1. Field of the Invention
The present invention relates to a system and method for providing security for a wireless network, such as an ad-hoc wireless communications network, based on the position information relating to mobile nodes. More particularly, the present invention relates to a system and method for trusted infrastructure devices to compute the location of a mobile node in a wireless communications network, such as an ad-hoc terrestrial wireless communications network, during the authentication process.
2. Description of the Related Art
Wireless communications networks, such as mobile wireless telephone networks, have become increasingly prevalent over the past decade. These wireless communications networks are commonly referred to as “cellular networks” because the network infrastructure is arranged to divide the service area into a plurality of regions called “cells”.
Specifically, a terrestrial cellular network includes a plurality of interconnected base stations that are distributed geographically at designated locations throughout the service area. Each base station includes one or more transceivers that are capable of transmitting and receiving electromagnetic signals, such as radio frequency (RF) communications signals, to and from user nodes, such as wireless telephones, located within the base station coverage area. The communications signals include, for example, voice data that has been modulated according to a desired modulation technique and transmitted as data packets. As can be appreciated by one skilled in the art, the transceiver and user nodes transmit and receive such data packets in multiplexed format, such as time-division multiple access (TDMA) format, code-division multiple access (CDMA) format, or frequency-division multiple access (FDMA) format, which enables a single transceiver at the base station to communicate simultaneously with several user nodes in it's coverage area.
In recent years, a type of mobile communications network known as an “ad-hoc” network has been developed for use by the military. In this type of network, each user node is capable of operating as a base station or router for the other user nodes, thus eliminating the need for a fixed infrastructure of base stations. Details of an ad-hoc network are set forth in U.S. Pat. No. 5,943,322 to Mayor, the entire content of which is incorporated herein by reference.
More sophisticated ad-hoc networks are also being developed which, in addition to enabling user nodes to communicate with each other as in a conventional ad-hoc network, further enable the user nodes to access a fixed network and thus communicate with other user nodes, such as those on the public switched telephone network (PSTN), and on other networks such as the Internet. Details of these types of ad-hoc networks are described in U.S. patent application Ser. No. 09/897,790 entitled “Ad Hoc Peer-to-Peer Mobile Radio Access System Interfaced to the PSTN and Cellular Networks”, filed on Jun. 29, 2001, and in U.S. patent application Ser. No. 09/815,157 entitled “Time Division Protocol for an Ad-Hoc, Peer-to-Peer Radio Network Having Coordinating Channel Access to Shared Parallel Data Channels with Separate Reservation Channel”, filed on Mar. 22, 2001, now U.S. Pat. No. 6,807,165, the entire content of each being incorporated herein by reference.
In either conventional wireless communications networks, or in ad-hoc wireless communications networks, it may be necessary or desirable to know or determine the geographic location of user nodes. Different types of location determining services and techniques for wireless communications networks are described in a publication by Nokia which can be found on the Nokia website at “www.nokia.com/press/background/pdf/mlbs.pdf”, the entire content of which being incorporated herein by reference. In particular, the Nokia document states that location identification services are currently provided in wireless communications networks based on three major technologies. One of these technologies uses cell identification combined with Round Trip Time (RTT), Timing Advance (TA) and Measured Signal level (RX level), Time Difference of Arrival (TDOA) and Angle Of Arrival (AOA) techniques, the details of which can be appreciated by one skilled in the art. A second technology uses cellular signal timing based methods for code division multiple access (CDMA) and wideband code division multiple access (WCDMA). The third technology described in the Nokia document employs Global Positioning System (GPS) techniques.
Another list of methods and techniques currently used in the wireless communications industry for providing location services can be found at “www.911dispatch.com/911_file/location_tech.html”, the entire content of which being incorporated herein by reference. Although the GPS technique is the last technique mentioned in this list, it is generally viewed as being more accurate than all of the other methods. Further details and descriptions of GPS based methods are set forth in a publication by J. J. Spilker Jr. entitled “Satellite Constellation and Geometric Dilution of Precision”, in a publication by P. Axelrad et al. entitled “GPS Navigation Algorithms”, in a publication by Bradford W. Parkinson entitled “GPS Error Analysis”, and in a publication by N. Ashby et al. Entitled “Introduction to Relativistic Effects on the Global Positioning System”, each found in “GPS—Theory and Applications”, American Institute of Astronautics, 1996, the entire content of each being incorporated herein by reference.
Despite the fact that the GPS technique has been in use for a considerable period of time and most of the world's navigation relies on this technique, the GPS technique is very susceptible to errors in measurement. Therefore, the GPS technique is capable of providing location determination results with very high accuracy only after performing a relatively large number of measurements to remove such errors. A description of the shortcomings of GPS is set forth in a document by IMA entitled “Mathematical Challenges in Global Positioning Systems (GPS)” which can be found at “www.ima.umn.edu/gps”, the entire content of this document being incorporated herein by reference. Certain other tests also demonstrate that the GPS technique is unsuitable for terrestrial-based networks.
In addition, other methods and techniques which do not use GPS satellites for determining mobile station locations in a wireless communications network typically require that the signal from the mobile station be received by at least two cell sites that can measure and process the delay between signal arrivals, identify the direction of the signal based on “path signature”, and determine the distance between mobile station and the cell towers. In all of these methods, information processing is executed in a designated central processing unit (CPU) which is typically located at a cell tower next to the base station (BTS). Also, most of these methods were designed to comply with E911 requirements without requiring that excessive modifications be made to existing wireless communications systems. Examples of other location determining techniques are set forth in a document by CERN—European Organization for Nuclear Research, which can be found at “rkb.home.cern.ch/rkb/ANI16 pp/node98.html#SECTION00098000000000000000”, in a document by Wendy J Woodbury Straight entitled “Exploring a New Reference System”, which can be found at “menstorsoftwareince.com/profile/newref.html”, and in a document entitled “An Introduction to SnapTrac Server-Aided GPS Technology”, which can be found at “www.snaptrack.com/pdf/ion.pdf”, the entire content of each being incorporated herein by reference. Additional details may also be found in U.S. patent application Ser. No. 09/988,001 entitled “A System and Method for Computing the Location of a Mobile Terminal in a Wireless Communications Network”, filed on Nov. 16, 2001, now U.S. Pat. No. 6,728,545, which describes a system and method for determining location with the use of technologies such as GPS, the entire content being incorporated herein by reference.
Accordingly, a need exists for a system and method for determining the location of a mobile user node in a wireless communications network by trusted infrastructure devices to determine if the device is physically within a predetermined “safe zone”, and provide access to the network based on this location determination.
These and other objects, advantages and novel features of the invention will be more readily appreciated from the following detailed description when read in conjunction with the accompanying drawings, in which:
Wireless nodes wishing to obtain access to an enterprise LAN are typically required to authenticate themselves via the IP standard. Although this verifies that the user has the required challenge information, it does not prevent a computer that has been compromised from accessing the network. Due to the wireless interface, a user doesn't have to be inside the building in order to obtain access. Thus, a compromised computer with a wireless interface could be outside a business' secured environment, such as sitting in a parking lot, and obtain full access to the network services within a business building. Unlike a wired network, the wireless user doesn't need to pass the physical security checks such as a guard desk to obtain building access prior to plugging into the LAN.
In an embodiment of the present invention, or any other wireless technology which could be extended to add a location measurement (e.g. 802.11), the authentication server can request the wireless routers or access points to take time of flight measurements and report either the time of flight or the calculated distance. The authentication server can then determine if the location of the wireless user is within a defined space, such as a building outline, and the authentication server may reject users that are outside the perimeter.
As shown in
The frequency and modulation scheme used by the transceiver 106 however, do not impact the implementation of the mobile access points 101, wireless routers 102, or nodes 103. Each node 101, 102 and 103 further includes a memory 108, such as a random access memory (RAM), that is capable of storing, among other things, routing information pertaining to itself and other nodes in the network 100. Certain nodes, in particular, mobile nodes 103-1 through 103-n, can be coupled to a host device 110, such as a personal computer (PC), personal data assistant (PDA), or any other suitable device for use by a user.
Each access point 101 and wireless router 102 maintains knowledge of their geographic location. This information may be manually entered, or the devices may include positioning functionality, such as global positioning system (GPS) functionality, differential navigation functionality, or other positioning functionality such as various triangulation techniques as can be appreciated by one skilled in the art, or as described in U.S. Pat. No. 6,728,545 referenced above, and in a U.S. Patent Application of Eric A. Whitehill, Ser. No. 09/973,799, for “A System And Method For Efficiently Performing Two-Way Ranging To Determine The Location Of A Wireless Node In A Communications Network”, filed on Oct. 11, 2001, now U.S. Pat. No. 6,768,730, the entire contents of which being incorporated herein by reference.
Referring to
Coverage graph 112 of
Coverage graph 120 of
Due to the placement of the devices in
The ladder diagram 126 of
As part of the authentication process, the AAA server 105 sends a message to the access point 101 requesting the range information of the mobile node 103-2, such as the location of the wireless router 102-1, and the distance between wireless router and the mobile device 103-2. The access point 101 receives the message from the AAA server and sends a request to the wireless router 102-1 to determine the distance between the mobile device 103-2 and the wireless router 102-1. The wireless router 102-1 executes a series of measurements, such as time of flight measurements, and determines the requested distance information, which is then sent to the AAA server 105 via the access point 101. The AAA server then calculates a position for the mobile node 103-2 and determines if the mobile node is within a secure zone 118-1, that is, within a zone in which network access by mobile nodes is allowed.
If the mobile node 103-2 is not found within the secure zone 118-1 by measurements provided by the wireless router 102-1, the AAA server 105 sends a request for an “absolute position” determination to the access point 101. The access point then requests neighboring wireless routers, such as 102-2, 102-3 and 102-4, to determine the distance between mobile node 103-2 and each wireless router 102-2, 102-3 and/or 102-4 respectively. In addition, the access point 101 may also determine the distance between the mobile node 103-2 and the access point 101. Each wireless router executes a series of measurements, such as time of flight measurements, and determines the requested distance information, which is then sent to the access point 101.
Upon receiving the additional distance information, the access point 101 calculates the absolute position of the mobile node 103-2 and sends the result to the AAA server 105. The AAA server 105 evaluates the absolute position of the mobile node 103-2 and determines if the mobile node is within the perimeter 114, and if so, sends a response to the original request for access from the wireless router 102-1 to allow the mobile node 103-2 to join the network on the basis of location.
There can be variations to the process flow in
In embodiments of the invention described above, security is maintained as the mobile nodes 103 cannot “spoof” the time of flight measurement used, since any attempt at processing the message would only delay the signal's return and effectively cause a greater distance to be calculated. Likewise, the mobile nodes 103 cannot provide an erroneous location since it they never queried for a self-determined location. All location determinations are done by infrastructure devices under control of the network.
Although only a few exemplary embodiments of the present invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined.
This application is a continuation of prior application Ser. No. 10/270,003, filed Oct. 15, 2002, now U.S. Pat. No. 7,042,867, which claims benefit under 35 U.S.C. §119(e) from U.S. provisional patent application Ser. No. 60/398,834 entitled “A System And Method For Determining Physical Location Of A Node In A Wireless Network During An Authentication Check Of The Node”, filed Jul. 29, 2002, the entire contents of each are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4494192 | Lew et al. | Jan 1985 | A |
4617656 | Kobayashi et al. | Oct 1986 | A |
4736371 | Tejima et al. | Apr 1988 | A |
4742357 | Rackley | May 1988 | A |
4747130 | Ho | May 1988 | A |
4910521 | Mellon | Mar 1990 | A |
5034961 | Adams | Jul 1991 | A |
5068916 | Harrison et al. | Nov 1991 | A |
5231634 | Giles et al. | Jul 1993 | A |
5233604 | Ahmadi et al. | Aug 1993 | A |
5241542 | Natarajan et al. | Aug 1993 | A |
5317566 | Joshi | May 1994 | A |
5392450 | Nossen | Feb 1995 | A |
5412654 | Perkins | May 1995 | A |
5424747 | Chazelas | Jun 1995 | A |
5502446 | Denninger | Mar 1996 | A |
5502722 | Fulghum | Mar 1996 | A |
5517491 | Nanni et al. | May 1996 | A |
5555425 | Zeller et al. | Sep 1996 | A |
5555540 | Radke | Sep 1996 | A |
5572528 | Shuen | Nov 1996 | A |
5615212 | Ruszczyk et al. | Mar 1997 | A |
5618045 | Kagan et al. | Apr 1997 | A |
5621732 | Osawa | Apr 1997 | A |
5623495 | Eng et al. | Apr 1997 | A |
5627976 | McFarland et al. | May 1997 | A |
5631897 | Pacheco et al. | May 1997 | A |
5644576 | Bauchot et al. | Jul 1997 | A |
5652751 | Sharony | Jul 1997 | A |
5680392 | Semaan | Oct 1997 | A |
5684794 | Lopez et al. | Nov 1997 | A |
5687194 | Paneth et al. | Nov 1997 | A |
5696903 | Mahany | Dec 1997 | A |
5701294 | Ward et al. | Dec 1997 | A |
5706428 | Boer et al. | Jan 1998 | A |
5717689 | Ayanoglu | Feb 1998 | A |
5745483 | Nakagawa et al. | Apr 1998 | A |
5774876 | Wooley et al. | Jun 1998 | A |
5781540 | Malcolm et al. | Jul 1998 | A |
5787080 | Hulyalkar et al. | Jul 1998 | A |
5794154 | Bar-On et al. | Aug 1998 | A |
5796732 | Mazzola et al. | Aug 1998 | A |
5796741 | Saito et al. | Aug 1998 | A |
5805593 | Busche | Sep 1998 | A |
5805842 | Nagaraj et al. | Sep 1998 | A |
5805977 | Hill et al. | Sep 1998 | A |
5809518 | Lee | Sep 1998 | A |
5822309 | Ayanoglu et al. | Oct 1998 | A |
5835857 | Otten | Nov 1998 | A |
5844905 | McKay et al. | Dec 1998 | A |
5845097 | Kang et al. | Dec 1998 | A |
5857084 | Klein | Jan 1999 | A |
5870350 | Bertin et al. | Feb 1999 | A |
5877724 | Davis | Mar 1999 | A |
5881095 | Cadd | Mar 1999 | A |
5881372 | Kruys | Mar 1999 | A |
5886992 | Raatikainen et al. | Mar 1999 | A |
5896561 | Schrader et al. | Apr 1999 | A |
5903559 | Acharya et al. | May 1999 | A |
5909651 | Chander et al. | Jun 1999 | A |
5936953 | Simmons | Aug 1999 | A |
5943322 | Mayor et al. | Aug 1999 | A |
5987011 | Toh | Nov 1999 | A |
5987033 | Boer et al. | Nov 1999 | A |
5991279 | Haugli et al. | Nov 1999 | A |
6028853 | Haartsen | Feb 2000 | A |
6029217 | Arimilli et al. | Feb 2000 | A |
6034542 | Ridgeway | Mar 2000 | A |
6034950 | Sauer et al. | Mar 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6047330 | Stracke, Jr. | Apr 2000 | A |
6052594 | Chuang et al. | Apr 2000 | A |
6052752 | Kwon | Apr 2000 | A |
6064626 | Stevens | May 2000 | A |
6067291 | Kamerman et al. | May 2000 | A |
6067297 | Beach | May 2000 | A |
6078566 | Kikinis | Jun 2000 | A |
6088337 | Eastmond et al. | Jul 2000 | A |
6104712 | Robert et al. | Aug 2000 | A |
6108738 | Chambers et al. | Aug 2000 | A |
6115580 | Chuprun et al. | Sep 2000 | A |
6122690 | Nannetti et al. | Sep 2000 | A |
6130881 | Stiller et al. | Oct 2000 | A |
6132306 | Trompower | Oct 2000 | A |
6154172 | Piccionelli et al. | Nov 2000 | A |
6163699 | Naor et al. | Dec 2000 | A |
6178337 | Spartz et al. | Jan 2001 | B1 |
6192053 | Angelico et al. | Feb 2001 | B1 |
6192230 | Van Bokhorst et al. | Feb 2001 | B1 |
6208870 | Lorello et al. | Mar 2001 | B1 |
6212390 | Rune | Apr 2001 | B1 |
6222463 | Rai | Apr 2001 | B1 |
6223240 | Odenwald et al. | Apr 2001 | B1 |
6240294 | Hamilton et al. | May 2001 | B1 |
6246875 | Seaholtz et al. | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6275707 | Reed et al. | Aug 2001 | B1 |
6285892 | Hulyalkar | Sep 2001 | B1 |
6304556 | Haas | Oct 2001 | B1 |
6327300 | Souissi et al. | Dec 2001 | B1 |
6349091 | Li | Feb 2002 | B1 |
6349210 | Li | Feb 2002 | B1 |
6359872 | Mahaney et al. | Mar 2002 | B1 |
6377636 | Paulraj et al. | Apr 2002 | B1 |
6404756 | Whitehill et al. | Jun 2002 | B1 |
6456599 | Elliott | Sep 2002 | B1 |
6505049 | Dorenbosch | Jan 2003 | B1 |
6519464 | Santhoff et al. | Feb 2003 | B1 |
6539232 | Hendrey et al. | Mar 2003 | B2 |
6574266 | Haartsen | Jun 2003 | B1 |
6618690 | Syrjarinne | Sep 2003 | B1 |
6625135 | Johnson et al. | Sep 2003 | B1 |
6697649 | Bennett et al. | Feb 2004 | B1 |
6728545 | Belcea | Apr 2004 | B1 |
6744740 | Chen | Jun 2004 | B2 |
6768730 | Whitehill | Jul 2004 | B1 |
6807165 | Belcea | Oct 2004 | B2 |
6826385 | Kujala | Nov 2004 | B2 |
7072650 | Stanforth | Jul 2006 | B2 |
7171216 | Choksi | Jan 2007 | B1 |
20010053699 | McGrady et al. | Dec 2001 | A1 |
20020058504 | Stanforth | May 2002 | A1 |
20020131386 | Gwon | Sep 2002 | A1 |
20030012168 | Elson et al. | Jan 2003 | A1 |
20030035437 | Garahi et al. | Feb 2003 | A1 |
20030053424 | Krishnamurthy et al. | Mar 2003 | A1 |
20030073406 | Benjamin et al. | Apr 2003 | A1 |
20030078986 | Ayres et al. | Apr 2003 | A1 |
20030091010 | Garahi et al. | May 2003 | A1 |
20030118015 | Gunnarsson et al. | Jun 2003 | A1 |
20030156558 | Cromer et al. | Aug 2003 | A1 |
20030177219 | Taib et al. | Sep 2003 | A1 |
20030232620 | Runkle et al. | Dec 2003 | A1 |
20030233580 | Keeler et al. | Dec 2003 | A1 |
20030235175 | Naghian et al. | Dec 2003 | A1 |
20040203380 | Hamdi et al. | Oct 2004 | A1 |
20050268330 | Di Rienzo | Dec 2005 | A1 |
20100262364 | Ikeda | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
2132180 | Mar 1996 | CA |
9837722 | Aug 1998 | WO |
9955102 | Oct 1999 | WO |
0034932 | Jun 2000 | WO |
0062574 | Oct 2000 | WO |
0110154 | Feb 2001 | WO |
0127649 | Apr 2001 | WO |
0133770 | May 2001 | WO |
0135567 | May 2001 | WO |
0137481 | May 2001 | WO |
0137482 | May 2001 | WO |
0137483 | May 2001 | WO |
0141036 | Jun 2001 | WO |
0141468 | Jun 2001 | WO |
0239710 | May 2002 | WO |
0249379 | Jun 2002 | WO |
2004002113 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060153075 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
60398834 | Jul 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10270003 | Oct 2002 | US |
Child | 11343550 | US |