The present invention relates generally to managing temperature in computer systems that use buses such as PCI Express buses.
The processors of computers such as personal computers, laptop computers, and the like communicate with other system component over data buses. One type of bus is that known as a Peripheral Component Interconnect (PCI) Express bus that allows a processor to communicate with powerful plug-in graphics cards.
As recognized by the present invention, with decreasing computer size and hence decreased cooling capacity, powerful plug-in graphics cards have a tendency to cause the system to rise in temperature through excessive processor and system use. This can then cause damage to components within the computer system through exposure to excessive heat buildup, thereby affecting the thermal performance of that system. The current solution to regulate temperature within the computer is to regulate fan speed according to system temperature, i.e. the fan speed increases as the internal temperature rises, and vice versa, but this method can be insufficient to cool at higher plug-in card power consumptions. Further, the present invention recognizes that attempting to manage temperature by speeding up or slowing down the processor clock speed can result in penalizing the performance of the entire system when only a single component, such as a high power graphics card, might be the thermal culprit.
A computer has a processor that executes logic to dynamically establish a number of lanes used to communicate with a plug-in graphics card over a PCI Express bus based on a parameter that is thermally related. The parameter may be temperature, in which case a temperature sensor sends a temperature signal to the processor.
As set forth further below, the logic maximizes the number of lanes used while remaining below a temperature setpoint. Specifically, the logic increases the number of lanes used if adequate thermal overhead exists between the setpoint and the temperature sensed by the sensor, and it decrease the number of lanes used if the temperature sensed by the sensor is determined to be too high. The logic can access a data structure containing characterizations of candidate components that might be plugged into the computer to communicate with the processor, as part of establishing the number of lanes.
In another aspect, a method for operating a computer includes dynamically establishing the number of lanes used to communicate with a plug-in graphics card over a PCI Express bus based on sensed temperature in the computer to maximize the number of lanes used while remaining below a temperature threshold.
In still another aspect, a computer system has a processor and a component supported by a housing, and bus means are between the processor and component. The bus means include plural communication lanes. Means are provided for sensing temperature in the system. The processor receives signals from the sensing means and in response establishes a number of operational lanes in the bus means.
The details of the present invention, both as to its structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:
Referring initially to
The non-limiting memory controller 20 may also be connected to a Peripheral Component Interconnect (PCI) Express bus 28 that allows data transfer at rates including 2.5 Gigabits/second using a layered structure. The PCI Express bus 28 includes plural links 30 of transmit and receive communication paths, with each link being referred to herein as a “lane”. Essentially, each lane 30 consists of two low-voltage, differentially driven pair of signals, i.e. a transmit pair and a receive pair. The PCI Express bus standard envisions multiple operational modes. For example, in one operational mode, only a single lane may be used, whereas in other operational modes, two four, eight, sixteen, or more lanes may be used.
PCI Express thus defines a standardized method of transferring symmetric data between the processor 12 and an add-in board or card or other device 32. In non-limiting implementations the device 32 may be a plug-in graphics card that is designed to operate in plural operating modes, i.e., to communicate with the processor 12 over the PCI Express bus 28 on, e.g., only a single lane 30 or using all sixteen lanes 30 or some other number of lanes therebetween. Other devices 32 may be used, e.g., video cards, other types of integrated circuits, etc.
Concluding the description of
Moving to
Then the logic moves to block 48 where the processor receives a signal with information regarding the parameter of temperature from, e.g., the sensor 34 shown in
On the other hand, when it is determined at decision diamond 50 that the temperature parameter is acceptably low, the logic flows to decision diamond 54 to determine whether the processor has adequate thermal overhead to run efficiently without causing damage to any system hardware. If the logic concludes that there is not enough thermal overhead, the logic loops back to block 48. However, should there be adequate thermal overhead, at block 56 the logic once again uses the card characterization determined in
While the particular SYSTEM AND METHOD FOR THERMAL MANAGEMENT IN PCI EXPRESS SYSTEM as herein shown and described in detail is fully capable of attaining the above-described objects of the invention, it is to be understood that it is the presently preferred embodiment of the present invention and is thus representative of the subject matter which is broadly contemplated by the present invention, that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more”. It is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. Absent express definitions herein, claim terms are to be given all ordinary and accustomed meanings that are not irreconcilable with the present specification and file history.