This invention relates to the field of radio frequency tagging. More specifically, the invention relates to communication with and/or identification of subsets of a group of radio frequency tags.
A radio frequency (RF) identification system consists of an RF base station and a plurality of RF tags.
In a typical configuration, the base station has a computer section which issues commands to an RF transmitter and receives commands from the RF receiver. The commands serve to identify tags present in the RF field of the base station. In some implementations, commands exist to gather information from the tags. In more advanced systems, commands exist which output information to the tags. This output information may be held temporarily on the tag, it may remain until over written, or it may remain permanently on the tag.
The RF transmitter of the base station encodes the command from the computer section, modulates it from a base band to the radio frequency, amplifies it, and passes it to the RF antenna. The RF receiver gathers the return signal from the antenna, demodulates it from the RF frequency to the base band, decodes it, and passes it back to the computer section for processing. The base station antenna sends RF signals to and receives RF signals from one or more tags within the RF signal range.
Two useful functions of the system are:
The prior art requires that all tags in the RF field be identified and that data be read from them in order to determine if any of the tags met the criteria specified by the tagging application. This process is slow to the point where certain tagging applications are precluded.
For example, a security application might have a number of tags passing through a base station RF field in a short time. It is important that tags meeting certain alarm criteria be detected during this short time (also called real time). The requirement may be to identify and read all tags to determine alarm status during the real time that the tags are passing through the base station field. If there are a large number of tags passing through the RF field and/or the tags are passing through very rapidly, the prior art may fail to identify and read all the tags in the RF field before they pass out of the field.
As another example, a transit application might have a large number of tagged items in a tagged container. To log the movement of a container, all the tags must be identified in the container as well as the container itself. Using prior art techniques, the container might be required to pause in the field to allow enough time to identify and read all of the tags in the field. This pause may cause an undesirable delay in the movement of the container.
Because the master often does not know ahead of time the number of slaves present and because that number may be very large and possibly unwieldy, it is advantageous for the master to be able to select a subset of the slaves with which to communicate further. Such a selection must of course be done by a conditional. Those slaves that meet the condition are thus considered selected, while those that do not meet the condition are considered not selected. The selection is performed by broadcasting to all slaves the condition that must be met. This is akin to asking those among a large crowd of people whose last name is Lowell to raise their hand. Each slave is defined as having at least the capability to listen to the master's broadcasts, to receive the broadcast condition and to self-test so as to determine whether it meets the condition. See U.S. patent application Ser. No. 08/303,965, to Cesar et al. filed on Sep. 9, 1994, now U.S. Pat. 5,673,037 issued Sep. 30, 1997, which is herein incorporated by reference in its entirety. U.S. Pat. No. 5,673,037 in turn incorporates U.S. Pat. No. 5,550,547 by reference in its entirety, and accordingly, U.S. Pat. No. 5,550,547 is hereby incorporated herein by reference in its entirety. U.S. Pat. No. 5,550,547 discloses a base station with a base memory (220, the second figure of U.S. Pat. No. 5,550,547) which stores a special command structure that is used to communicate with the RFID tags. In a preferred embodiment, the base memory includes a novel command structure for tag group selection also. U.S. Pat. No. 5,550,547 states that group select structures are described in the U.S. patent application Ser. No. 08/303,965 entitled “SYSTEM AND METHOD FOR RADIO FREQUENCY TAG GROUP SELECT” to C. Cesar et al. filed Sep. 9, 1994 (now U.S. Pat. No. 5,673,037), which is incorporated by reference in its entirety in U.S. Pat. No. 5,550,547. The fifth figure of the incorporated U.S. Pat. No. 5,550,547 shows an algorithm being executed by each of a plurality of RF tags which includes processing of an identification command which in a preferred embodiment is the group select command.
An object of this invention is an improved system and method to rapidly determine which tags of a group of tags meet a certain criteria.
Another object of this invention is an improved system and method to rapidly identify and/or select tags meeting certain criteria for subsequent processing.
The present invention enables rapid querying, selecting, and identifying of a large number of radio frequency (RF) tags. This is done by implementing an efficient state machine on each tag. The tags power up in a default state (READY) where they do not transmit or participate in an identification algorithm. A subset of the tags in the field can be moved into a second state (SELECTED) by a signal from the base station. In the SELECTED state the tags transmit their unique identifier to the base station in an attempt to identify themselves.
The process of moving the tags to the second state, SELECTED, is based on the data in the tag data memory. With a comparison unit and two tag commands, any arbitrarily complex selection criteria can be realized to move a given tag into the SELECT state (or back to the READY state).
Determining if any tags meeting certain criteria are in the field is performed very efficiently since the invention does not require individual tag identification. This is accomplished by each tag processing one or more “group select” and/or “group unselect” commands in sequence using control logic located on the tag. This tag control logic determines whether the respective tag meets the selection criteria.
Tags meeting the selection criteria participate in the identification process. This identification process may be limited to determining whether one or more tags are participating, but not uniquely identifying individual tags.
The invention also simplifies the identification of tags in a large group of tags. This is done by using one or more “group select” and/or “group unselect” commands to select only the relevant tags for identification. This allows the system to process only tags which are of interest, i.e., meet the selection criteria. This feature improves the speed at which the system can process tags and allows the system to select subgroups of tags for processing from very large numbers of tags.
Other protocols may be used with the present invention. In one preferred embodiment, more than one tag simultaneously communicating with the base station can be identified by using the protocol described in U.S. patent application to S. Chan et al. entitled “MULTIPLE ITEM RADIO FREQUENCY TAG IDENTIFICATION PROTOCOL”, now U.S. Pat. No. 5,550,547, which is herein incorporated by reference in its entirety.
The system 100 is comprised of two types of hardware, a base station 105 and a plurality of tags 150.
The base station 105 includes a microprocessor 110 running a novel base station algorithm 115. The microprocessor has a duplex connection to a radio frequency (RF) front end 120, which in turn connects to an RF antenna 125. The resulting RF signal 130 is broadcast to the tags. Base stations 105 of this type (without the novel algorithm 115) are well known.
Each tag (typically 160) in the group 150 of tags contains a tag antenna 162 which couples the RF signal 130 to the RF front end 164. This in turn connects to the tag control circuit 166. The control circuit implements an algorithm 170, and interfaces to the tag memory 168.
The plurality of tags 150 in the RF field 130 of the base station 105 is represented by the 18 tags shown. A base station 105 is able to communicate with a tag (typically 160) in the RF field 130 of the base station 105 using the RF field 130 or signal 130. Tags in the RF field 130 are said to be in the tag group 150.
A group select command can be used to select the subgroup (for example, 210) from the tag group 150 and move it to a SELECTED state using the algorithm 115 on the base station, algorithm 170 on the tag, and the tag control logic 166 processing the commands 410 and 460. See
Note that several different subgroups can be moved from a READY state to a SELECTED state by sending a signal 130 from the base station 105. The subgroups moved, i.e., the subgroups that have tags that change state, are determined by criteria sent out by the base station.
In essence, tags meeting any one of the selection criteria of the group select commands are placed in the SELECTED state. In the example above, tags meeting the first OR the second criteria (i.e., tags in subgroups 210 and 220 of group 150) are selected, forming the subgroup 230.
To illustrate, suppose that the plurality of tags 150 identify and/or are attached to clothing items. Further, suppose that it is desired to determine whether there are any socks or shirts in the RF field 130. Finally, suppose that the tag memory 168 has an address A10, with data D10 for socks and D11 for shirts.
Socks or shirts are selected, like subgroup 230, of group 150 above by running the base station algorithm 115. Refer to
The next step would be to send a group select command 410 (received by the tags) with the following fields:
A group unselect command can move a subgroup back to the READY state. The group unselect command performs a logical AND (or intersection) function.
For example, suppose that it is desired to determine whether there are any pale green pants in the RF field 130. Further, suppose that the tag memory 168 has an address A10, with data D12 for pants and an address A20, with data D21 for pale green colors.
The first step would be to send a group select command 410 (received by the tags) with the following fields:
The next step would be to send a group unselect command 460 (received by the tags) with the following fields:
Data enters and leaves the control block 166 through the RF block 164.
Within the control block 166, the appropriate fields (see description of
In one preferred implementation, the data emanating from the RF block 164 is serial digital data, and the registers (305,320,315,335) are shift registers which are loaded in turn. The registers could also be parallel loadable registers, with a field of data being assembled before being loaded into a register. The determination of where the data fields are loaded is determined by the command field (510,560).
After the fields of the signal 130 are stored in the tag registers, a group select or group unselect operation begins by reading data from the tag data memory 168 into the tag data register 310. The data read is determined by the value previously loaded into the address register 305.
In one preferred implementation, the tag memory 168 holds byte wide (8 bit) data, and the tag data register 310 is a parallel in/serial out shift register. The memory could also be bit wide, with the tag data register being a simple one bit storage device. In a preferred embodiment, the mask indicates whether or not the data should be acted upon. If it is to be acted upon, the tag data 310 and command data 315 are compared in the compare block 325. In another preferred embodiment, the mask could be more complex. For example, it could modify the type of function to be performed rather than simply enabling a function.
In one preferred embodiment, the command data field (530,580) is 8 bytes, the tag data memory 168 is one byte wide, and the mask contains a logic 1 for each byte which should participate in the comparison and a 0 for each byte which should be ignored. As each byte in turn is read from the tag data memory 168 to the tag data register 310 and routed to the compare unit 325, one bit of the mask register 320 is used to determine whether the data should be used or ignored.
Note that in a preferred embodiment, a mask of all zeros says that all data is ignored. The result is a useful select all tags or unselect all tags function.
The compare unit determines the results (greater than, greater than or equal, equal, less than, less than or equal) as data is received. The compare unit 325 computes the results for each masked data item using standard digital arithmetic and passes the results to the tag state machine 330. Once the compare operation is complete, the tag state 330 is updated.
If required, the compare operation can be repeated multiple times as data is received in the command data register and data is read from the tag data memory to the tag data register.
For example, suppose that the address A1 reads 8 bytes and the first three bytes (here these first three bytes might be the address A10 described above) contain data D10 describing the item as socks. To group select all socks, the command data field 410 would have the following fields
Once the compare operation is complete, the tag state 330 is updated. In this example, an 8 byte compare with mask is performed. Alternatively, a different number of bits could be used, or the mask could be bit wide.
The tag states in the tag state machine 330 are READY (the tag is in the set of unselected tags) and SELECTED (the tag is in the set of selected tags). A preferred state machine is a one bit register. In one preferred embodiment, that tag might have other states (for example, shut down, identified, error states, etc.) with a correspondingly more complex state machine 330.
An additional path connects the tag data register back to the RF section. This read data path can be used to identify and classify individual tags in the base station. In a typical implementation, the connection between the RF block 164 and the control block 166 contains a transmit path 340 and a receive path 345.
Alternatively, there could be one bidirectional path.
In step 410 the group select command is received by the tag control logic.
In step 415, the conditions of the command are checked as described in
In step 420, the control logic decides whether the conditions were met, using the compare block 325 and the function register 335.
If the conditions (i.e. the compare conditions) were not met, the tag state 330 does not change and the tag waits for the next command.
If the conditions are met, step 425 changes the tag state 330 from READY to SELECTED. That is, the tag moves from the set of unselected tags to the set of selected tags.
For example, to select all tags which indicate socks, the group select command 410 would indicate a group select on equals, with the address pointing to the potential socks data, the mask selecting only the potential socks field within the address, and the data indicating socks.
In step 460, the group unselect command is received by the tag control logic.
In step 465, the conditions of the command are checked as described in
In step 470, the control logic decides whether the conditions (i.e., the compare conditions) were met, using the compare block 325 and the function register 335.
If the conditions were not met, the tag state 330 does not change and the tag waits for the next command.
If the conditions are met, step 475 changes the tag state 330 from SELECTED to READY. That is, the tag moves from the set of selected tags to the set of unselected tags.
For example, to unselect all tags which indicate colors other than pale green, the group unselect command 460 would indicate a group unselect on not equals, with the address pointing to the color data, the mask selecting only the color field within the address, and the data indicating pale green.
The first field, 510 or 560, indicates the type of command, select or unselect, field 510 for select commands and field 560 for unselect commands. In a preferred embodiment, the tag implements other commands, (e.g. read, write, etc.) and the field contains multiple bits which describe the command. In a typical implementation, the bits could be either coded or contain one bit per command.
The next field, 515 (select) or 565 (unselect), indicates the type of command function. In a typical implementation, the functions includes equal, not equal, greater than, less than, greater than or equal, or less than or equal. A more complex tag could implement additional functions or combinations of functions in the function register 335, the mask register 320, and the compare block 325.
The next field, 520 (select) or 570 (unselect), contains the tag memory address. Its exact format depends on the configuration of the tag data memory. In a preferred embodiment, the address would access 8 bytes of tag data memory, with individual bytes selected via the mask field. In an alternative implementation, a one byte address or a bit address could be used.
The next field, 525 (select) or 575 (unselect), holds the mask. Its format also depends upon the tag data memory format and the mask granularity desired. For example, the mask could be on a bit by bit basis, or it could mask 8 bit bytes. In a typical implementation, the mask enables or inhibits the compare block 325, but more complex masking is also possible.
The final field, 530 (select) or 580 (unselect), holds the command data. This is the data with which the tag data is compared. Again, the format is dependent on the tag data memory configuration and the application. A typical size could be one bit, an 8 bit byte, or a number of bytes.
In a preferred embodiment, the format of the command selection conditions 505 and 555 would be identical. In this way, the tag control logic acts on the commands in the same manner, with only the final state change dependent upon the actual command.
For example, the command to select pale green items would be:
Similarly, the command to unselect pale green items would be:
The first step, 605, is a group select command. This moves a subset of tags from the READY state to the SELECTED state. This group select step 605 can be repeated any number of times as required, 615, to move more tags from READY to SELECTED. This performs an OR function.
The next step, if required, is 610. This group unselect command acts on the tags in the SELECTED state. A subset of them moves back to the READY state. This performs an AND function. This group unselect step 610 can be repeated any number of times as required, 620, to move more tags from SELECTED to READY.
For example, to select socks and shirts, one group select command 605 selects socks. Through 615, another group select command 605 selects shirts. The result is that items which are shirts OR socks are selected.
In another example, to select pale green pants, a group select command 605 selects pants. Then a group unselect command 610 unselects not pale green. The result is that items which are pants and pale green are selected.
After the tags now in the SELECTED state are accessed, the entire selection process can be repeated as required, indicated by the path 625.
In a typical application, accessing the tag could consist of identifying individual items and reading a universal product code (UPC).
This flexibility allows tags to be selected using an arbitrarily complex logical equation.
For example, it would be possible to identify all pale green pants sizes 30 through 34 manufactured in Conn. or mens socks manufactured between January and March.
In one application, querying, a flag is set if the selected subgroup has one or more members. In that application, tags remaining in the SELECTED state after processing a group select or group unselect command would transmit back to the base station.
The base station, in 630, would detect the presence or absence of a return signal from one or more tags. If a signal is detected, a flag is set in 635. If a signal is not detected, the flag is cleared in 640. The flag state can be determined without identifying individual tags. In other words, the base station has queried the tag group to determine if any tags met certain conditions (or criteria) without ever identifying a tag.
For example, an application could scan a display of pale green pants for misshelved items, The application would first group select on not pants. A set flag indicates the presence of not pants tags, and the application knows that items are misshelved. If the flag is not set, the application next group selects pants and then group unselects pale green colors. A set flag now indicates the presence of pants which are not pale green. Again the application knows that items are misshelved.
In another application, the flag is an alarm. The selection conditions are arranged by the application so that the only tags remaining in the SELECTED state are those tags for which security is being breached. In that case, in step 645, the application would check the flag. If the flag is set, the application implements its alarm procedure 650.
For example, an application could group select all retail items, followed by a group unselect on items marked paid. A set flag indicates unpaid items passing through the field, which can be used by the application to trigger an alarm.
Given this disclosure, one skilled in the art could construct other embodiments that are equivalent to those disclosed here. These embodiments are within the contemplation of the inventors.
The present application is a division of application Ser. No. 10/979,866 filed Nov. 2, 2004, which is a continuation of application Ser. No. 09/179,481 filed Oct. 27, 1998, now U.S. Pat. No. 6,812,852 issued Nov. 2, 2004, which is a continuation of application Ser. No. 08/646,539 filed May 8, 1996, now U.S. Pat. No. 5,828,318 issued Oct. 27, 1998. Said application Ser. No. 09/179,481 is a continuation-in-part of application Ser. No. 08/694,606 filed Aug. 9, 1996, now U.S. Pat. No. 5,942,987 issued Aug. 24, 1999, which in turn is a continuation-in-part of application Ser. No. 08/303,965 filed Sep. 9, 1994, now U.S. Pat. No. 5,673,037 issued Sep. 30, 1997. Reference is also made to U.S. Pat. No. 5,550,547 which is commonly owned with the aforementioned applications. Said U.S. Pat. Nos. 5,550,547, 5,673,037 and 5,828,318 are hereby incorporated herein by reference in their entireties, including material incorporated in said U.S. Pat. No. 5,550,547, 5,673,037 and 5,828,318 by reference. application Ser. No. 10/979,866 filed Nov. 2, 2004, is hereby incorporated herein by reference in its entirety including material incorporated in said application Ser. No. 10/979,866 by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10979866 | Nov 2004 | US |
Child | 11619051 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09179481 | Oct 1998 | US |
Child | 10979866 | Nov 2004 | US |
Parent | 08646539 | May 1996 | US |
Child | 09179481 | Oct 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08694606 | Aug 1996 | US |
Child | 09179481 | Oct 1998 | US |
Parent | 08303965 | Sep 1994 | US |
Child | 08694606 | Aug 1996 | US |