System and method for secured account numbers in proximity devices

Information

  • Patent Grant
  • 10922686
  • Patent Number
    10,922,686
  • Date Filed
    Thursday, March 28, 2019
    5 years ago
  • Date Issued
    Tuesday, February 16, 2021
    3 years ago
Abstract
A technique for improving the security of a communication device may include storing a first account identifier and a second account identifier associated with the first account identifier, the second account identifier and the first account identifier being associated with the same account on the communication device. When the communication device is interacting with a reader device to conduct a transaction, the communication device may determine whether the transaction is a proximity transaction by sensing whether a wireless interrogation signal is being transmitted from the reader device, and determine which of the first account identifier and the second account identifier to provide to the reader device based on whether the transaction is a proximity transaction.
Description
BACKGROUND OF THE INVENTION

The present invention relates in general to portable proximity consumer devices used in wireless payment transactions, and in particular to various embodiments of portable proximity consumer devices, such as credit and debit contactless smart cards, that use secured account numbers for wireless financial transactions.


Generally, portable proximity consumer devices such as contactless smart cards are designed to provide the consumer with a way to engage in purchase transactions by wirelessly connecting the portable proximity consumer devices directly with the merchant's point of sales device, for instance using radio frequency (RF) or infrared (IR) signals. For example, contactless smart cards allow a consumer to store and transmit financial data and other personal data to a merchant device which uses it to effect a payment during a purchase transaction.


Because portable proximity consumer devices operate without requiring direct connection to the accepting device, portable proximity consumer devices are expected to gain popularity over other types of devices that require physical contact and/or physical connections to communicate with other devices and systems. Illustratively, contactless smart cards may be used to replace regular credit cards, as they need not be in contact with a transaction terminal to be operated. Regular credit cards having magnetic stripes and contact smart cards must come in contact with a reader.


Portable proximity consumer devices may wirelessly exchange data with a proximity device reader from a distance, as long as the user is in wireless range of the proximity device reader. Unfortunately, due to the wireless nature of the portable proximity consumer devices, it is possible that proximity device reader may be used for surreptitious interrogation of the portable proximity consumer device by intercepting the portable proximity electronic device's communications. In addition, it is conceivable that a proximity accepting device may be developed or modified to enhance its power and sensitivity and thereby increase its ability to interrogate with and intercept signals from the portable proximity consumer devices from a greater distance than specified in standards used for portable proximity consumer devices.


Theft of sensitive information using wireless interrogation or interception of communications from portable proximity consumer devices is a major concern for consumers and businesses alike. Unfortunately, given the sophistication of the wireless interrogation equipment and the nature of wireless signals, it is easy for wireless interrogation to occur at virtually any time and place. Once the victim of the wireless interrogation discovers that they had sensitive information stolen, it is often too late to discover where the theft took place. The victim must then deal with the consequences and hassle of correcting the unauthorized access and possible uses of the information.


In response to such risk, many payment service providers have instigated safeguards for protecting purchases from fraudulent attacks, for example, by employing encryption technologies to encrypt the primary account number and other data associated with account transactions. Encryption generally involves encrypting transaction data on one end of a transmission with a key, and then regenerating the original transaction data by decrypting the encrypted data received with the same key on the other end of the transmission. While encryption technologies have proven to be highly effective in preventing information theft, implementing or upgrading to the latest encryption technology often requires upgrades by the end user's of payment processing systems. Due to the cost, time, and risk of potential business interruption (e.g., loss of sales), many merchants, for example, resist making necessary upgrades to their procedures and systems to implement such safeguards. Therefore, such safeguards have had limited success as they are generally expensive to implement, can be overcome, and have not been fully accepted by the credit card industry, merchants, payment processors, etc.


Therefore, what is needed is a cost effective device and method that integrates easily with exiting payment processing systems and prevents an unauthorized user from using data wirelessly interrogated or intercepted from a portable proximity consumer devices.


BRIEF SUMMARY OF THE INVENTION

Embodiments of the present invention provide an apparatus and method for conducting financial transactions using secured account numbers from portable proximity consumer devices.


Embodiments of the invention include the use of “secured account numbers”. These may include “ghost” account numbers. A ghost account number can be one that is related to a person's real account number.


In one embodiment, the present invention provides a method including receiving an authorization request message which includes a secured account number. The secured account number is associated with a real account number. In this embodiment, the authorization request message originates from a transaction that results from a wireless based interaction between a portable proximity consumer devices including a wireless communication module and a memory pre-loaded with the secured account number and a proximity reader device including a second wireless communication module. The secured account number is wirelessly transmitted from the portable proximity consumer device to the proximity reader device. The secured account number may then be transmitted to a server computer operated by an acquirer, payment processing system, and/or issuer. After the secured account number is received by the server computer, the real account number is determined. Once the real account number is determined, the issuer, for example, may proceed with its usual transaction authorization methods and processes. The issuer may then send an authorization response message back to the proximity reader device to inform the consumer that the transaction is or is not authorized.


In another embodiment, the present invention provides a portable proximity consumer device for performing contactless transactions. The portable proximity consumer device includes a first antenna, a first memory including a secured account number coupled to the first antenna, and a second memory wherein the second memory comprising a real account number, wherein the real account number is associated with the secured account number.


In another embodiment, the present invention provides a system for performing payment transactions. The system includes a payment processing system capable of converting a secured account number to a user's real account number. In response to the payment processing system receiving a transaction authorization request comprising the secured account number, the payment processing system determines the user's real account number associated with the secured account number, and verifies that the transaction authorization request was associated with a wireless payment transaction.


These and other embodiments of the invention are described in further detail below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a high-level block diagram illustrating one embodiment of a transaction processing system in accordance with embodiments of the invention;



FIG. 2 is a high-level block diagram illustrating one embodiment of a data processing circuit for a portable proximity consumer device in accordance with embodiments of the invention;



FIG. 3 is a high-level flow diagram illustrating one embodiment of a method of performing a secured account number transaction process in accordance with embodiments of the invention; and



FIG. 4 is a high-level flow diagram illustrating one embodiment of a method of performing a transaction process involving a wireless based transmission of a secured account number from a portable proximity consumer device to a proximity device reader in accordance with embodiments of the invention.





DETAILED DESCRIPTION

Embodiments of the invention are directed to the use of a secured account number preloaded onto a portable proximity consumer device. Portable proximity consumer devices may be any portable consumer device such as a contactless smart debit/credit card, contact chip enabled debit/credit card, a PDA, mobile phone, and the like, capable of wireless transmission of a secured account number, in lieu of a user's primary account number (PAN) or a user's real account number. As described herein, the term “proximate” may be used interchangeably with terms such as contactless relating to transactions wirelessly communicated between devices proximate to one another.


Secured account numbers may include “ghost” account numbers. In one embodiment, a ghost account number can be one that is related to a person's real account number. The secured account number may be considered an account number capable of resembling a user's real account number (e.g., a real PAN). For example, if a user's real account number contains nineteen digits, the secured account number may also contain nineteen digits. It is contemplated that the secured account number may be of any length as long as it resembles a real account number, such as a credit card number, debit card number, gift card number, and the like. For example, the secured account number may resemble a gift card number that is twenty one digits in length, when the user's real account number is nineteen digits long. The secured account number may also be a static number. The term “static” means that the secured account number does not have to change between transactions, but may change when the user changes accounts, the user's real account number expires, the portable proximity consumer device is lost or stolen, etc. The secured account number may also be described using terms such as bogus, fake, decoy, substitute, and the like, which signify an alphanumeric sequence that is used in place of a user's real account number to perform transactions.


In embodiments of the invention, the secured account number may be preloaded into a first memory in a portable proximity consumer device, while the user's real account number is stored in a second memory in the portable proximity consumer device. The first and second memories may use different data storage technologies. For example, the first memory may include a memory chip, and the second memory may be in the form of a magnetic stripe.


The portable proximity consumer device can operate in a variety of wireless transmission modes such as a contactless mode or an infrared mode, RF mode (i.e., Radio Frequency), and the like, and optionally may be operated in a contact mode such as through a hardwired communication interface. The secured account number is used in wireless transactions. The user's regular account number is used and transmitted when the portable proximity consumer device is used in a contact mode, or when the consumer performs a direct entry transaction (e.g., entering a real account number onto a Web form to purchase goods on the Internet).


Put another way, the secured account number is not used for contact transactions or direct entry transactions. For example, in a non-wireless transaction, when the secured account number is entered onto a Web form via an Internet merchant portal, the transaction will not be unauthorized. This is useful if someone (e.g., a thief) surreptitiously intercepts the secured account number during a contactless purchase transaction and obtains the secured account number. Because the secured account number is configured to resemble a real account number, it will deceive the unauthorized user into believing that it is an operable account number. However, if the unauthorized user enters the secured account number onto a Web form to conduct a transaction, the transaction is not authorized by the issuer, unless, for example, the issuer is using the transaction as a means to catch the unauthorized user. Furthermore, the secured account number is configured such that unauthorized users may not retrieve the real account number for use in fraudulent transactions, without access to a database configured to keep the real account number secret from unauthorized access. As will be explained in further detail below, this is advantageous as it can make it easier to detect an unauthorized transaction and discover potential fraud. In addition, the secured account number does not provide sufficient information to route the transaction to the appropriate issuer since the secured account does not provide a valid transaction path number (e.g., bank identification number). Thus, the present invention creates multiple challenges to prevent the transaction that the thief tries to conduct from being authorized.


The portable proximity consumer devices according to embodiments of the invention can be used with authorized wireless interrogation devices (e.g., authorized proximity reader devices) that can also have wireless communication and transmission modules (e.g., receiver, transceiver, etc.). Such authorized interrogation devices may be present at point-of-sale (POS) terminals, ATM (automatic teller machines), and the like. Such interrogation devices are well known in the art. The portable proximity consumer devices according to embodiments of the invention may operate with any number of such authorized wireless interrogation devices using a variety of operating standards. For example, such a standard may be the Europay-Mastercard-Visa (EMV) standard started by a working group created in 1993 by the world's three main payment organizations: EUROPAY (EPI), MASTERCARD (MCI) and VISA.


As noted above and below, an exemplary portable proximity consumer device may include a memory such as a memory chip and/or a microprocessor. Either may be operationally coupled to the communication and/or transmission modules in the portable proximity consumer device. The memory could be in the form of a memory chip or could be wired logic. The information in the memory may include information such as a user's bank account information, secured account number, credit or debit account number information, account balance information, consumer information, etc.


In some embodiments, during a process for authorizing an electronic payment transaction, the secured account number is wirelessly transmitted from a portable proximity consumer device to the proximity reader device performing the transaction, such as for instance, a contactless smart card transaction terminal. The secured account number is then transmitted from the contactless smart card transaction terminal at a merchant, to the merchant's acquirer, to a payment processing system, and then to the issuer. In one embodiment, one or more computational apparatuses at any one of these entities may be used to convert the secured account number into the user's real account number so that the issuer can respond to a submitted authorization request message.


In embodiments of the invention, an authorization request message for a transaction is created after a consumer purchases a good or service at a POS terminal using a portable proximity consumer device such as a credit or debit card. The authorization request message may be sent from the POS terminal located at a merchant to the merchant's acquirer, to a payment processing system, and then to an issuer.


A “merchant” in embodiments of the invention can have any suitable characteristics. A merchant may include entities such as corporations, sole proprietorships, non-profit organizations, or a specific group of such entities. Examples of merchants include restaurants, theaters, gasoline and fuel stores, grocery stores, clothing retailers, department stores, etc. The merchant has one or more POS terminals that can interact with the portable proximity consumer devices. Any suitable POS terminal may be used including card readers as described herein. The card readers may include any suitable contact or proximity mode of operation. For example, exemplary card readers can include RF (radio frequency) antennas, magnetic stripe readers, etc. to interact with the portable proximity consumer devices.


An “acquirer” is typically a business entity, e.g., a commercial bank that has a business relationship with a particular merchant. An “issuer” is typically a business entity (e.g., a bank) that issues a portable proximity consumer device such as a credit or debit card to a consumer. Some entities such as American Express perform both issuer and acquirer functions. Embodiments of the invention encompass such single entity issuer-acquirers.


An “authorization request message” can include a request for authorization to conduct an electronic payment transaction or some other type of activity. It may include one or more of an account holder's payment account number, currency code, sale amount, merchant transaction stamp, acceptor city, acceptor state/country, POS transaction number, POS transaction type, etc. Optionally, an authorization request message may be protected using a secure encryption method—e.g., 128-bit SSL or equivalent—in order to prevent data from being compromised. In other embodiments, an “authorization request message” may include a request for permission to enter a predetermined location (e.g., as used for wireless access badges).


Typically, an electronic payment transaction is authorized if the consumer conducting the transaction has sufficient funds or credit to conduct the transaction. Conversely, if there are insufficient funds or credit in the consumer's account, or if the consumer's portable proximity consumer device is on a blacklist (e.g., it is indicated as stolen), then an electronic payment transaction may not be authorized (e.g., declined).



FIG. 1 is a high-level block diagram illustrating one embodiment of a transaction processing system 100. The transaction processing system 100 includes a merchant 112, an acquirer 116, a payment processing system 120, and an account number issuer 130.


The transaction processing system 100 also includes a proximity reader device 110 capable of wirelessly receiving secured account numbers, and an optional contact reader 114, capable of receiving real account numbers from a portable proximity consumer device 102 such as a credit or debit smart card. The proximity reader device 110 and/or the contact reader 114 can be located at the merchant 112, or may be simply operated by the merchant 112.


The portable proximity consumer device 102 according to embodiments of the invention may be in any suitable form. For example, the portable proximity consumer device 102 can be hand-held and compact so that it can fit into a consumer's wallet and/or pocket (e.g., pocket-sized). For example, the portable proximity consumer device 102 may include smart cards, ordinary credit or debit cards (with a magnetic stripe and without a microprocessor), a keychain device, key Fob, etc. Other examples of contactless portable proximity consumer devices 102 include cellular phones, personal digital assistants (PDAs), pagers, payment cards, security cards, access cards, smart media, transponders, and the like. Such portable proximity consumer devices 102 can have one or more antennas 106 coupled to wireless transmission devices that can transmit and/or receive signals and data through a wireless communication medium.


The payment processing system 120 may include data processing subsystems, networks, and operations used to support and deliver authorization services, exception file services, and clearing and settlement services. An exemplary payment processing system 120 may include VisaNet™. Payment processing systems such as VisaNet™ are able to process credit card transactions, debit card transactions, and other types of commercial transactions. VisaNet™, in particular, includes a single message system (SMS) that automatically authorizes and provides enough information to automatically clear and settle a financial transaction, and/or a VIP system (Visa Integrated Payments system) which processes authorization requests and a Base II system, which performs clearing and settlement services.


The payment processing system 120 may include a server computer. A server computer is typically a powerful computer or cluster of computers. For example, the server computer can be a large mainframe, a minicomputer cluster, or a group of servers functioning as a unit. In one example, the server computer may be a database server coupled to a web server. The payment processing system 120 may use any suitable wired or wireless network, including the Internet.


In one embodiment, the proximity reader device 110 is capable of wirelessly receiving a secured account number from a portable proximity consumer device 102. For example, as illustrated in FIG. 1, the secured account number “2468 0246 8024 1214” may be wirelessly transmitted from an antenna 106 of the portable proximity consumer device 102 to an antenna 109 coupled to a wireless transceiver of the proximity reader device 110 during a financial transaction by a consumer (e.g. user of a portable proximity consumer device). As described above, the contact reader 114 is capable of receiving a user's real account number from the portable proximity consumer device 102. For example, for a credit/debit smart card, the contact reader 114 is capable of retrieving information from a magnetic stripe, or by hand (e.g., by an operator of the contact reader 114). Illustratively, the contact reader 114 is capable of reading the user's real account number “1234 5678 9012 1214” from the magnetic stripe 108, and/or an operator may enter the user's real account number “1234 5678 9012 1214” into the contact reader 114 by hand.


The secured account number may be derived from the user's real account number using any suitable algorithm. For example, one exemplary algorithm multiplies the first twelve numbers of the user's real card number by two and then takes the last digit of the new number, e.g., 1234 5678 9012 1214, to convert the user's real account number to a secured account number, e.g. 2468 0246 8024 1214. In this example, the algorithm may leave a single digit in each digit location. As illustrated above, when the number five is multiplied by two, the algorithm drops the resultant one of the “10” to leave the zero. Of course, other algorithms may be used. Any such algorithms preferably leave the last four digits of the real account number unaltered. Typical credit card receipts mask the first series of numbers of a user's account number, but exposes the last four digits. By not altering the last four digits, the consumer does not know whether a secured account number or the real account number is used in a particular transaction. This is advantageous, as it avoids confusion on the part of the consumer and may deter fraudulent activities related to the retrieval of receipts.


The resultant secured account number may be stored in a database along with the real account number in a lookup table with other corresponding secured and real account numbers. The database may be accessible to the acquirer 116, payment processing system 120, and/or the issuer 130. The database is preferably accessible to at least one of the payment processing system 120 and/or the issuer 130, since the issuer 130 authorizes or does not authorize the user's transaction.


The secured account numbers may be preloaded into the user's portable proximity consumer device 102. The one or more algorithms may be used at any time, e.g., prior to manufacturing, during the manufacturing, or during processing of the consumer portable proximity device 102, to generate the secured account numbers. For example, the algorithm may be used when generating real account numbers, during production of the portable proximity consumer device 102, during account number activation, or when preparing to preload the secured account numbers into the portable proximity consumer devices 102, etc.


It is desirable to “preload” the secured account number into a memory in the portable proximity consumer device 102. As noted above, encryption techniques are known. However, such encryption techniques require the use of lengthy computer programs that need to be stored on the portable proximity consumer device. Such lengthy computer programs occupy valuable space in the memory of the portable proximity consumer device 102. By using a preloaded secured account number that resembles a real account number, a relatively small amount of space is used in the memory of the portable proximity consumer device 102. Additionally, the software and the hardware associated with the proximity reader device 110 and/or the contact card reader 114 need not be altered since the secured account number has the same form as the real account number.


In one operational embodiment, during a consumer purchase transaction, an authorization request message including a secured account number is wirelessly transmitted from the portable proximity consumer device 102 to the proximity reader device 110. For example, a consumer can purchase an article of clothing with a contactless smart card. The authorization request message including the secured account number and a POS transaction type identifier (indicative that the transaction was a wireless type of proximity transaction,) is received by the merchant 112 and is transmitted to the acquirer 116. The acquirer 116 then transmits, among other information, the authorization request message including the secured account number, POS transaction type identifier to the payment processing system 120 for processing thereof.


In one embodiment, the POS transaction type identifier may be an alphanumeric indicator, symbol, and the like. It may indicate that transaction that was conducted was a proximity financial transaction, and was not a contact-type transaction. For example, the POS transaction type identifier may be a conventional number used in the credit card industry such as “POS entry code 91”, or could be a modified version of a standard indicator such as a modified international standards organization (ISO) indicator. After a server computer at the payment processing system 120 receives the authorization request message, the payment processing system 120 identifies the transmitted account number as a secured account number and uses the POS transaction type identifier to identify the transaction as a wireless transaction. If the secured account number is valid and if the transaction is identified as a wireless transaction, then the payment processing system 120 converts the secured account number to the user's real account number. The real account number is then transmitted to the issuer 130 for payment authorization.


The real account number includes the real account number's BIN (bank identification number) so the transaction processing system 120 knows which particular issuer is supposed to receive the authorization request message. Generally, a BIN corresponds to the first six digits of the user's real account number (e.g., a credit or debit account number). These first six digits identify which network the portable proximity consumer device 102 is associated with as well as which issuer 130 issued the portable proximity consumer device 102. If the transaction is authorized by the issuer 130, the payment processing system 120 transmits an authorization response message along with the secured account number (or real account number) back to the acquirer 116. The acquirer 116 sends the authorization response message to the merchant 112. A printer (not shown) at the merchant 112 may then print a receipt showing only the last four digits of the secured account number, e.g., ***********1214. As noted above, since the last four digits are the same for both the secured account number and the user's real account number, the user is unaware of any account number differences between the secured account number and the user's real account number. While four digits are illustrated, one skilled in the art will recognize that any alphanumeric indicator, symbol, or indicia, common to both the secured account number and the user's real account number may be used within the scope of the present invention. For example, in some embodiments, the secured account number and the real account number may have two or more common numbers.


Two software engines are illustrated in FIG. 1. They include a secured account engine 122 and an optional fraud detection engine 124. Various other software engines may also be included in the system to perform the methods according to embodiments of the invention. Although the two software engines 122, 124 are shown as being directly accessible to the payment processing system 120, they may also or alternatively be directly accessible to the proximity reader device 110, the merchant 112, the acquirer 116, and the issuer 130. The secured account engine 122 is preferably directly accessible or within the payment processing system 120. If the secured account number is converted at the payment processing system 120, the payment processing system 120 will be able to route the authorization request message to the appropriate issuer 130. In addition, if the software for converting the secured account number into the real account number is at the payment processing system 120, expensive equipment upgrades need not occur at the acquirer 116 or merchant 112.


When a secured account number is received by the secured account engine 122, the secured account engine 122 converts the secured account number to the user's real account number. In one embodiment, the secured account engine 122 compares the secured account number to a plurality of secured account numbers to find the user's real account number (e.g., in a lookup table). Alternatively, one or more algorithms may be operated to convert the secured account number to the user's real account number. A suitable algorithm may be the reverse program of the algorithm used to convert the real account number to the secured account number (as described above).


If the payment processing system 120 receives an authorization request message including a secured account number that does not have the transaction type identifier (e.g., POS 91), or other indicator, indicating a proximity transaction, then the optional fraud detection engine 124 may be capable of one or more proactive and non-proactive responses. For example, one non-proactive response is simply to deny the transaction. An authorization response message may be sent from the issuer 130 to the merchant 112 that indicates that the transaction is not authorized. One example of a proactive response is to alert legal authorities that a fraudulent activity is taking place. In one embodiment, when the secured account number is received by the payment processing system 120 without the POS proximity transaction indicator, then the issuer 130 is notified. The issuer 130 checks the user's real account for unusual activity (e.g., large purchases when a consumer usually does not make large purchases). If unusual activity is detected, then the payment processing system 120 and/or the issuer 130 may suspend the secured account number until verification is made that the secured account number was not stolen. In this case, the use of the secured account number and/or the real account number can be temporarily suspended pending an investigation. If it is determined that the user's secured account number was obtained and used by an unauthorized person, then the payment processing system 120 may reissue a new portable proximity consumer device to the real user. For example, similar to conventional procedures for lost or stolen account numbers, part of the verification process may be for the payment processing system 120 to issue an alert to the merchant 112 to keep the portable proximity consumer device 102, or to have the user contact the issuer 130 to verify the unauthorized transaction.



FIG. 2 is a high-level block diagram illustrating one embodiment of a data processing circuit 104 for use with a portable proximity consumer device 102. The data processing circuit 104 may be virtually any type of integrated circuit and/or data processing system such as a microprocessor, field programmable gate array (FPGA), application specific integrated circuit (ASIC), and the like, that may be configured to perform embodiments of the present invention to advantage. In one embodiment, data processing circuit 104 includes a Central Processing Unit (CPU) 202, a wireless communication module or transceiver circuit 206, and a first memory 210, and an optional second memory 220 in communication therewith via a bus 208. CPU 202 may be under the control of an operating system that may be disposed in first memory 210. Virtually any operating system or portion thereof supporting the configuration functions disclosed herein may be used. In one embodiment, CPU 202 may be hardwired logic circuitry, and the like, adapted to operate data processing circuit 104.


The wireless communication module 206 may be designed to receive wireless interrogation signals and transmit communication signals to the proximity reader device 110 via the wireless transmission module 106. Any number of wireless communication devices well known in the art may be used to accomplish the reception and transmission of data between the proximity reader device 110 and the portable proximity consumer device 102. For example, the wireless communication module 206 may be formed from a wireless receiver in combination with a wireless transmitter. The wireless communication module 206 may use any viable communication link such as ISO 14443, Bluetooth, 802.11x, cellular network, RF, and the like. In other words, virtually any wireless transceiver system that is sized accordingly and capable of communicating with contactless reader 110 may be used.


The first memory 210 can be a non-volatile or volatile memory such as a random access memory that has sufficient space to hold the necessary programming and data structures of the invention. While first memory 210 is shown as a single entity, it should be understood that first memory 210 may in fact comprise a plurality of modules, and that first memory 210 may exist at multiple levels, from high speed registers and caches to lower speed but larger direct random access memory (DRAM) chips. In one embodiment, first memory 210 may include a secured account program 212 and secured account number storage 214. The secured account program 212 may use any one of a number of different programming languages. For example, the program code can be written in PLC code (e.g., ladder logic), a higher-level language such as C, C++, Java, or a number of other languages. While secured account program 212 may be a standalone program, it is contemplated that secured account program 212 may be combined with other programs.


The secured account program 212 when executed on CPU 202, provides a secured account number to the proximity reader device 110 from the secured account number storage 214. In one embodiment, the secured account program 212 is configured to retrieve a secured account number from the secured account storage 214. The secured account program 212 instructs the CPU 202 to wirelessly transmit the secured account number, among other data such as available credit, user data, and the like, to the proximity reader device 110 via the wireless communication module 206.


In one embodiment, data processing circuit 104 may optionally include a second memory 220. The second memory 220 is capable of storing the user's real account number in a real account number storage 222. Preferably, in the case were data processing circuit 104 stores both the secured account number and the user's real account number, the user's real account number is accessible only via a physical contact connection. For example, the user's real account number may be accessed via an electrical connection with data processing circuit 104. In an alternate embodiment, similar to conventional credit/debit cards the user's real account number may be encoded onto the magnetic stripe 108. In this configuration, the user's real account number is accessible using conventional contact readers 114 capable of reading magnetic stripes.


In preferred embodiments, the first and second memories use different data storage technologies. For example, the first and second memories may be selected from optical, magnetic, or electronic storage media, and may be different. For example, the first memory may be use an electronic storage medium (e.g., a memory chip), while the second memory may use a magnetic storage medium (e.g., a magnetic stripe 108).



FIG. 3 is a high-level flow diagram illustrating one embodiment of a method 300 of performing a secured account number transaction process. The method 300 may be entered into at step 301 when, for example, a proximity reader device 110 wirelessly interrogates a portable proximity consumer device 102. At step 302, a user initiates the creation of an authorization request message to, for example, purchase goods or services from a merchant 112 (e.g., the user is attempting to purchase a piece of clothing using the portable proximity consumer device 102), by passing the portable proximity consumer device 102 close to the proximity reader device 110. The proximity reader device 110 wirelessly interrogates the portable proximity consumer device 102. At step 304, the portable proximity consumer device 102 responds to valid interrogation protocols (e.g., fetch account number instructions, fetch user ID instructions, etc.) by wirelessly transmitting information to the proximity reader device 110. The information may include a secured account number along with other data, such as an expiration date of the user's account. The proximity reader device 110 then creates an authorization request message including the secured account number, merchant ID, POS transaction type identifier, and the purchase amount, and it is transmitted from the merchant 112 to the acquirer 116 at step 304. For example, the merchant 112 may transmit the secured account number, the merchant ID, the POS transaction type, the user's identification, the expiration date, and the like to the acquirer 116. At step 306, the acquirer 116 transmits the information received from the acquirer 116 to the payment processing system 120.


At step 308, the secured account number is converted to the user's real account number. For example, as described above, when a secured account number is received by the payment processing system 120, a secured account engine 122 converts the secured account number to the user's real account number. In one embodiment, the secured account engine 122 may search a database of secured account numbers to find the user's real account number. Alternatively, a conversion algorithm may be used to convert the secured account number to the user's real account number.


If the real account number is not found, at step 309, the method 300 proceeds to step 316 and, for example, issues a transaction invalid protocol to the payment processing system 120. For example, if the real account number is not found, the payment processing system 120 may alert the issuer 130, the acquirer 116, and/or the merchant 112 that the transaction is not authorized. Conceivably, after attempting to use the contactless authorization, the user, being unaware of the secured account number, may reattempt the transaction using the user's real account number via entry by an operator or by using a contact reader 114.


At step 310, if the secured account number is valid, the authorization request message including the user's real account number, the merchant ID, the POS transaction type, and the purchase amount along with other transaction data to the issuer 130. For example, the payment processing system 120 may transmit the user's real account number, the secured account number, and the POS transaction type, along with other transaction data to the issuer 130. At step 312 if the transaction is not authorized, e.g. the user does not have sufficient credit for the purchase, the method 300 proceeds to step 316. However, if the transaction is authorized, e.g., the issuer 130 has authorized the transaction, the method 300 proceeds to step 313. Then at step 313, an authorization response message is sent to the merchant 112 informing the merchant 112 and the user whether or not the transaction is authorized. At step 314, the transaction is cleared and settled using conventional procedures. For example, at the end of the day, a normal clearing and settlement process can take place at step 314. At step 318 the method 300 ends.



FIG. 4 is a high-level flow diagram illustrating one embodiment of a method 400 of performing a financial transaction involving a secured account number. The method 400 may be entered into at step 401 when, for example, when a merchant 112 transmits a purchase authorization request to a payment processing system 120. At step 402, a secured account number is received. For example, a payment processing system 120 receives a secured account number and POS transaction type from an acquirer 116. At step 404, the method 400 determines if the secured account number was received from a portable proximity consumer device 102 wirelessly communicating with a proximity reader device 110. In one embodiment, the method 400 uses a POS transaction type identifier to determine if the secured account number was received either using a proximity transaction, or was received via another means, such as an Internet merchant portal, or by hand entry into terminal of a proximity reader device 110 or a contact reader 114, and the like. If the secured account number was not received via a proximity reader device 110, then the method 400 proceeds to step 406 and initiates a fraud protocol. For example, the fraud protocol may be used for tracking the transaction by authorities, instructing the payment processing system 120 to deny the transaction, and/or sending a status report to the issuer indicative of the fact that the secured account number has been acquired by unauthorized users. If at step 404 the method 400 determines that the secured account number and the POS transaction type are correct, the method 400 proceeds to step 408. The method 400 converts the secured account number to the user's real account number at step 408. For example, the payment processing system 120 may perform algorithms to convert the secured account number to the user's real account number some of which are described herein. At step 410 the user's real account number and other verification data such as expiration date and customer identification are transmitted to an issuer 130 for authorization. Optionally, at step 410 the secured account number is also transmitted to the issuer 130. The method 400 ends at step 414.


The method shown in FIG. 4 may be combined with any of the steps in the method shown in FIG. 3. The method may also be conducted by the secured account engine 122, the payment processing system 120, or any other suitable entity.


Any of the above described steps may be embodied as computer code on a computer readable medium. The computer readable medium may reside on one or more computational apparatuses and may use any suitable data storage technology.


The present invention can be implemented in the form of control logic in software or hardware or a combination of both. The control logic may be stored in an information storage medium as a plurality of instructions adapted to direct an information processing device to perform a set of steps disclosed in embodiment of the present invention. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will appreciate other ways and/or methods to implement the present invention.


The above description is illustrative but not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of the disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the pending claims along with their full scope or equivalents.


A recitation of “a”, “an” or “the” is intended to mean “one or more” unless specifically indicated to the contrary.


All patents, patent applications, publications, and descriptions mentioned above are herein incorporated by reference in their entirety for all purposes. None is admitted to be prior art.

Claims
  • 1. A communication device comprising: a processor;a wireless transmission module;one or more storage elements for storing a first account identifier and a second account identifier associated with the first account identifier, the second account identifier and the first account identifier being associated with the same account, whereinthe communication device is programmed to interact with a reader device to conduct a transaction by: determining whether the transaction is a proximity transaction by sensing whether a wireless interrogation signal is being transmitted from the reader device;determining which of the first account identifier and the second account identifier stored on the communication device to provide to the reader device based on whether the transaction is a proximity transaction;and when the transaction is a proximity transaction, operate in a proximity mode by wirelessly transmitting the second account identifier instead of the first account identifier to the reader device via the wireless transmission module; andwhen the transaction is not a proximity transaction, operate in a non-proximity mode by providing the first account identifier to the reader device,wherein non-proximity transactions conducted using the second account identifier are denied.
  • 2. The communication device of claim 1, wherein the second account identifier is dedicated for use in proximity transactions.
  • 3. The communication device of claim 1, wherein the one or more storage elements include a first storage element and a second storage element that uses a different data storage technology than the first storage element.
  • 4. The communication device of claim 1, wherein the one or more storage elements include a magnetic storage for storing the first account identifier.
  • 5. The communication device of claim 1, wherein the one or more storage elements include a memory accessible by the processor for storing at least the second account identifier.
  • 6. The communication device of claim 1, wherein the communication device is in the form of a card.
  • 7. The communication device of claim 1, wherein a last plurality of digits of the second account identifier is the same as the last plurality of digits of the first account identifier.
  • 8. The communication device of claim 1, wherein the second account identifier has a different length than the first account identifier.
  • 9. The communication device of claim 1, wherein the second account identifier and the first account identifier include a predetermined sequence of characters that is common to both the second account identifier and the first account identifier.
  • 10. The communication device of claim 1, wherein the first account identifier is preloaded onto the communication device.
  • 11. A method for conducting a transaction by a communication device, the method comprising: interacting with a reader device to conduct the transaction by the communication device, the communication device including a processor and one or more storage elements for storing a first account identifier and a second account identifier associated with the first account identifier, the second account identifier and the first account identifier being associated with the same account;determining, by the communication device, whether the transaction is a proximity transaction by sensing whether a wireless interrogation signal is being transmitted from the reader device;determining which of the first account identifier and the second account identifier stored on the communication device to provide to the reader device based on whether the transaction is a proximity transaction;when the transaction is a proximity transaction, operating the communication device in a proximity mode by wirelessly transmitting the second account identifier instead of the first account identifier to the reader device; andwhen the transaction is not a proximity transaction, operating the communication device in a non-proximity mode by providing the first account identifier stored in a magnetic stripe to the reader device,wherein non-proximity transactions conducted using the second account identifier are denied.
  • 12. The method of claim 11, wherein the second account identifier is dedicated for use in proximity transactions.
  • 13. The method of claim 11, wherein the first account identifier is dedicated for use in non-proximity transactions.
  • 14. The method of claim 11, wherein the one or more storage elements includes a magnetic storage for storing the first account identifier.
  • 15. The method of claim 11, wherein the one or more storage elements include a memory accessible by the processor for storing at least the second account identifier.
  • 16. The method of claim 11, wherein the first account identifier is a user's credit card account number, bank account number, or debit card account number.
  • 17. The method of claim 11, wherein an authorization request message generated in response to the interaction between the reader device and the communication device includes a transaction type identifier indicating whether the transaction is a proximity transaction.
  • 18. The method of claim 11, wherein a last plurality of digits of the second account identifier is the same as the last plurality of digits of the first account identifier.
  • 19. The method of claim 11, wherein the second account identifier has a different length than the first account identifier.
  • 20. The method of claim 11, wherein the second account identifier and the first account identifier include a predetermined sequence of characters that is common to both the second account identifier and the first account identifier.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/275,718 filed May 12, 2014, entitled “System and Method for Secured Account Numbers in Proximity Devices,” which is a divisional of U.S. patent application Ser. No. 11/398,887 filed Apr. 5, 2006, entitled “System and Method for Secured Account Numbers in Proximity Devices,” which claims priority to U.S. Provisional Patent Application No. 60/714,635 filed Sep. 6, 2005, entitled “System And Method Using Ghost Account Number,” the entireties of which are hereby incorporated by reference for all purposes.

US Referenced Citations (617)
Number Name Date Kind
3594727 Braun Jul 1971 A
5163098 Dahbura Nov 1992 A
5276311 Hennige Jan 1994 A
5280527 Gullman Jan 1994 A
5585787 Wallerstein Dec 1996 A
5613012 Hoffman Mar 1997 A
5781438 Lee Jul 1998 A
5877482 Reilly Mar 1999 A
5883810 Franklin Mar 1999 A
5930767 Reber Jul 1999 A
5953710 Fleming Sep 1999 A
5955961 Wallerstein Sep 1999 A
5956699 Wong Sep 1999 A
5988497 Wallace Nov 1999 A
6000832 Franklin Dec 1999 A
6014635 Harris Jan 2000 A
6024286 Bradley et al. Feb 2000 A
6044360 Picciallo Mar 2000 A
6076073 Pieterse et al. Jun 2000 A
6163771 Walker Dec 2000 A
6227447 Campisano May 2001 B1
6236981 Hill May 2001 B1
6267292 Walker Jul 2001 B1
6327578 Linehan Dec 2001 B1
6341724 Campisano Jan 2002 B2
6385596 Wiser May 2002 B1
6422462 Cohen Jul 2002 B1
6425523 Shem Ur Jul 2002 B1
6453301 Niwa Sep 2002 B1
6592044 Wong Jul 2003 B1
6636833 Flitcroft Oct 2003 B1
6748367 Lee Jun 2004 B1
6805287 Bishop Oct 2004 B2
6805288 Routhenstein et al. Oct 2004 B2
6857566 Wankmueller Feb 2005 B2
6879965 Fung Apr 2005 B2
6891953 DeMello May 2005 B1
6901387 Wells May 2005 B2
6931382 Laage Aug 2005 B2
6938019 Uzo Aug 2005 B1
6941285 Sarcanin Sep 2005 B2
6980670 Hoffman Dec 2005 B1
6990470 Hogan Jan 2006 B2
6991157 Bishop Jan 2006 B2
7051929 Li May 2006 B2
7069249 Stolfo Jun 2006 B2
7103576 Mann, III Sep 2006 B2
7113930 Eccles Sep 2006 B2
7136835 Flitcroft Nov 2006 B1
7177835 Walker Feb 2007 B1
7177848 Hogan Feb 2007 B2
7194437 Britto Mar 2007 B1
7209561 Shankar et al. Apr 2007 B1
7264154 Harris Sep 2007 B2
7280975 Donner Oct 2007 B1
7287692 Patel Oct 2007 B1
7292999 Hobson Nov 2007 B2
7350230 Forrest Mar 2008 B2
7353382 Labrou Apr 2008 B2
7379919 Hogan May 2008 B2
RE40444 Linehan Jul 2008 E
7415443 Hobson Aug 2008 B2
7444676 Asghari-Kamrani Oct 2008 B1
7469151 Khan Dec 2008 B2
7529934 Fujisawa et al. May 2009 B2
7548889 Bhambri Jun 2009 B2
7567934 Flitcroft Jul 2009 B2
7567936 Peckover Jul 2009 B1
7571139 Giordano Aug 2009 B1
7571142 Flitcroft Aug 2009 B1
7580898 Brown Aug 2009 B2
7584153 Brown Sep 2009 B2
7593896 Flitcroft Sep 2009 B1
7606560 Labrou Oct 2009 B2
7627531 Breck Dec 2009 B2
7627895 Gifford Dec 2009 B2
7650314 Saunders Jan 2010 B1
7685037 Reiners Mar 2010 B2
7702578 Fung Apr 2010 B2
7707120 Dominguez Apr 2010 B2
7712655 Wong May 2010 B2
7734527 Uzo Jun 2010 B2
7735733 Kranzley Jun 2010 B2
7753265 Harris Jul 2010 B2
7770789 Oder, II Aug 2010 B2
7784685 Hopkins, III Aug 2010 B1
7793851 Mullen Sep 2010 B2
7801826 Labrou Sep 2010 B2
7805376 Smith Sep 2010 B2
7805378 Berardi Sep 2010 B2
7818264 Hammad Oct 2010 B2
7828220 Mullen Nov 2010 B2
7835960 Breck Nov 2010 B2
7841523 Oder, II Nov 2010 B2
7841539 Hewton Nov 2010 B2
7844550 Walker Nov 2010 B2
7848980 Carlson Dec 2010 B2
7849020 Johnson Dec 2010 B2
7853529 Walker Dec 2010 B1
7853995 Chow Dec 2010 B2
7865414 Fung Jan 2011 B2
7873579 Hobson Jan 2011 B2
7873580 Hobson Jan 2011 B2
7890393 Talbert Feb 2011 B2
7891563 Oder, II Feb 2011 B2
7896238 Fein Mar 2011 B2
7908216 Davis et al. Mar 2011 B1
7922082 Muscato Apr 2011 B2
7931195 Mullen Apr 2011 B2
7937324 Patterson May 2011 B2
7938318 Fein May 2011 B2
7954705 Mullen Jun 2011 B2
7959076 Hopkins, III Jun 2011 B1
7996288 Stolfo Aug 2011 B1
8025223 Saunders Sep 2011 B2
8046256 Chien Oct 2011 B2
8060448 Jones Nov 2011 B2
8060449 Zhu Nov 2011 B1
8074877 Mullen Dec 2011 B2
8074879 Harris Dec 2011 B2
8082210 Hansen Dec 2011 B2
8095113 Kean Jan 2012 B2
8104679 Brown Jan 2012 B2
RE43157 Bishop Feb 2012 E
8109436 Hopkins, III Feb 2012 B1
8121942 Carlson Feb 2012 B2
8121956 Carlson Feb 2012 B2
8126449 Beenau Feb 2012 B2
8132723 Hogg et al. Mar 2012 B2
8171525 Pelly May 2012 B1
8175973 Davis et al. May 2012 B2
8190523 Patterson May 2012 B2
8196813 Vadhri Jun 2012 B2
8205791 Randazza Jun 2012 B2
8219489 Patterson Jul 2012 B2
8224702 Mengerink Jul 2012 B2
8225385 Chow Jul 2012 B2
8229852 Carlson Jul 2012 B2
8265993 Chien Sep 2012 B2
8280777 Mengerink Oct 2012 B2
8281991 Wentker et al. Oct 2012 B2
8328095 Oder, II Dec 2012 B2
8336088 Raj et al. Dec 2012 B2
8346666 Lindelsee et al. Jan 2013 B2
8376225 Hopkins, III Feb 2013 B1
8380177 Laracey Feb 2013 B2
8387873 Saunders Mar 2013 B2
8401539 Beenau Mar 2013 B2
8401898 Chien Mar 2013 B2
8402555 Grecia Mar 2013 B2
8403211 Brooks Mar 2013 B2
8412623 Moon Apr 2013 B2
8412837 Emigh Apr 2013 B1
8417642 Oren Apr 2013 B2
8447699 Batada May 2013 B2
8453223 Svigals May 2013 B2
8453925 Fisher Jun 2013 B2
8458487 Palgon Jun 2013 B1
8484134 Hobson Jul 2013 B2
8485437 Mullen Jul 2013 B2
8494959 Hathaway Jul 2013 B2
8498908 Mengerink Jul 2013 B2
8504475 Brand et al. Aug 2013 B2
8504478 Saunders Aug 2013 B2
8510816 Quach Aug 2013 B2
8433116 Davis et al. Sep 2013 B2
8528067 Hurry et al. Sep 2013 B2
8533860 Grecia Sep 2013 B1
8538845 Liberty Sep 2013 B2
8555079 Shablygin Oct 2013 B2
8566168 Bierbaum Oct 2013 B1
8567670 Stanfield Oct 2013 B2
8571939 Lindsey Oct 2013 B2
8577336 Mechaley, Jr. Nov 2013 B2
8577803 Chatterjee Nov 2013 B2
8577813 Weiss Nov 2013 B2
8578176 Mattsson Nov 2013 B2
8583494 Fisher Nov 2013 B2
8584251 Mcguire Nov 2013 B2
8589237 Fisher Nov 2013 B2
8589271 Evans Nov 2013 B2
8589291 Carlson Nov 2013 B2
8595098 Starai Nov 2013 B2
8595812 Bomar Nov 2013 B2
8595850 Spies Nov 2013 B2
8606638 Dragt Dec 2013 B2
8606700 Carlson Dec 2013 B2
8606720 Baker Dec 2013 B1
8615468 Varadarajan Dec 2013 B2
8620754 Fisher Dec 2013 B2
8635157 Smith Jan 2014 B2
8646059 Von Behren Feb 2014 B1
8651374 Brabson Feb 2014 B2
8656180 Shablygin Feb 2014 B2
8751391 Freund Jun 2014 B2
8751642 Vargas Jun 2014 B2
8762263 Gauthier et al. Jun 2014 B2
8793186 Patterson Jul 2014 B2
8838982 Carlson et al. Sep 2014 B2
8856539 Weiss Oct 2014 B2
8887308 Grecia Nov 2014 B2
9065643 Hurry et al. Jun 2015 B2
9070129 Sheets et al. Jun 2015 B2
9100826 Weiss Aug 2015 B2
9160741 Wentker et al. Oct 2015 B2
9229964 Stevelinck Jan 2016 B2
9245267 Singh Jan 2016 B2
9249241 Dai et al. Feb 2016 B2
9256871 Anderson et al. Feb 2016 B2
9280765 Hammad Mar 2016 B2
9530137 Weiss Dec 2016 B2
9646303 Karpenko May 2017 B2
9680942 Dimmick Jun 2017 B2
20010029485 Brody Oct 2001 A1
20010034720 Armes Oct 2001 A1
20010054003 Chien Dec 2001 A1
20020007320 Hogan Jan 2002 A1
20020016749 Borecki Feb 2002 A1
20020029193 Ranjan Mar 2002 A1
20020035548 Hogan Mar 2002 A1
20020062249 Iannacci May 2002 A1
20020073045 Rubin Jun 2002 A1
20020116341 Hogan Aug 2002 A1
20020133467 Hobson Sep 2002 A1
20020147913 Lun Yip Oct 2002 A1
20020169720 Wilson Nov 2002 A1
20030028481 Flitcroft Feb 2003 A1
20030101134 Liu et al. May 2003 A1
20030130955 Hawthorne Jul 2003 A1
20030191709 Elston Oct 2003 A1
20030191945 Keech Oct 2003 A1
20030220876 Burger et al. Nov 2003 A1
20040010462 Moon Jan 2004 A1
20040050928 Bishop Mar 2004 A1
20040059682 Hasumi Mar 2004 A1
20040068472 Sahota et al. Apr 2004 A1
20040093281 Silverstein May 2004 A1
20040139008 Mascavage Jul 2004 A1
20040139044 Rehwald Jul 2004 A1
20040143532 Lee Jul 2004 A1
20040158532 Breck Aug 2004 A1
20040210449 Breck Oct 2004 A1
20040210498 Freund Oct 2004 A1
20040232225 Bishop Nov 2004 A1
20040236632 Maritzen Nov 2004 A1
20040260646 Berardi Dec 2004 A1
20050033686 Peart et al. Feb 2005 A1
20050037735 Coutts Feb 2005 A1
20050038736 Saunders Feb 2005 A1
20050080730 Sorrentino Apr 2005 A1
20050108178 York May 2005 A1
20050119978 Ates Jun 2005 A1
20050127164 Wankmueller Jun 2005 A1
20050177496 Blagg et al. Aug 2005 A1
20050197945 Harper Sep 2005 A1
20050199709 Linlor Sep 2005 A1
20050246293 Ong Nov 2005 A1
20050269401 Spitzer Dec 2005 A1
20050269402 Spitzer Dec 2005 A1
20060105742 Kim May 2006 A1
20060213972 Kelley Sep 2006 A1
20060235795 Johnson Oct 2006 A1
20060237528 Bishop Oct 2006 A1
20060278704 Saunders Dec 2006 A1
20070107044 Yuen May 2007 A1
20070129955 Dalmia Jun 2007 A1
20070136193 Starr Jun 2007 A1
20070136211 Brown Jun 2007 A1
20070170247 Friedman Jul 2007 A1
20070179885 Bird Aug 2007 A1
20070208671 Brown Sep 2007 A1
20070245414 Chan Oct 2007 A1
20070288377 Shaked Dec 2007 A1
20070291995 Rivera Dec 2007 A1
20080015988 Brown Jan 2008 A1
20080029607 Mullen Feb 2008 A1
20080035738 Mullen Feb 2008 A1
20080052226 Agarwal Feb 2008 A1
20080054068 Mullen Mar 2008 A1
20080054079 Mullen Mar 2008 A1
20080054081 Mullen Mar 2008 A1
20080065554 Hogan Mar 2008 A1
20080065555 Mullen Mar 2008 A1
20080201264 Brown Aug 2008 A1
20080201265 Hewton Aug 2008 A1
20080228646 Myers Sep 2008 A1
20080243702 Hart Oct 2008 A1
20080245855 Fein Oct 2008 A1
20080245861 Fein Oct 2008 A1
20080283591 Oder, II Nov 2008 A1
20080302869 Mullen Dec 2008 A1
20080302876 Mullen Dec 2008 A1
20080313264 Pestoni Dec 2008 A1
20090006262 Brown Jan 2009 A1
20090010488 Matsuoka Jan 2009 A1
20090037333 Flitcroft Feb 2009 A1
20090037388 Cooper Feb 2009 A1
20090043702 Bennett Feb 2009 A1
20090048971 Hathaway Feb 2009 A1
20090106112 Dalmia Apr 2009 A1
20090106160 Skowronek Apr 2009 A1
20090134217 Flitcroft May 2009 A1
20090157555 Biffle Jun 2009 A1
20090159673 Mullen Jun 2009 A1
20090159700 Mullen Jun 2009 A1
20090159707 Mullen Jun 2009 A1
20090173782 Muscato Jul 2009 A1
20090200371 Kean Aug 2009 A1
20090248583 Chhabra Oct 2009 A1
20090276347 Kargman Nov 2009 A1
20090281948 Carlson Nov 2009 A1
20090294527 Brabson Dec 2009 A1
20090307139 Mardikar Dec 2009 A1
20090308921 Mullen Dec 2009 A1
20090327131 Beenau Dec 2009 A1
20100008535 Abulafia Jan 2010 A1
20100088237 Wankmueller Apr 2010 A1
20100094755 Kloster Apr 2010 A1
20100106644 Annan Apr 2010 A1
20100120408 Beenau May 2010 A1
20100133334 Vadhri Jun 2010 A1
20100138347 Chen Jun 2010 A1
20100145860 Pelegero Jun 2010 A1
20100161433 White Jun 2010 A1
20100185545 Royyuru Jul 2010 A1
20100211505 Saunders Aug 2010 A1
20100223186 Hogan Sep 2010 A1
20100228668 Hogan Sep 2010 A1
20100235284 Moore Sep 2010 A1
20100258620 Torreyson Oct 2010 A1
20100291904 Musfeldt Nov 2010 A1
20100299267 Faith et al. Nov 2010 A1
20100306076 Taveau Dec 2010 A1
20100325041 Berardi Dec 2010 A1
20110010292 Giordano Jan 2011 A1
20110016047 Wu Jan 2011 A1
20110016320 Bergsten Jan 2011 A1
20110040640 Erikson Feb 2011 A1
20110047076 Carlson et al. Feb 2011 A1
20110083018 Kesanupalli Apr 2011 A1
20110087596 Dorsey Apr 2011 A1
20110093397 Carlson Apr 2011 A1
20110125597 Oder, II May 2011 A1
20110153437 Archer Jun 2011 A1
20110153498 Makhotin et al. Jun 2011 A1
20110154466 Harper Jun 2011 A1
20110161233 Tieken Jun 2011 A1
20110178926 Lindelsee et al. Jul 2011 A1
20110191244 Dai Aug 2011 A1
20110238511 Park Sep 2011 A1
20110238573 Varadarajan Sep 2011 A1
20110246317 Coppinger Oct 2011 A1
20110258111 Raj et al. Oct 2011 A1
20110272471 Mullen Nov 2011 A1
20110272478 Mullen Nov 2011 A1
20110276380 Mullen Nov 2011 A1
20110276381 Mullen Nov 2011 A1
20110276424 Mullen Nov 2011 A1
20110276425 Mullen Nov 2011 A1
20110295745 White Dec 2011 A1
20110302081 Saunders Dec 2011 A1
20120023567 Hammad Jan 2012 A1
20120028609 Hruska Feb 2012 A1
20120030047 Fuentes et al. Feb 2012 A1
20120035998 Chien Feb 2012 A1
20120041881 Basu Feb 2012 A1
20120047237 Arvidsson Feb 2012 A1
20120066078 Kingston Mar 2012 A1
20120072350 Goldthwaite Mar 2012 A1
20120078735 Bauer Mar 2012 A1
20120078798 Downing Mar 2012 A1
20120078799 Jackson Mar 2012 A1
20120095852 Bauer Apr 2012 A1
20120095865 Doherty Apr 2012 A1
20120116902 Cardina May 2012 A1
20120123882 Carlson May 2012 A1
20120123940 Killian May 2012 A1
20120129514 Beenau May 2012 A1
20120143754 Patel Jun 2012 A1
20120143767 Abadir Jun 2012 A1
20120143772 Abadir Jun 2012 A1
20120158580 Eram Jun 2012 A1
20120158593 Garfinkle Jun 2012 A1
20120173431 Ritchie Jul 2012 A1
20120185386 Salama Jul 2012 A1
20120197807 Schlesser Aug 2012 A1
20120203664 Torossian Aug 2012 A1
20120203666 Torossian Aug 2012 A1
20120215688 Musser Aug 2012 A1
20120215696 Salonen Aug 2012 A1
20120221421 Hammad Aug 2012 A1
20120226582 Hammad Sep 2012 A1
20120231844 Coppinger Sep 2012 A1
20120233004 Bercaw Sep 2012 A1
20120246070 Vadhri Sep 2012 A1
20120246071 Jain Sep 2012 A1
20120246079 Wilson et al. Sep 2012 A1
20120265631 Cronic Oct 2012 A1
20120271770 Harris Oct 2012 A1
20120297446 Webb Nov 2012 A1
20120300932 Cambridge Nov 2012 A1
20120303503 Cambridge Nov 2012 A1
20120303961 Kean Nov 2012 A1
20120304273 Bailey Nov 2012 A1
20120310725 Chien Dec 2012 A1
20120310831 Harris Dec 2012 A1
20120316992 Oborne Dec 2012 A1
20120317035 Royyuru Dec 2012 A1
20120317036 Bower Dec 2012 A1
20130017784 Fisher Jan 2013 A1
20130018757 Anderson et al. Jan 2013 A1
20130019098 Gupta Jan 2013 A1
20130031006 Mccullagh et al. Jan 2013 A1
20130054337 Brendell Feb 2013 A1
20130054466 Muscato Feb 2013 A1
20130054474 Yeager Feb 2013 A1
20130081122 Svigals Mar 2013 A1
20130091028 Oder (“J.D.”), II Apr 2013 A1
20130110658 Lyman May 2013 A1
20130111599 Gargiulo May 2013 A1
20130117185 Collison May 2013 A1
20130124290 Fisher May 2013 A1
20130124291 Fisher May 2013 A1
20130124364 Mittal May 2013 A1
20130138525 Bercaw May 2013 A1
20130144888 Faith Jun 2013 A1
20130145148 Shablygin Jun 2013 A1
20130145172 Shablygin Jun 2013 A1
20130159178 Colon Jun 2013 A1
20130159184 Thaw Jun 2013 A1
20130166402 Parento Jun 2013 A1
20130166456 Zhang Jun 2013 A1
20130173736 Krzeminski Jul 2013 A1
20130185202 Goldthwaite Jul 2013 A1
20130191227 Pasa et al. Jul 2013 A1
20130191286 Cronic Jul 2013 A1
20130191289 Cronic Jul 2013 A1
20130198071 Jurss Aug 2013 A1
20130198080 Anderson et al. Aug 2013 A1
20130200146 Moghadam Aug 2013 A1
20130204787 Dubois Aug 2013 A1
20130204793 Kerridge Aug 2013 A1
20130212007 Mattsson Aug 2013 A1
20130212017 Bangia Aug 2013 A1
20130212019 Mattsson Aug 2013 A1
20130212024 Mattsson Aug 2013 A1
20130212026 Powell et al. Aug 2013 A1
20130212666 Mattsson Aug 2013 A1
20130218698 Moon Aug 2013 A1
20130218769 Pourfallah et al. Aug 2013 A1
20130226799 Raj Aug 2013 A1
20130226802 Hammad Aug 2013 A1
20130226813 Voltz Aug 2013 A1
20130246199 Carlson Sep 2013 A1
20130246202 Tobin Sep 2013 A1
20130246203 Laracey Sep 2013 A1
20130246258 Dessert Sep 2013 A1
20130246259 Dessert Sep 2013 A1
20130246261 Purves et al. Sep 2013 A1
20130246267 Tobin Sep 2013 A1
20130254028 Salci Sep 2013 A1
20130254052 Royyuru Sep 2013 A1
20130254102 Royyuru Sep 2013 A1
20130254117 Von Mueller Sep 2013 A1
20130262296 Thomas Oct 2013 A1
20130262302 Lettow Oct 2013 A1
20130262315 Hruska Oct 2013 A1
20130262316 Hruska Oct 2013 A1
20130262317 Collinge Oct 2013 A1
20130275300 Killian Oct 2013 A1
20130275307 Khan Oct 2013 A1
20130275308 Paraskeva Oct 2013 A1
20130282502 Jooste Oct 2013 A1
20130282575 Mullen Oct 2013 A1
20130282588 Hruska Oct 2013 A1
20130297501 Monk et al. Nov 2013 A1
20130297504 Nwokolo Nov 2013 A1
20130297508 Belamant Nov 2013 A1
20130304649 Cronic Nov 2013 A1
20130308778 Fosmark Nov 2013 A1
20130311382 Fosmark Nov 2013 A1
20130317982 Mengerink Nov 2013 A1
20130332344 Weber Dec 2013 A1
20130339253 Sincai Dec 2013 A1
20130346305 Mendes Dec 2013 A1
20130346314 Mogollon Dec 2013 A1
20140007213 Sanin Jan 2014 A1
20140013106 Redpath Jan 2014 A1
20140013114 Redpath Jan 2014 A1
20140013452 Aissi et al. Jan 2014 A1
20140019352 Shrivastava Jan 2014 A1
20140025581 Calman Jan 2014 A1
20140025585 Calman Jan 2014 A1
20140025958 Calman Jan 2014 A1
20140032417 Mattsson Jan 2014 A1
20140032418 Weber Jan 2014 A1
20140040137 Carlson Feb 2014 A1
20140040139 Brudnicki Feb 2014 A1
20140040144 Plomske Feb 2014 A1
20140040145 Ozvat Feb 2014 A1
20140040148 Ozvat Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140041018 Bomar Feb 2014 A1
20140046853 Spies Feb 2014 A1
20140047551 Nagasundaram et al. Feb 2014 A1
20140052532 Tsai Feb 2014 A1
20140052620 Rogers Feb 2014 A1
20140052637 Jooste Feb 2014 A1
20140068706 Aissi Mar 2014 A1
20140074637 Hammad Mar 2014 A1
20140108172 Weber et al. Apr 2014 A1
20140114857 Griggs et al. Apr 2014 A1
20140143137 Carlson May 2014 A1
20140164243 Aabye et al. Jun 2014 A1
20140188586 Carpenter et al. Jul 2014 A1
20140249945 Gauthier Sep 2014 A1
20140294701 Dai et al. Oct 2014 A1
20140297534 Patterson Oct 2014 A1
20140310183 Weber Oct 2014 A1
20140324690 Allen et al. Oct 2014 A1
20140330721 Wang Nov 2014 A1
20140330722 Laxminarayanan et al. Nov 2014 A1
20140331265 Mozell et al. Nov 2014 A1
20140337236 Wong et al. Nov 2014 A1
20140344153 Raj et al. Nov 2014 A1
20140372308 Sheets Dec 2014 A1
20150019443 Sheets et al. Jan 2015 A1
20150032625 Dill Jan 2015 A1
20150032626 Dill Jan 2015 A1
20150032627 Dill Jan 2015 A1
20150046338 Laxminarayanan Feb 2015 A1
20150046339 Wong et al. Feb 2015 A1
20150052064 Karpenko et al. Feb 2015 A1
20150081544 Wong et al. Mar 2015 A1
20150088756 Makhotin et al. Mar 2015 A1
20150106239 Gaddam et al. Apr 2015 A1
20150112870 Nagasundaram et al. Apr 2015 A1
20150112871 Kumnick Apr 2015 A1
20150120472 Aabye et al. Apr 2015 A1
20150127529 Makhotin et al. May 2015 A1
20150127547 Powell et al. May 2015 A1
20150140960 Powell et al. May 2015 A1
20150142673 Nelsen et al. May 2015 A1
20150161597 Subramanian et al. Jun 2015 A1
20150178724 Ngo et al. Jun 2015 A1
20150180836 Wong et al. Jun 2015 A1
20150186864 Jones et al. Jul 2015 A1
20150193222 Pirzadeh et al. Jul 2015 A1
20150195133 Sheets et al. Jul 2015 A1
20150199679 Palanisamy et al. Jul 2015 A1
20150199689 Kumnick et al. Jul 2015 A1
20150220917 Aabye et al. Aug 2015 A1
20150269566 Gaddam et al. Sep 2015 A1
20150278799 Palanisamy Oct 2015 A1
20150287037 Salmon Oct 2015 A1
20150312038 Palanisamy Oct 2015 A1
20150319158 Kumnick Nov 2015 A1
20150324736 Sheets Nov 2015 A1
20150332262 Lingappa Nov 2015 A1
20150356560 Shastry et al. Dec 2015 A1
20150363781 Badenhorst Dec 2015 A1
20160028550 Gaddam et al. Jan 2016 A1
20160036790 Shastry et al. Feb 2016 A1
20160042263 Gaddam et al. Feb 2016 A1
20160065370 Le Saint et al. Mar 2016 A1
20160092696 Guglani et al. Mar 2016 A1
20160092872 Prakash et al. Mar 2016 A1
20160092874 O'Regan Mar 2016 A1
20160103675 Aabye et al. Apr 2016 A1
20160119296 Laxminarayanan et al. Apr 2016 A1
20160132878 O'Regan May 2016 A1
20160140545 Flurscheim et al. May 2016 A1
20160148197 Dimmick May 2016 A1
20160148212 Dimmick May 2016 A1
20160171479 Prakash et al. Jun 2016 A1
20160173483 Wong et al. Jun 2016 A1
20160197725 Hammad Jul 2016 A1
20160210628 McGuire Jul 2016 A1
20160217461 Gaddam Jul 2016 A1
20160218875 Le Saint et al. Jul 2016 A1
20160224976 Basu Aug 2016 A1
20160224977 Sabba et al. Aug 2016 A1
20160232527 Patterson Aug 2016 A1
20160239842 Cash et al. Aug 2016 A1
20160269391 Gaddam et al. Sep 2016 A1
20160308995 Youdale et al. Oct 2016 A1
20170046696 Powell et al. Feb 2017 A1
20170076288 Awasthi Mar 2017 A1
20170103387 Weber Apr 2017 A1
20170109745 Al-Bedaiwi Apr 2017 A1
20170148013 Rajurkar May 2017 A1
20170163617 Narayan Jun 2017 A1
20170163629 Law Jun 2017 A1
20170186001 Reed et al. Jun 2017 A1
20170200156 Karpenko Jul 2017 A1
20170200165 Narayan Jul 2017 A1
20170201520 Chandoor Jul 2017 A1
20170220818 Nagasundaram et al. Aug 2017 A1
20170221054 Flurscheim Aug 2017 A1
20170221056 Karpenko Aug 2017 A1
20170228723 Taylor Aug 2017 A1
20170236113 Chitalia Aug 2017 A1
20170293914 Girish Oct 2017 A1
20170295155 Wong et al. Oct 2017 A1
20170364903 Lopez Dec 2017 A1
20170373852 Cassin Dec 2017 A1
20180006821 Kinagi Jan 2018 A1
20180075081 Chipman Mar 2018 A1
20180247303 Raj Aug 2018 A1
20180262334 Hammad Sep 2018 A1
20180268399 Spector Sep 2018 A1
20180268405 Lopez Sep 2018 A1
20180285875 Law Oct 2018 A1
20180324184 Kaja Nov 2018 A1
20180324584 Lopez Nov 2018 A1
20190020478 Girish Jan 2019 A1
20190066069 Faith Feb 2019 A1
Foreign Referenced Citations (2)
Number Date Country
2012167941 Dec 2012 WO
2013179271 Dec 2013 WO
Non-Patent Literature Citations (7)
Entry
Office Action dated Jun. 16, 2009 for U.S. Appl. No. 11/398,887, 20 pages.
Office Action dated Nov. 13, 2008 for U.S. Appl. No. 11/398,887, 22 pages.
Non-Final Office Action dated Jan. 14, 2015 for U.S. Appl. No. 14/275,715, 22 pages.
Final Office Action dated Aug. 7, 2015 for U.S. Appl. No. 14/275,715, 24 pages.
Hammad, U.S. Appl. No. 15/977,921 (Unpublished), Integration of Verification Tokens with Mobile Communication Devices, filed May 11, 2018.
Raj, et al. U.S. Appl. No. 15/956,991 (Unpublished), Mobile Tokenization Hub, filed Apr. 19, 2018.
Non-Final Office Action, dated Feb. 21, 2019, in U.S. Appl. No. 14/275,715, 6 pages.
Related Publications (1)
Number Date Country
20190220855 A1 Jul 2019 US
Provisional Applications (1)
Number Date Country
60714635 Sep 2005 US
Divisions (1)
Number Date Country
Parent 11398887 Apr 2006 US
Child 14275718 US
Continuations (1)
Number Date Country
Parent 14275718 May 2014 US
Child 16368262 US