The coating 12 may comprise any ceramic, metallic, and/or other thermoelectric thin film coatings known in the art. For example, the coating 12 may be a multilayer nanostructured thin film coating. Such coatings 12 may include, for example, a boron carbide/boron carbide system, a silicon/silicon germanium system, a lead telluride/bismuth telluride system, and a silicon/silicon carbide system. In an exemplary embodiment of the present disclosure, a boron carbide/boron carbide system may comprise alternating layers of two different boron to carbon ratios. In such an embodiment, the coating 12 may comprise a multilayer coating having alternating layers of B4C/B9C. In another exemplary embodiment, a silicon/silicon germanium system may comprise alternating layers of two different silicon to germanium ratios. In such an embodiment, the coating 12 may comprise a multilayer coating having alternating layers of Si/Si80Ge20.
In an exemplary embodiment, the coating 12 may have a thickness in the range of approximately 0.5 to approximately 15 micrometers. It is understood that the thickness and/or other physical characteristics of the coating 12 may be desirably chosen depending on the application. In addition, the coating 12 may have a melting or annealing temperature that is significantly higher than the melting or degradation temperature of the substrate 10. For example, a boron carbide coating of the present disclosure may have a melting temperature of approximately 2450 degrees Celsius or more.
The coating 12 may be deposited on the substrate 10 in any conventional way such that the coating is dispersed substantially uniformly across a surface of the substrate 10. Such deposition processes may include, for example, low pressure chemical vapor deposition, plasma enhanced chemical vapor deposition, electron beam processes, molecular beam epitaxy, and sputtering. In an exemplary embodiment of the present disclosure, a thin film coating 12 may be deposited through a PVD process useful in forming multilayered nanostructured thin film coatings on thin substrates. The PVD technique may be useful in forming such coatings due to its high productivity and the relative ease with which the molecular structure and/or thickness of the individual layers of the coating being deposited may be controlled. It is understood, however, that coating layers deposited using the PVD process may have a disordered or amorphous microstructure. Because the electrical conductivity of the coating 12 may depend upon the coating 12 having an ordered or crystalline microstructure, however, a post-coating annealing process may be performed on coatings deposited through PVD for crystallization.
As shown in
The energy source 14 may be configured to substantially uniformly crystallize the amorphous coating 12 after the coating 12 is deposited on the substrate 10. Accordingly, the energy source 14 may be configured to heat or otherwise increase the temperature of the coating 12 to close to or above its melting temperature through an adiabatic heating process. In such a process, the temperature of the substrate 10 may be maintained below the substrate melting or degradation temperature while the temperature of the heat treated portion 16 is increased to its melting or annealing temperature. As shown in
An exemplary adiabatic heating temperature profile 18 according to an embodiment of the present disclosure is illustrated in
As discussed above with respect to the thermoelectric structure 2, the methods and processes described herein may be used to treat amorphous multilayered coatings deposited on polymer substrates. The treated thermoelectric structures may be used in a wide array of industries such as, for example, semiconductor industry, consumer electronics, transportation, aerospace, heating, air conditioning, heavy duty machinery and material processing. The treated thermoelectric structures may be used for a variety of purposes such as, for example, heating, cooling, and/or other energy conversion applications. For example, the treated thermoelectric structures described above may be packaged into thermoelectric devices. These thermoelectric devices may be used for solid state cooling where electrical power is provided to the device, and a subsequent temperature differential is created that removes heat from a heat source. Such devices may be applicable in, for example, air conditioning applications, and localized cooling of electronic equipment, laser diodes, and medical devices. These thermoelectric devices may also be used for electric power generation applications. In such applications, the devices may assist in harvesting and/or converting excess thermal energy from exhaust gases into useful electric power. Such exhaust gases may be emitted by, for example, internal combustion engines, jet engines, industrial furnaces, heat treat furnaces, smelting facilities, foundry facilities, fuel cells, and/or geothermal sources.
Other embodiments of the disclosed thermoelectric structure and methods of treatment will be apparent to those skilled in the art from consideration of the specification. For example, a plurality of energy sources may be used to assist in adiabatically heating a portion of the coating. In addition, a cooling system may be used to assist in maintaining the substrate below its degradation temperature during the heat treatment process. Moreover, at least the thermoelectric structure 2 and the energy source 14 may be enclosed within and/or acted upon by a vacuum system to minimize heat losses through convection. The disclosed methods may also be applicable to thermoelectric coating materials other than those mentioned herein. It is intended that the specification and examples be considered as exemplary only, with the true scope of the invention being indicated by the following claims.
This invention was made with Government support under the terms of Contract No. DE-AC36-99GO10337, Subcontract No. ZCL-4-32060-04, awarded by the Department of Energy. The Government may have certain rights in this invention.