Coile et al. Apr 2007 A1
20070106796 Kudo et al. May 2007 A1
20070107048 Halls May 2007 A1
20070118879 Yeun May 2007 A1
20070174491 Still et al. Jul 2007 A1
20070220598 Salowey Sep 2007 A1
20070233809 Brownell et al. Oct 2007 A1
20070258451 Bouat Nov 2007 A1
20070263874 Harran Nov 2007 A1
20070297551 Choi Dec 2007 A1
20080008202 Terrell et al. Jan 2008 A1
20080025297 Kashyap Jan 2008 A1
20080031258 Acharya et al. Feb 2008 A1
20080034136 Ulenas Feb 2008 A1
20080072303 Syed Mar 2008 A1
20080104390 VanHeyningen May 2008 A1
20080120370 Chan et al. May 2008 A1
20080133518 Kapoor et al. Jun 2008 A1
20080134311 Medvinsky Jun 2008 A1
20080148340 Powell et al. Jun 2008 A1
20080148381 Aaron Jun 2008 A1
20080159145 Muthukrishnan et al. Jul 2008 A1
20080165801 Sheppard Jul 2008 A1
20080178278 Grinstein et al. Jul 2008 A1
20080194296 Roundtree Aug 2008 A1
20080201599 Ferraiolo et al. Aug 2008 A1
20080205613 Lopez Aug 2008 A1
20080222646 Sigal et al. Sep 2008 A1
20080225710 Raja et al. Sep 2008 A1
20080229415 Kapoor et al. Sep 2008 A1
20080235508 Ran et al. Sep 2008 A1
20080239986 Xu et al. Oct 2008 A1
20080253395 Pandva Oct 2008 A1
20080256224 Kaji et al. Oct 2008 A1
20080279200 Shatzkamer et al. Nov 2008 A1
20080282354 Wobber et al. Nov 2008 A1
20080288661 Galles Nov 2008 A1
20080301760 Lim Dec 2008 A1
20080316922 Riddle et al. Dec 2008 A1
20090028337 Balabine Jan 2009 A1
20090049230 Pandva Feb 2009 A1
20090070617 Arirnilli et al. Mar 2009 A1
20090077619 Boyce Mar 2009 A1
20090094610 Sukirya Apr 2009 A1
20090110200 Srinivas Apr 2009 A1
20090119504 van Os May 2009 A1
20090125496 Wexler et al. May 2009 A1
20090125532 Wexler et al. May 2009 A1
20090125625 Shim et al. May 2009 A1
20090132807 Schneider May 2009 A1
20090138749 Moll et al. May 2009 A1
20090141891 Boyen Jun 2009 A1
20090157678 Turk Jun 2009 A1
20090158032 Costa Jun 2009 A1
20090193126 Agarwal et al. Jul 2009 A1
20090193513 Agarwal et al. Jul 2009 A1
20090196282 Fellman et al. Aug 2009 A1
20090228956 He et al. Sep 2009 A1
20090248893 Richardson et al. Oct 2009 A1
20090271847 Karjala Oct 2009 A1
20090287935 Aull Nov 2009 A1
20090296624 Ryu et al. Dec 2009 A1
20090300407 Kamath et al. Dec 2009 A1
20090328219 Narayanaswamy Dec 2009 A1
20100011434 Kay Jan 2010 A1
20100017846 Huang et al. Jan 2010 A1
20100023582 Pedersen et al. Jan 2010 A1
20100071048 Novak Mar 2010 A1
20100100953 Mowers Apr 2010 A1
20100115236 Bataineh et al. May 2010 A1
20100122091 Huang May 2010 A1
20100150154 Viger et al. Jun 2010 A1
20100150169 Brown Jun 2010 A1
20100154031 Montemurro et al. Jun 2010 A1
20100165877 Shukla et al. Jul 2010 A1
20100188976 Rahman et al. Jul 2010 A1
20100189052 Kavanagh et al. Jul 2010 A1
20100192201 Shimoni Jul 2010 A1
20100211658 Hoogerwerf Aug 2010 A1
20100242092 Harris et al. Sep 2010 A1
20100251330 Kroeselberg et al. Sep 2010 A1
20100279733 Karsten et al. Nov 2010 A1
20100299451 Yigang et al. Nov 2010 A1
20100318784 Rao Dec 2010 A1
20100322250 Shetty et al. Dec 2010 A1
20100325277 Muthiah et al. Dec 2010 A1
20100325686 Davis et al. Dec 2010 A1
20110010542 Choi Jan 2011 A1
20110040889 Garrett et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110066718 Susai et al. Mar 2011 A1
20110107077 Henderson et al. May 2011 A1
20110119307 Unger et al. May 2011 A1
20110153822 Rajan et al. Jun 2011 A1
20110154017 Edstrom et al. Jun 2011 A1
20110154443 Thakur et al. Jun 2011 A1
20110173295 Bakke et al. Jul 2011 A1
20110184733 Yu et al. Jul 2011 A1
20110197059 Klein Aug 2011 A1
20110202676 Craig et al. Aug 2011 A1
20110213966 Fu Sep 2011 A1
20110246800 Accpadi et al. Oct 2011 A1
20110273984 Hsu et al. Nov 2011 A1
20110277016 Hockings et al. Nov 2011 A1
20110282997 Prince et al. Nov 2011 A1
20110289550 Nakae Nov 2011 A1
20110296183 Banerjee Dec 2011 A1
20110314178 Kanode et al. Dec 2011 A1
20110321122 Mwangi et al. Dec 2011 A1
20110321135 Dickerson Dec 2011 A1
20120016994 Nakamura et al. Jan 2012 A1
20120030341 Jensen et al. Feb 2012 A1
20120039341 Latif et al. Feb 2012 A1
20120041965 Vasquez et al. Feb 2012 A1
20120063314 Pignataro et al. Mar 2012 A1
20120066489 Ozaki et al. Mar 2012 A1
20120079055 Robinson Mar 2012 A1
20120101952 Raleigh et al. Apr 2012 A1
20120124372 Dilley et al. May 2012 A1
20120191847 Nas et al. Jul 2012 A1
20120198043 Hesketh et al. Aug 2012 A1
20120224531 Karuturi et al. Sep 2012 A1
20120311153 Morgan Dec 2012 A1
20120317266 Abbott Dec 2012 A1
20130029726 Berionne et al. Jan 2013 A1
20130031060 Lowery et al. Jan 2013 A1
20130091002 Christie et al. Apr 2013 A1
20130111542 Shieh May 2013 A1
20130163758 Swaminathan et al. Jun 2013 A1
20130198322 Oran et al. Aug 2013 A1
20130205361 Narayanaswamy et al. Aug 2013 A1
20130336122 Baruah et al. Dec 2013 A1
20140025823 Szabo et al. Jan 2014 A1
20140040478 Hsu et al. Feb 2014 A1
20140059678 Parker Feb 2014 A1
20140095661 Knowles et al. Apr 2014 A1
20140162705 de Wit et al. Jun 2014 A1
20140171089 Janakiraman et al. Jun 2014 A1
20140269484 Dankberg et al. Sep 2014 A1
20140317404 Carlson et al. Oct 2014 A1
Foreign Referenced Citations (13)
Number Date Country
0744850 Nov 1996 EP
WO 9114326 Sep 1991 WO
WO 9505712 Feb 1995 WO
WO 9709805 Mar 1997 WO
WO 9745800 Dec 1997 WO
WO 9905829 Feb 1999 WO
WO 9906913 Feb 1999 WO
WO 9910858 Mar 1999 WO
WO 9939373 Aug 1999 WO
WO 9964967 Dec 1999 WO
WO 0004422 Jan 2000 WO
WO 0004458 Jan 2000 WO
WO 2008067758 Jun 2008 WO
Non-Patent Literature Citations (47)
Entry
F5 Networks, Inc., “BIG-IP Controller with Exclusive OneConnect Content Switching Feature Provides a Breakthrough System for Maximizing Server and Network Performance,” Press Release, May 8, 2001, 2 pages, Las Vegas, Nevada.
Crescendo Networks, “Application Layer Processing (ALP),” 2003-2009, pp. 168-186, Chapter 9, CN-5000E/5500E, Foxit Software Company.
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2616, Jun. 1999, pp. 1-176, The Internet Society.
“Windows Server 2003 Kerberos Extensions,” Microsoft TechNet, 2003 (Updated Jul. 31, 2004), http:/technet.microsoft.com/en-us/library/cc738207, Microsoft Corporation.
Mac Vittie, L, “Message-Based Load Balancing: Using F5 solutions to address the challenges of scaling Diameter, Radius, and message-oriented protocols”, F5 Technical Brief, 2005, pp. 1-9, F5 Networks Inc., Seattle, Washington.
International Search Report and The Written Opinion for International Patent Application No. PCT/US2013/026615 (dated Jul. 4, 2013).
F5 Networks Inc., “Configuration Guide for Local Traffic Management,” F5 Networks Inc., Jan. 2006, version 9.2.2, 406 pgs.
U.S. Appl. No. 13/400,398 to Paul Jiang, filed Feb. 20, 2012.
U.S. Appl. No. 13/164,672 to Nat Thirasuttakorn et al., filed Jun. 20, 2014.
U.S. Appl. No. 13/234,042 to Baumann et al., filed Sep. 15, 2011.
U.S. Appl. No. 13/234,047 to Wojcik, filed Sep. 15, 2011.
U.S. Appl. No. 13/235,276 to Hawthorne et al., filed Sep. 16, 2011.
U.S. Appl. No. 13/234,031 to Baumann et al., filed Sep. 15, 2011.
U.S. Appl. No. 13/165,783 to Jain et al., filed Jun. 21, 2011.
International Search Report and The Written Opinion, for International Patent Application No. PCT/US2011/058469, dated Mar. 10, 2015.
“A Process for Selective Routing of Servlet Content to Transcoding Modules,” Research Disclosure 422124, Jun. 1999, pp. 889-890, IBM Corporation.
“BIG-IP Controller with Exclusive OneConnect Content Switching Feature Provides a Breakthrough System for Maximizing Server and Network Performance,” F5 Networks, Inc. Press Release, May 8, 2001, 2 pages, Las Vegas, Nevada.
“Servlet/Applet/HTML Authentication Process With Single Sign-On,” Research Disclosure 429128, Jan. 2000, pp. 163-164, IBM Corporation.
“Traffic Surges; Surge Queue; Netscaler Defense,” 2005, PowerPoint Presentation, slides 1-12, Citrix Systems, Inc.
“Windows Server 2003 Kerberos Extensions,” Microsoft TechNet, 2003 (Updated Jul. 31, 2004), http://technet.microsoft.com/en-us/library/cc738207, Microsoft Corporation, 8 pages.
Abad, C., et al., “An Analysis on the Schemes for Detecting and Preventing ARP Cache Poisoning Attacks”, IEEE, Computer Society, 27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07), 2007, pp. 1-8.
Author Unknown, “WebSEAL Administration Guide: Version 6.1”. Published by IBM, 2008 (month unknown), 1104 pages.
Client Cert Storage Requirements. NagaSAM, last accessed Nov. 18, 2010, Main.natarajan, Jun. 5, 2008, (https://peterpan.f5net.com/twiki/bin/view/TMOS/NagaSAMClientCertStorageRQ).
Crescendo Networks, “Application Laver Processing (ALP),” 2003-2009, pp. 168-186, Chapter 9, CN-5000E/5500E, Foxit Software Company.
Extended European Search Report for European Patent Application No. 11837231.7, dated Mar. 10, 2015.
F5 Networks Inc., “Configuration Guide for Local Traffic Management,” F5 Networks Inc., Jan. 12, 2006, version 9.2.2, 406 pgs.
F5. The BIG-IP system automatically caches SSL client certificates. Original Publication Date: May 5, 2010. Updated Date: Apr. 12, 2012. Available online: http://support.f5.com/kb/en-us/solutions/public/11000/400/sol11482.html.
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2068, Jan. 1997, pp. 1-162.
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2616, Jun. 1999, pp. 1-176.
Floyd et al., “Random Early Detection Gateways for Congestion Avoidance,” Aug. 1993, pp. 1-22, IEEE/ACM Transactions on Networking, California.
Freier et al., “The SSL Protocol: Version 3.0.” Nov. 18, 1996. Internet Engineering Task Force (IETF), Transport Layer Security Working Group.
Fu et al., “Dos and Don'ts of Client Authentication on the Web,” MIT, Sep. 2011 http://pdos.csail.mit.edu/cookies/pubs/webauth:tr.pdf.
Hewlett Packard. “SSL Programming Tutorial.” May 18, 2007. Available http://web.archive.org/web/20070518124141/http://h71000.www7.hp.com/DOC/83final/BA554_90007/ch04s03.html.
Hochmuth, Phil, “F5, CacheFlow pump up content-delivery lines,” Network World Fusion, May 4, 2001, 1 page, Las Vegas, Nevada.
International Search Report and Written Opinion, for International Patent Application No. PCT/US2011/058469, dated May 30, 2012.
International Search Report and Written Opinion for International Patent Application No. PCT/US2011/058174, dated May 4, 2012.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/026615, dated Jul. 4, 2013.
Jelenkovic et al., “Near optimality of the discrete persistent access caching algorithm.” 2005 International Conference on Analysis of Algorithms. pp. 201-222.
Kozierok, “The TCP/IP guide: a comprehensive, illustrated Internet protocols reference.” San Francisco: No Starch Press, 2005. Chapter 47 (6 pages).
Mac Vittie L., “Message-Based Load Balancing: Using F5 solutions to address the challenges of scaling Diameter, Radius, and message-oriented protocols”, F5 Technical Brief, 2005, pp. 1-9, F5 Networks Inc., Seattle, Washington.
MacVittie L., “Cookies, Sessions, and Persistance.” Published by: F5 Networks, Inc., Jul. 2008. 7 pages.
Owasp, “Testing for Cross site scripting”, OWASP Testing Guide v2, Table of Contents, Feb. 24, 2011, pp. 1-5, (www.owasp.org/index.php/Testing_for_Cross_site_scripting).
Request Client Certificate and Pass to Application, last accessed, Dec. 16, 2009, Contributed by: alankila, p. 3. DevCentral Wiki.
Rescorla, “OpenSSL Example Programs”. RTFM. Jan. 10, 2002. Includes the following files (pages): client.c (2), client.h (1), common.c (3), conunon.h (1), configure (49), configure.in (5), Makefile.in (2) read_write.c (5), read_write.h (1), Readme (3), Running (3), sclient.c (3), server.c (2), server.h (1), wclient.c (6), wclient2.c (5), wserver.c (4), wserver2.c (6). Available online:Https>//web.archive.org/web/20021208102526/http://www.rtfm.com/openssl-examples/openssl-examples-20020110.tar.gz.
Schaefer, Ken, “IIS and Kerberos Part 5—Protocol Transition, Constrained Delegation, S4U2S and S4U2P,” Jul. 18, 2007, 21 pages, http://www.adopenstatic.com/cs/blogs/ken/archive/2007/07/19/8460.aspx.
Siles, “Session Management Cheat Sheet—OWASP”. dated Jul. 29, 2011, archived Aug. 13, 2011. 12printed pages. Available online: https://web.archive.org/web/20110813022346/https://www.owasp.org/index.php/Session_Management_Cheat_Sheet.
Williams et al., “The Ultimate Windows Server 2003 System Administrator's Guide: Forwarding Authentication,” 2003, 2 pages, Figure 10.7, Addison-Wesley Professional, Boston, Massachusetts.