The present invention relates to a processor-based system, and more particularly, to a processor-based system having a memory module with a memory hub coupling several memory devices to a processor or other memory access device.
Processor-based systems, such as computer systems, use memory devices, such as dynamic random access memory (“DRAM”) devices, as system memory to store instructions and data that are accessed by a processor. In a typical computer system, the processor communicates with the system memory through a processor bus and a memory controller. The processor issues a memory request, which includes a memory command, such as a read command, and an address designating the location from which data or instructions are to be read or to which data or instructions are to be written. The memory controller uses the command and address to generate appropriate command signals as well as row and column addresses, which are applied to the system memory. In response to the commands and addresses, data is transferred between the system memory and the processor. The memory controller is often part of a system controller, which also includes bus bridge circuitry for coupling the processor bus to an expansion bus, such as a PCI bus.
Although the operating speed of memory devices has continuously increased, this increase in operating speed has not kept pace with increases in the operating speed of processors. Even slower has been the increase in operating speed of memory controllers coupling processors to memory devices. The relatively slow speed of memory controllers and memory devices limits the data bandwidth between the processor and the memory devices.
One approach to increasing the data bandwidth to and from memory devices is to use multiple memory devices coupled to the processor through a memory hub as shown in
The system controller 110 contains a memory hub controller 112 that is coupled to the processor 104. The memory hub controller 112 is also coupled to several memory modules 114a-n through a bus system 115. Each of the memory modules 114a-n includes a memory hub 116 coupled to several memory devices 118 through command, address and data buses 117. The memory hub 116 efficiently routes memory requests and responses between the controller 112 and the memory devices 118. Computer systems employing this architecture can have a higher bandwidth because the processor 104 can access one memory module 114a-n while another memory module 114a-n is responding to a prior memory access. For example, the processor 104 can output write data to one of the memory modules 114a-n in the system while another memory module 114a-n in the system is preparing to provide read data to the processor 104. The operating efficiency of computer systems using a memory hub architecture can make it more practical to vastly increase data bandwidth of a memory system. A memory hub architecture can also provide greatly increased memory capacity in computer systems.
The system controller 110 also serves as a communications path to the processor 104 for a variety of other components. More specifically, the system controller 110 includes a graphics port that is typically coupled to a graphics controller 116, which is, in turn, coupled to a video terminal 118. The system controller 110 is also coupled to one or more input devices 120, such as a keyboard or a mouse, to allow an operator to interface with the computer system 10. Typically, the computer system 10 also includes one or more output devices 122, such as a printer, coupled to the processor 104 through the system controller 110. One or more data storage devices 124 are also typically coupled to the processor 104 through the system controller 110 to allow the processor 104 to store data or retrieve data from internal or external storage media (not shown). Examples of typical storage devices 124 include hard and floppy disks, tape cassettes, and compact disk read-only memories (CD-ROMs).
Although there are advantages to utilizing a memory hub for accessing memory devices, the design of the hub memory system, and more generally, computer systems including such a memory hub architecture, becomes increasingly difficult. For example, the memory modules 114a-n each operates internally in a synchronous manner so that the command, address, and data signals transferred to the memory module 114a-n are normally latched or strobed into the memory modules 114a-n by a clock signal. However, operations between memory modules 114a-n are asynchronous. As transfer rates increase, the time during which the command, address and data signals as received at the memory hubs 116 are valid decreases. This period during which the signals are valid is commonly referenced by those ordinarily skilled in the art as the “window” or “eye.” Not only does the size of the eye for command, address, and data signals decrease, but the time or location of the eye can also vary because of various factors, such as timing skew, voltage and current drive capability, and the like. In the case of timing skew of signals, it often arises from a variety of timing errors such as loading on the lines of the bus and the physical lengths of such lines.
As the size of signal eyes decrease at higher transfer rates, the variations in the location of the signal eyes become more of a problem. One technique to alleviate this problem to some extent is to couple a clock to the memory modules, a technique known as clock forwarding. As shown in
One technique that has been proposed to allow the CLK signal to continue being used to strobe command, address and data signals at higher transfer rates is to include circuitry (not shown) in the memory hubs 116 that adjusts the timing of the CLK signal within each of the hubs 116 so that it is aligned with the signal eye. However, this technique adds a fair degree of complexity to the memory hubs 116 and is not always effective.
There is therefore a need for a system and method that allows command, address and data signals to be coupled between a memory hub controller and one or more memory hubs in respective memory modules that avoids problems of synchronizing a clock signal coupled between the memory hub controller and memory hubs along with the command, address, and data signals.
A memory hub controller is coupled to a memory module having a memory hub and a plurality of memory devices. The memory hub controller communicates with the memory module through an upstream data bus and a downstream data bus. The memory hub controller includes a receiver coupled to the upstream data bus and a transmitter coupled to the downstream data bus. The memory module includes a receiver coupled to the downstream data bus and a transmitter coupled to the upstream data bus. Each of the transmitters is operable in an initialization mode to generate an expected data pattern and to repeatedly couple the generated data pattern to the data bus to which it is coupled. Each of the receivers is operable responsive to a receive clock signal to capture data coupled to the data bus to which it is coupled, including the repeatedly coupled expected data pattern. The receiver being operable in the initialization mode to incrementally alter the phase of the receive clock signal to determine the phases of the receive clock signal that are able to capture received data patterns that match a expected data pattern. The receiver then determines a final value for the phase of the receive clock signal based on the determination of the phases of the receive clock signal that are able to capture received data patterns that match the expected data pattern. This final phase value is then used during normal operation as the phase of the receive clock signal.
Embodiments of the present invention are directed to a memory module and memory controller each having the capability of generating a clock signal for strobing data signals during the “eye” of the data signals when the data signals are valid. Certain details are set forth below to provide a sufficient understanding of various embodiments of the invention. However, it will be clear to one skilled in the art that the invention may be practiced without these particular details. In other instances, well-known circuits, control signals, and timing protocols have not been shown in detail in order to avoid unnecessarily obscuring the invention. Also, although the embodiments are explained with reference to generating a clock signal to strobe data signals, it will be understood that the same principle can be used to generate a clock signal to strobe command and address signals.
A computer system 100 having a hub memory system according to one embodiment of the invention is shown in
As in the computer system 10 of
The downstream bus 132 couple data away from the memory hub controller 128, and the upstream bus 134 couple data toward the memory hub controller 128. Therefore, the downstream bus 132 couples write data to and from each of the memory modules 130, except for the memory module 130n furthest downstream from the memory hub controller 128, which only receives write data. Similarly, the upstream bus 134 couples read data to and from each of the memory modules 130, except for the memory module 130n furthest downstream from the memory hub controller 128, which only transmits read data. The downstream bus 132 also couples write data from the memory hub controller 128, and the upstream bus 134 couples read data to the memory hub controller 128. Significantly, the buses 132, 134 need not couple clock signals to and from the memory modules 130 and the memory hub controller 128 for the purpose of allowing the memory modules 130 to capture data transmitted through the buses 132, 134. Instead, as explained in greater detail below, each of the memory modules 130 and the memory hub controller 128 generates signals internally to strobe the data coupled through the buses 132, 134.
The memory modules 130 are shown coupled to the memory hub controller 128 in a point-to-point coupling arrangement in which each of the buses 132, 134 are coupled only between two points. However, it will be understood that other topologies may also be used. For example, it may be possible to use a multi-drop arrangement in which a single downstream bus (not shown) and a single upstream bus (not shown) are coupled to all of the memory modules 130. A switching topology may also be used in which the, memory hub controller 1Z8 is selectively coupled to each of the memory modules 130 through a switch (not shown). Other topologies that may be used will be apparent to one skilled in the art.
Each of the memory modules 130 includes a first receiver 142 that receives write data through the downstream bus 132, a first transmitter 144 that transmits read data upstream through the upstream bus 134, a second transmitter 146 that transmits write data downstream through the downstream bus 132, and a second receiver 148 that receives read data through the upstream bus 134.
The memory modules 130 also each include a memory hub local 150 that is coupled to its first receiver 142 and its first transmitter 144. The memory hub local 150 receives write data through the downstream bus 132 and the first receiver 142 and couples the write data to one or more of sixteen memory devices 160, which, in the example illustrated in
The memory hub local 150 also receives read data from one or more of the memory devices 160 and couples the read data through the first transmitter 144 and the upstream bus 134. In the event the write data coupled through the downstream bus 132 and the first receiver 142 is not being directed to the memory devices 160 in the memory module 130 receiving the write data, the write data are coupled though a downstream bypass path 170 to the second transmitter 146 for coupling through the downstream bus 132. Similarly, if read data is being transmitted from a downstream memory module 130, the read data is coupled through the upstream bus 134 and the second receiver 148. The read data are then coupled upstream through an upstream bypass path 174, and then through the first transmitter 144 and the upstream bus 134. The second receiver 148 and the second transmitter 146 in the memory module 130n furthest downstream from the memory hub controller 128 are not used and may be omitted from the memory module 130n.
The memory hub controller 128 also includes a transmitter 180 coupled to the downstream bus 132, and a receiver 182 coupled to the upstream bus 134. The downstream bus 132 from the transmitter 180 and the upstream bus 134 to the receiver 182 are coupled only to the memory module 130a that is the furthest upstream to the memory hub controller 128. The transmitter 180 couples write data from the memory hub controller 128, and the receiver 182 couples read data to the memory hub controller 128.
The computer system 100 also includes a reference clock generator 190, which generates a clock signal that is coupled to the memory hub controller 128 and each of the memory modules 130. The memory hub controller 128 and the memory modules 130 use the reference clock to generate two internal clock signals that, in the embodiment of
One embodiment of the receivers 142, 182 and the transmitters 144, 180 in the memory hub controller 128 and in one of the memory modules 130 is shown in
As previously explained, the receiver 200 receives the data bits from the transmitter 210 and strobes them in using a receive clock signal generated from the clock signal received from the clock generator 500 and having four times the frequency of the core clock. More specifically, in one embodiment of the invention, the pattern transmitted by the transmitter 210 is the following 32-bit pattern divided into four cycles each having 8 bits: “01011011 11000101 10010011 00101100” (hex “5BC5932C”). The data bit pattern is transmitted from right to left. In the embodiment of
In the embodiment of
In the embodiment of
In the second comparison, the pattern comparator 234 compares the eight data bits captured in the receiver 200 for each core cycle to the sixteen valid 8-bit data bit patterns stored in an expected pattern memory 230. For purposes of this comparison, it can use any of the 32 bits captured on each transition of the receive clock signal since the first comparison confirmed that all 32 bits were the same. Based on this comparison, phase adjustment logic 240 adjusts the phase of the receive clock signal so that it can best capture the data coupled to the receiver. More specifically, the pattern comparator 234 compares the 8 bits received during any core cycle to the 16 valid patterns stored in the expected pattern memory 230 to adjust the phase of the receive clock signal. The above operation is controlled by a receive interface controller 244, the operation of which will be explained with reference to the flow chart of
In the third comparison, the pattern comparator 234 checks an additional 33rd bit, which functions as a control bit. The pattern that is sent on the buses 132, 134 is also sent on the control bit for each of these buses. The eight bits captured on one core clock is compared in the same manner as the second comparison.
One embodiment of the pattern comparator 234 is shown in
The 32 bits from the receive capture buffer 258 are applied to a multiplexer 260, which selects one of four sets of bits for coupling to a set of flip-flops 264. Each set consists of 4 bits from 4 respective locations for the positive edge and 4 bits from 4 respective locations for the negative edge. The first set consists of bits 0, 1, 2, 3 for both the positive and negative edges, the second set consists of bits 4, 5, 6, 7 for both the positive and negative edges, the third set consists of bits 8, 9, 10, 11 for both the positive and negative edges. One of these three sets of eight data bits are selected by a pointer register 266, which is incremented by the receive interface controller 244 in a manner that will be explained below. The flip-flops 264 are clocked by an internal core clock signal that is generated from the reference clock signal.
The eight received data bits captured by the flip-flops 264 are coupled to pattern comparison logic 270, which also receives the sixteen 8-bit patterns stored in the expected pattern memory 230. The pattern comparison logic 270 then issues a pass/fail (“P/F*”) signal to the receive interface controller 244 indicative of whether the data bits from the flip-flops 264 match any of the patterns stored in the expected pattern memory 230.
The manner in which the receive interface controller 244 operates the receiver 200 will now be explained with reference to the flow-chart of
After the receiver 200 is powered-up, a reset occurs at step 276, an initial startup indicator flag is set to “0” at step 278, and a variable N is set to 0 at step 280. The pattern comparator 234 then determines if the received data pattern is a valid data pattern at step 284. The received pattern will be a valid pattern if the first data bit captured is any even numbered bit, each of which is transmitted on a rising edge of the transmit clock signal. Specifically, if the data pattern “01011011 11000101 10010011 00101100” is transmitted (again, from right to left), a valid data pattern will be any eight-bit sequence of the transmitted pattern that starts on an even bit, i.e., “00101100”, “11001011”, or “00110010” . . . . If the pattern comparator 134 detected a valid pattern at step 284, it checks the value of the flag at step 286. The flag will initially be the “0” because it was set to that value at step 278. The flag is used to indicate if this is the first pass through step 284. This is needed because an initial passing condition needs to be handled differently from other passes. The pattern comparator 134 will increment a pointer at step 288 to cause the expected pattern memory 230 to output the next 8-bit pattern in sequence, which will subsequently be compared to 8 bits strobed into the receiver 200 by the receive clock signal. Additionally, if the pattern comparator 134 detected a valid pattern at step 284, the phase adjustment logic 240 decrements the phase (“P”) of the receive clock signal at step 290 by a number of increments equal to one-half of a receive clock signal period. In the embodiment of
If the pattern comparator 234 detected an invalid pattern at step 284, the phase of the receive clock signal is increased by one increment during step 294, and a check is made at 296 to determine if the phase adjustment causes the phase of the receive clock signal exceeds its limit. If so, the phase of the receive clock signal is reset to an initial value at step 298 and a pointer register 555 is incremented by one. Operation then returns to step 284 to determine if a valid pattern has been received. In summary, if the received data pattern is initially valid, the receive clock is shifted by 180 degrees so that it is no longer valid. When the received pattern either becomes invalid in this manner or is initially invalid, the phase of the receive clock signal is repetitively incremented by 1 by looping through steps 284, 296, and 300.
After steps 284, 296, and 300 have occurred one or more times, the received data pattern will eventually become valid. When this occurs, the “left” edge of the data valid “eye,” the minimum phase shift of the receive clock signal that can capture valid data, has been found. The operation then progresses from step 284 to step 286. However, since the flag was set to “1” at either step 292 or step 300, the operation now progress to step 310 where addition phase shifts are added to the receive clock signal to ensure that it will always be able to capture valid data with this phase shift. Specifically, the phase is incremented by 3 increments at step 310, and a determination is made at step 314 whether a variable N that was set to 0 at step 280 is equal to 2. The first time the phase of the receive clock signal is incremented at step 310, N will still be equal to 0. Therefore, the operation will increment the variable in step 318 and return to step 284 to determine if the receive clock signal can still capture valid data. If so, the operation loops through steps 286, 310, 314 and 318 until the variable N is equal to 2. At this point the phase of the receive clock signal is saved at step 320 as the phase PL corresponding to the left edge of the data valid eye.
After the left edge of the data valid eye has been found, the receive interface controller 244 operates to find the right edge of the data valid eye. It does so by incrementing the phase of the receive clock signal by one increment at step 330 and then checking if doing so causes an invalid data pattern to be captured at step 334. Since the left edge of the data eye was found by the captured data pattern becoming valid, the data pattern is not likely to be invalid during the first pass through step 334. As a result, the operation returns to step 330 to again increment the phase of the receive clock signal. The operation continues to loop through steps 330, 334 until an invalid data pattern is detected at step 334. When this occurs, the “right” edge of the data valid “eye,” the maximum phase shift of the receive clock signal that can capture valid data, has been found. The program then saves the phase of the receive clock signal at step 338 as the phase PR corresponding to the right edge of the data valid eye.
The phase PF of the receive clock signal that will be used during normal operation is then calculated at step 340 using the formula PF=(PF+PL)/2, which sets PF midway between PF and PL. This phase value PF is then saved at step 344, and normal operation is enabled at step 348.
After the phase PF of the receive clock signal has been finalized, the receiver 200 in the memory hub controller 128 and each memory module 130 causes its respective transmitter 210 to communicate that fact to an upstream receiver. When the memory hub controller 128 has determined that all of the receivers 200 have been initialized, it ends the initialization mode and begins normal operation. One embodiment of a technique for communicating the synchronization status of the receivers 200 is described in U.S. patent application, Ser. No. 10/848,606 having a common inventor, which is incorporated herein by reference.
The bus interfaces 410a,b, 412a,b are coupled to a switch 460 through a plurality of bus and signal lines, represented by buses 414. The buses 414 are conventional, and include a write data bus and a read data bus, although a single bi-directional data bus may alternatively be provided to couple data in both directions through the bus interfaces 410a,b, 412a,b. It will be appreciated by those ordinarily skilled in the art that the buses 414 are provided by way of example, and that the buses 414 may include fewer or greater signal lines, such as further including a request line and a snoop line, which can be used for maintaining cache coherency.
The switch 460 is coupled to four memory interfaces 470a-d which are, in turn, coupled to the memory devices 160 (
In an embodiment of the present invention, each memory interface 470a-d is specially adapted to the memory devices 160 to which it is coupled. More specifically, each memory interface 470a-d is specially adapted to provide and receive the specific signals received and generated, respectively, by the memory devices 160 to which it is coupled. Also, the memory interfaces 470a-d are capable of operating with memory devices 160 operating at different clock frequencies. As a result, the memory interfaces 470a-d isolate the processor 104 from changes that may occur at the interface between the memory hub 130 and memory devices 160 coupled to the memory hub local 150, and it provides a more controlled environment to which the memory devices 160 may interface.
The switch 460 coupling the bus interfaces 410a,b, 412a,b and the memory interfaces 470a-d can be any of a variety of conventional or hereinafter developed switches. For example, the switch 460 may be a cross-bar switch that can simultaneously couple bus interfaces 410a,b, 412a,b to each other to provide the downstream bypass path 170 and the upstream bypass path 174 shown in
With further reference to
The write buffer 482 in each memory interface 470a-d is used to store write requests while a read request is being serviced. In such a system, the processor 104 can issue a write request to a system memory device 440a-d even if the memory device to which the write request is directed is busy servicing a prior write or read request. The write buffer 482 preferably accumulates several write requests received from the switch 460, which may be interspersed with read requests, and subsequently applies them to each of the memory devices 160 in sequence without any intervening read requests. By pipelining the write requests in this manner, they can be more efficiently processed since delays inherent in read/write turnarounds are avoided. The ability to buffer write requests to allow a read request to be serviced can also greatly reduce memory read latency since read requests can be given first priority regardless of their chronological order.
The use of the cache memory unit 484 in each memory interface 470a-d allows the processor 104 to receive data responsive to a read command directed to a respective system memory device 160 without waiting for the memory device 160 to provide such data in the event that the data was recently read from or written to that memory device 160. The cache memory unit 484 thus reduces the read latency of the system memory devices 440a-d to maximize the memory bandwidth of the computer system. Similarly, the processor 104 can store write data in the cache memory unit 484 and then perform other functions while the memory controller 480 in the same memory interface 470a-d transfers the write data from the cache memory unit 484 to the memory device 160 to which it is coupled.
Further included in the memory hub local 150 may be a self-test module 490 coupled to the switch 460 through a test bus 492. The self-test module 490 is further coupled to a maintenance bus 496, such as a System Management Bus (SMBus) or a maintenance bus according to the Joint Test Action Group (JTAG) and IEEE 1149.1 standards. Both the SMBus and JTAG standards are well known by those ordinarily skilled in the art. Generally, the maintenance bus 496 provides a user access to the self-test module 490 in order to set memory testing parameters and receive test results. For example, the user can couple a separate PC host via the maintenance bus 496 to set the relative timing between signals that are applied to the memory devices 160. Similarly, data indicative of the relative timing between signals that are received from the memory devices 160 can be coupled to the PC host via the maintenance bus 496.
Further included in the memory hub local 150 may be a DMA engine 486 coupled to the switch 460 through a bus 488. The DMA engine 486 enables the memory hub 30 to move blocks of data from one location in one of the memory devices 160 to another location in the memory device without intervention from the processor 104. The bus 488 includes a plurality of conventional bus lines and signal lines, such as address, control, data buses, and the like, for handling data transfers in the system memory. Conventional DMA operations well known by those ordinarily skilled in the art can be implemented by the DMA engine 486.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation of pending U.S. patent application Ser. No. 10/695,383, filed Oct. 27, 2003.
Number | Name | Date | Kind |
---|---|---|---|
3633174 | Griffin | Jan 1972 | A |
3742253 | Kronies | Jun 1973 | A |
3777154 | Lindsey | Dec 1973 | A |
4004100 | Takimoto | Jan 1977 | A |
4045781 | Levy et al. | Aug 1977 | A |
4077016 | Sanders et al. | Feb 1978 | A |
4096402 | Schroeder et al. | Jun 1978 | A |
4240143 | Besemer et al. | Dec 1980 | A |
4245306 | Besemer et al. | Jan 1981 | A |
4253144 | Bellamy et al. | Feb 1981 | A |
4253146 | Bellamy et al. | Feb 1981 | A |
4404474 | Dingwall | Sep 1983 | A |
4443845 | Hamilton et al. | Apr 1984 | A |
4481625 | Roberts et al. | Nov 1984 | A |
4508983 | Allgood et al. | Apr 1985 | A |
4511846 | Nagy et al. | Apr 1985 | A |
4514647 | Shoji | Apr 1985 | A |
4524448 | Hullwegen | Jun 1985 | A |
4573017 | Levine | Feb 1986 | A |
4600895 | Landsman | Jul 1986 | A |
4603320 | Farago | Jul 1986 | A |
4608702 | Hirzel et al. | Aug 1986 | A |
4638187 | Boler et al. | Jan 1987 | A |
4638451 | Hester et al. | Jan 1987 | A |
4687951 | McElroy | Aug 1987 | A |
4697167 | O'Keeffe et al. | Sep 1987 | A |
4707823 | Holdren et al. | Nov 1987 | A |
4724520 | Athanas et al. | Feb 1988 | A |
4727541 | Mori et al. | Feb 1988 | A |
4740962 | Kish, III | Apr 1988 | A |
4746996 | Furuhata et al. | May 1988 | A |
4773085 | Cordell | Sep 1988 | A |
4789796 | Foss | Dec 1988 | A |
4791622 | Clay et al. | Dec 1988 | A |
4813772 | Kowel et al. | Mar 1989 | A |
4818995 | Takahashi et al. | Apr 1989 | A |
4823403 | Twietmeyer | Apr 1989 | A |
4825208 | Mueller et al. | Apr 1989 | A |
4831520 | Rubinfeld et al. | May 1989 | A |
4891808 | Williams | Jan 1990 | A |
4893087 | Davis | Jan 1990 | A |
4902986 | Lesmeister | Feb 1990 | A |
4924516 | Bremer et al. | May 1990 | A |
4930128 | Suzuki et al. | May 1990 | A |
4953128 | Kawai et al. | Aug 1990 | A |
4953930 | Ramsey et al. | Sep 1990 | A |
4958088 | Farah-Bakhsh et al. | Sep 1990 | A |
4972470 | Farago | Nov 1990 | A |
4979185 | Bryans et al. | Dec 1990 | A |
4984204 | Sato et al. | Jan 1991 | A |
4984255 | Davis et al. | Jan 1991 | A |
5020023 | Smith | May 1991 | A |
5038115 | Myers et al. | Aug 1991 | A |
5062082 | Choi | Oct 1991 | A |
5075569 | Branson | Dec 1991 | A |
5086500 | Greub | Feb 1992 | A |
5087828 | Sato et al. | Feb 1992 | A |
5113519 | Johnson et al. | May 1992 | A |
5120990 | Koker | Jun 1992 | A |
5122690 | Bianchi | Jun 1992 | A |
5128560 | Chern et al. | Jul 1992 | A |
5128563 | Hush et al. | Jul 1992 | A |
5130565 | Girmay | Jul 1992 | A |
5134311 | Biber et al. | Jul 1992 | A |
5150186 | Pinney et al. | Sep 1992 | A |
5165046 | Hesson | Nov 1992 | A |
5168199 | Huffman et al. | Dec 1992 | A |
5179298 | Hirano et al. | Jan 1993 | A |
5182524 | Hopkins | Jan 1993 | A |
5194765 | Dunlop et al. | Mar 1993 | A |
5212601 | Wilson | May 1993 | A |
5220208 | Schenck | Jun 1993 | A |
5223755 | Richley | Jun 1993 | A |
5229929 | Shimizu et al. | Jul 1993 | A |
5233314 | McDermott et al. | Aug 1993 | A |
5233564 | Ohshima et al. | Aug 1993 | A |
5239206 | Yanai | Aug 1993 | A |
5241506 | Motegi et al. | Aug 1993 | A |
5243703 | Farmwald et al. | Sep 1993 | A |
5251303 | Fogg, Jr. et al. | Oct 1993 | A |
5254883 | Horowitz et al. | Oct 1993 | A |
5256989 | Parker et al. | Oct 1993 | A |
5257294 | Pinto et al. | Oct 1993 | A |
5268639 | Gasbarro et al. | Dec 1993 | A |
5269022 | Shinjo et al. | Dec 1993 | A |
5272729 | Bechade et al. | Dec 1993 | A |
5274276 | Casper et al. | Dec 1993 | A |
5276642 | Lee | Jan 1994 | A |
5278460 | Casper | Jan 1994 | A |
5281865 | Yamashita et al. | Jan 1994 | A |
5283631 | Koerner et al. | Feb 1994 | A |
5289580 | Latif et al. | Feb 1994 | A |
5295164 | Yamamura | Mar 1994 | A |
5304952 | Quiet et al. | Apr 1994 | A |
5307381 | Ahuja | Apr 1994 | A |
5311481 | Casper et al. | May 1994 | A |
5311483 | Takasugi | May 1994 | A |
5313431 | Uruma et al. | May 1994 | A |
5313590 | Taylor | May 1994 | A |
5315269 | Fujii | May 1994 | A |
5315388 | Shen et al. | May 1994 | A |
5317752 | Jewett et al. | May 1994 | A |
5319755 | Farmwald et al. | Jun 1994 | A |
5321368 | Hoelzle | Jun 1994 | A |
5327553 | Jewett et al. | Jul 1994 | A |
5337285 | Ware et al. | Aug 1994 | A |
5341405 | Mallard, Jr. | Aug 1994 | A |
5347177 | Lipp | Sep 1994 | A |
5347179 | Casper et al. | Sep 1994 | A |
5355391 | Horowitz et al. | Oct 1994 | A |
5361002 | Casper | Nov 1994 | A |
5367649 | Cedar | Nov 1994 | A |
5379299 | Schwartz | Jan 1995 | A |
5379382 | Work et al. | Jan 1995 | A |
5390308 | Ware et al. | Feb 1995 | A |
5400283 | Raad | Mar 1995 | A |
5402389 | Flannagan et al. | Mar 1995 | A |
5408640 | MacIntyre et al. | Apr 1995 | A |
5410263 | Waizman | Apr 1995 | A |
5414819 | Redmond et al. | May 1995 | A |
5416436 | Rainard | May 1995 | A |
5416909 | Long et al. | May 1995 | A |
5420544 | Ishibashi | May 1995 | A |
5423009 | Zhu | Jun 1995 | A |
5424687 | Fukuda | Jun 1995 | A |
5428311 | McClure | Jun 1995 | A |
5428317 | Sanchez et al. | Jun 1995 | A |
5430408 | Ovens et al. | Jul 1995 | A |
5430676 | Ware et al. | Jul 1995 | A |
5432823 | Gasbarro et al. | Jul 1995 | A |
5432907 | Picazo, Jr. et al. | Jul 1995 | A |
5438545 | Sim | Aug 1995 | A |
5440260 | Hayashi et al. | Aug 1995 | A |
5440514 | Flannagan et al. | Aug 1995 | A |
5442770 | Barratt | Aug 1995 | A |
5444667 | Obara | Aug 1995 | A |
5446696 | Ware et al. | Aug 1995 | A |
5448193 | Baumert et al. | Sep 1995 | A |
5451898 | Johnson | Sep 1995 | A |
5457407 | Shu et al. | Oct 1995 | A |
5461627 | Rypinski | Oct 1995 | A |
5463337 | Leonowich | Oct 1995 | A |
5465076 | Yamauchi et al. | Nov 1995 | A |
5465229 | Bechtolsheim et al. | Nov 1995 | A |
5473274 | Reilly et al. | Dec 1995 | A |
5473575 | Farmwald et al. | Dec 1995 | A |
5473639 | Lee et al. | Dec 1995 | A |
5479370 | Furuyama et al. | Dec 1995 | A |
5485490 | Leung et al. | Jan 1996 | A |
5488321 | Johnson | Jan 1996 | A |
5489864 | Ashuri | Feb 1996 | A |
5497127 | Sauer | Mar 1996 | A |
5497355 | Mills et al. | Mar 1996 | A |
5497476 | Oldfield et al. | Mar 1996 | A |
5498990 | Leung et al. | Mar 1996 | A |
5500808 | Wang | Mar 1996 | A |
5502621 | Schumacher et al. | Mar 1996 | A |
5502672 | Kwon | Mar 1996 | A |
5506814 | Hush et al. | Apr 1996 | A |
5508638 | Cowles et al. | Apr 1996 | A |
5513327 | Farmwald et al. | Apr 1996 | A |
5515403 | Sloan et al. | May 1996 | A |
5532714 | Knapp et al. | Jul 1996 | A |
5539345 | Hawkins | Jul 1996 | A |
5544124 | Zagar et al. | Aug 1996 | A |
5544203 | Casasanta et al. | Aug 1996 | A |
5544319 | Acton et al. | Aug 1996 | A |
5544345 | Carpenter et al. | Aug 1996 | A |
5550515 | Liang et al. | Aug 1996 | A |
5550549 | Procter, Jr. et al. | Aug 1996 | A |
5550783 | Stephens, Jr. et al. | Aug 1996 | A |
5552727 | Nakao | Sep 1996 | A |
5555429 | Parkinson et al. | Sep 1996 | A |
5557224 | Wright et al. | Sep 1996 | A |
5557781 | Stones et al. | Sep 1996 | A |
5563546 | Tsukada | Oct 1996 | A |
5566325 | Bruce, II et al. | Oct 1996 | A |
5568075 | Curran et al. | Oct 1996 | A |
5568077 | Sato et al. | Oct 1996 | A |
5568574 | Tanguay, Jr. et al. | Oct 1996 | A |
5572557 | Aoki | Nov 1996 | A |
5572722 | Vogley | Nov 1996 | A |
5574698 | Raad | Nov 1996 | A |
5576645 | Farwell | Nov 1996 | A |
5577079 | Zenno et al. | Nov 1996 | A |
5577220 | Combs et al. | Nov 1996 | A |
5577236 | Johnson et al. | Nov 1996 | A |
5578940 | Dillon et al. | Nov 1996 | A |
5578941 | Sher et al. | Nov 1996 | A |
5579326 | McClure | Nov 1996 | A |
5581197 | Motley et al. | Dec 1996 | A |
5581767 | Katsuki et al. | Dec 1996 | A |
5589788 | Goto | Dec 1996 | A |
5590073 | Arakawa et al. | Dec 1996 | A |
5594690 | Rothenberger et al. | Jan 1997 | A |
5606717 | Farmwald et al. | Feb 1997 | A |
5608264 | Gaul | Mar 1997 | A |
5610558 | Mittel et al. | Mar 1997 | A |
5614855 | Lee et al. | Mar 1997 | A |
5619473 | Hotta | Apr 1997 | A |
5621340 | Lee et al. | Apr 1997 | A |
5621690 | Jungroth et al. | Apr 1997 | A |
5621739 | Sine et al. | Apr 1997 | A |
5623523 | Gehrke | Apr 1997 | A |
5623534 | Desai et al. | Apr 1997 | A |
5627780 | Malhi | May 1997 | A |
5627791 | Wright et al. | May 1997 | A |
5631872 | Naritake et al. | May 1997 | A |
5636163 | Furatani et al. | Jun 1997 | A |
5636173 | Schaefer | Jun 1997 | A |
5636174 | Rao | Jun 1997 | A |
5638334 | Farmwald et al. | Jun 1997 | A |
5638335 | Akiyama et al. | Jun 1997 | A |
5638534 | Mote, Jr. | Jun 1997 | A |
5644743 | Barrett, Jr. et al. | Jul 1997 | A |
5646904 | Ohno et al. | Jul 1997 | A |
5652530 | Ashuri | Jul 1997 | A |
5657289 | Hush et al. | Aug 1997 | A |
5657481 | Farmwald et al. | Aug 1997 | A |
5659798 | Blumrich et al. | Aug 1997 | A |
5663921 | Pascucci et al. | Sep 1997 | A |
5666313 | Ichiguchi | Sep 1997 | A |
5666322 | Conkle | Sep 1997 | A |
5668763 | Fujioka et al. | Sep 1997 | A |
5668774 | Furatani | Sep 1997 | A |
5673005 | Pricer | Sep 1997 | A |
5675274 | Kobayashi et al. | Oct 1997 | A |
5675588 | Maruyama et al. | Oct 1997 | A |
5687325 | Chang | Nov 1997 | A |
5692165 | Jeddeloh et al. | Nov 1997 | A |
5694065 | Hamasaki et al. | Dec 1997 | A |
5706224 | Srinivasan et al. | Jan 1998 | A |
5708611 | Iwamoto | Jan 1998 | A |
5710733 | Chengson et al. | Jan 1998 | A |
5712580 | Baumgartner et al. | Jan 1998 | A |
5712883 | Miller et al. | Jan 1998 | A |
5715456 | Bennett et al. | Feb 1998 | A |
5719508 | Daly | Feb 1998 | A |
5729709 | Harness | Mar 1998 | A |
5737342 | Ziperovich | Apr 1998 | A |
5740123 | Uchida | Apr 1998 | A |
5748616 | Riley | May 1998 | A |
5751665 | Tanoi | May 1998 | A |
5764092 | Wada et al. | Jun 1998 | A |
5767715 | Marquis et al. | Jun 1998 | A |
5768177 | Sakuragi | Jun 1998 | A |
5774699 | Nagae | Jun 1998 | A |
5778214 | Taya et al. | Jul 1998 | A |
5781499 | Koshikawa | Jul 1998 | A |
5784422 | Heermann | Jul 1998 | A |
5787475 | Pawlowski | Jul 1998 | A |
5789947 | Sato | Aug 1998 | A |
5790612 | Chengson et al. | Aug 1998 | A |
5794020 | Tanaka et al. | Aug 1998 | A |
5796413 | Shipp et al. | Aug 1998 | A |
5805931 | Morzano et al. | Sep 1998 | A |
5812619 | Runaldue | Sep 1998 | A |
5818844 | Singh et al. | Oct 1998 | A |
5818984 | Ahmad et al. | Oct 1998 | A |
5819304 | Nilsen et al. | Oct 1998 | A |
5822255 | Uchida | Oct 1998 | A |
5822314 | Chater-Lea | Oct 1998 | A |
5831467 | Leung et al. | Nov 1998 | A |
5831545 | Murray et al. | Nov 1998 | A |
5831929 | Manning | Nov 1998 | A |
5832250 | Whittaker | Nov 1998 | A |
5841707 | Cline et al. | Nov 1998 | A |
5852378 | Keeth | Dec 1998 | A |
5872959 | Nguyen et al. | Feb 1999 | A |
5875352 | Gentry et al. | Feb 1999 | A |
5875454 | Craft et al. | Feb 1999 | A |
5887159 | Burrows | Mar 1999 | A |
5889828 | Miyashita et al. | Mar 1999 | A |
5889829 | Chiao et al. | Mar 1999 | A |
5898242 | Peterson | Apr 1999 | A |
5898674 | Mawhinney et al. | Apr 1999 | A |
5909130 | Martin et al. | Jun 1999 | A |
5917760 | Millar | Jun 1999 | A |
5920518 | Harrison et al. | Jul 1999 | A |
5926047 | Harrison | Jul 1999 | A |
5926436 | Toda et al. | Jul 1999 | A |
5928343 | Farmwald et al. | Jul 1999 | A |
5940608 | Manning | Aug 1999 | A |
5940609 | Harrison | Aug 1999 | A |
5945855 | Momtaz | Aug 1999 | A |
5946244 | Manning | Aug 1999 | A |
5953284 | Baker et al. | Sep 1999 | A |
5953386 | Anderson | Sep 1999 | A |
5964884 | Partovi et al. | Oct 1999 | A |
5966724 | Ryan | Oct 1999 | A |
5973935 | Schoenfeld et al. | Oct 1999 | A |
5973951 | Bechtolsheim et al. | Oct 1999 | A |
5978567 | Rebane et al. | Nov 1999 | A |
5987196 | Noble | Nov 1999 | A |
5990719 | Dai et al. | Nov 1999 | A |
6005694 | Liu | Dec 1999 | A |
6005823 | Martin et al. | Dec 1999 | A |
6011732 | Harrison et al. | Jan 2000 | A |
6011822 | Dreyer | Jan 2000 | A |
6014042 | Nguyen | Jan 2000 | A |
6016282 | Keeth | Jan 2000 | A |
6021268 | Johnson | Feb 2000 | A |
6023489 | Hatch | Feb 2000 | A |
6023726 | Saksena | Feb 2000 | A |
6026050 | Baker et al. | Feb 2000 | A |
6026134 | Duffy et al. | Feb 2000 | A |
6026226 | Heile et al. | Feb 2000 | A |
6029250 | Keeth | Feb 2000 | A |
6031241 | Silfvast et al. | Feb 2000 | A |
6033951 | Chao | Mar 2000 | A |
6038219 | Mawhinney et al. | Mar 2000 | A |
6038630 | Foster et al. | Mar 2000 | A |
6061263 | Boaz et al. | May 2000 | A |
6061296 | Ternullo, Jr. et al. | May 2000 | A |
6067262 | Irrinki et al. | May 2000 | A |
6067592 | Farmwald et al. | May 2000 | A |
6067649 | Goodwin | May 2000 | A |
6072802 | Uhm et al. | Jun 2000 | A |
6073190 | Rooney | Jun 2000 | A |
6076139 | Welker et al. | Jun 2000 | A |
6078451 | Ioki | Jun 2000 | A |
6079008 | Clery, III | Jun 2000 | A |
6087857 | Wang | Jul 2000 | A |
6088774 | Gillingham | Jul 2000 | A |
6092158 | Harriman et al. | Jul 2000 | A |
6098158 | Lay et al. | Aug 2000 | A |
6101151 | Watanabe et al. | Aug 2000 | A |
6101152 | Farmwald et al. | Aug 2000 | A |
6101197 | Keeth et al. | Aug 2000 | A |
6105075 | Ghaffari | Aug 2000 | A |
6105088 | Pascale et al. | Aug 2000 | A |
6105157 | Miller | Aug 2000 | A |
6111757 | Dell et al. | Aug 2000 | A |
6115318 | Keeth | Sep 2000 | A |
6119242 | Harrison | Sep 2000 | A |
6125157 | Donnelly et al. | Sep 2000 | A |
6125431 | Kobayashi | Sep 2000 | A |
6128703 | Bourekas et al. | Oct 2000 | A |
6131149 | Lu et al. | Oct 2000 | A |
6134624 | Burns et al. | Oct 2000 | A |
6137709 | Boaz et al. | Oct 2000 | A |
6144587 | Yoshida | Nov 2000 | A |
6147905 | Seino | Nov 2000 | A |
6147916 | Ogura | Nov 2000 | A |
6150889 | Gulliver et al. | Nov 2000 | A |
6160423 | Haq | Dec 2000 | A |
6167465 | Parvin et al. | Dec 2000 | A |
6167486 | Lee et al. | Dec 2000 | A |
6173432 | Harrison | Jan 2001 | B1 |
6175571 | Haddock et al. | Jan 2001 | B1 |
6185352 | Hurley | Feb 2001 | B1 |
6185676 | Poplingher et al. | Feb 2001 | B1 |
6186400 | Dvorkis et al. | Feb 2001 | B1 |
6191663 | Hannah | Feb 2001 | B1 |
6194917 | Deng | Feb 2001 | B1 |
6201724 | Ishizaki et al. | Mar 2001 | B1 |
6208180 | Fisch et al. | Mar 2001 | B1 |
6219725 | Diehl et al. | Apr 2001 | B1 |
6223301 | Santeler et al. | Apr 2001 | B1 |
6226729 | Stevens et al. | May 2001 | B1 |
6229712 | Munoz-Bustamante et al. | May 2001 | B1 |
6229727 | Doyle | May 2001 | B1 |
6233376 | Updegrove | May 2001 | B1 |
6243769 | Rooney | Jun 2001 | B1 |
6243831 | Mustafa et al. | Jun 2001 | B1 |
6246618 | Yamamoto et al. | Jun 2001 | B1 |
6247107 | Christie | Jun 2001 | B1 |
6249802 | Richardson et al. | Jun 2001 | B1 |
6253360 | Yoshiba | Jun 2001 | B1 |
6256253 | Oberlaender et al. | Jul 2001 | B1 |
6256692 | Yoda et al. | Jul 2001 | B1 |
6262921 | Manning | Jul 2001 | B1 |
6266730 | Perino et al. | Jul 2001 | B1 |
6269451 | Mullarkey | Jul 2001 | B1 |
6272609 | Jeddeloh | Aug 2001 | B1 |
6285349 | Smith | Sep 2001 | B1 |
6285726 | Gaudet | Sep 2001 | B1 |
6286083 | Chin et al. | Sep 2001 | B1 |
6294937 | Crafts et al. | Sep 2001 | B1 |
6295328 | Kim et al. | Sep 2001 | B1 |
6298450 | Liu et al. | Oct 2001 | B1 |
6301637 | Krull et al. | Oct 2001 | B1 |
6327196 | Mullarkey | Dec 2001 | B1 |
6327318 | Bhullar et al. | Dec 2001 | B1 |
6327642 | Lee et al. | Dec 2001 | B1 |
6330205 | Shimizu et al. | Dec 2001 | B2 |
6338127 | Manning | Jan 2002 | B1 |
6344664 | Trezza et al. | Feb 2002 | B1 |
6347055 | Motomura | Feb 2002 | B1 |
6349363 | Cai et al. | Feb 2002 | B2 |
6356573 | Jonsson et al. | Mar 2002 | B1 |
6366375 | Sakai et al. | Apr 2002 | B1 |
6367074 | Bates et al. | Apr 2002 | B1 |
6370068 | Rhee | Apr 2002 | B2 |
6370611 | Callison et al. | Apr 2002 | B1 |
6373777 | Suzuki | Apr 2002 | B1 |
6377646 | Sha | Apr 2002 | B1 |
6378079 | Mullarkey | Apr 2002 | B1 |
6381190 | Shinkai | Apr 2002 | B1 |
6389514 | Rokicki | May 2002 | B1 |
6392653 | Malandain et al. | May 2002 | B1 |
6401213 | Jeddeloh | Jun 2002 | B1 |
6405273 | Fleck et al. | Jun 2002 | B1 |
6405280 | Ryan | Jun 2002 | B1 |
6421744 | Morrison et al. | Jul 2002 | B1 |
6430696 | Keeth | Aug 2002 | B1 |
6433785 | Garcia et al. | Aug 2002 | B1 |
6434639 | Haghighi | Aug 2002 | B1 |
6434654 | Story et al. | Aug 2002 | B1 |
6434696 | Kang | Aug 2002 | B1 |
6434736 | Schaecher et al. | Aug 2002 | B1 |
6438043 | Gans et al. | Aug 2002 | B2 |
6438622 | Haghighi et al. | Aug 2002 | B1 |
6438668 | Esfahani et al. | Aug 2002 | B1 |
6442644 | Gustavson et al. | Aug 2002 | B1 |
6449308 | Knight, Jr. et al. | Sep 2002 | B1 |
6453393 | Holman et al. | Sep 2002 | B1 |
6457116 | Mirsky et al. | Sep 2002 | B1 |
6460114 | Jeddeloh | Oct 2002 | B1 |
6462978 | Shibata et al. | Oct 2002 | B2 |
6463059 | Movshovich et al. | Oct 2002 | B1 |
6470422 | Cai et al. | Oct 2002 | B2 |
6473828 | Matsui | Oct 2002 | B1 |
6473871 | Coyle et al. | Oct 2002 | B1 |
6477592 | Chen et al. | Nov 2002 | B1 |
6477614 | Leddige et al. | Nov 2002 | B1 |
6477621 | Lee et al. | Nov 2002 | B1 |
6479322 | Kawata et al. | Nov 2002 | B2 |
6484244 | Manning | Nov 2002 | B1 |
6487556 | Downs et al. | Nov 2002 | B1 |
6490188 | Nuxoll et al. | Dec 2002 | B2 |
6493320 | Schober et al. | Dec 2002 | B1 |
6493784 | Kamimura et al. | Dec 2002 | B1 |
6493803 | Pham et al. | Dec 2002 | B1 |
6496193 | Surti et al. | Dec 2002 | B1 |
6496909 | Schimmel | Dec 2002 | B1 |
6499111 | Mullarkey | Dec 2002 | B2 |
6501471 | Venkataraman et al. | Dec 2002 | B1 |
6502161 | Perego et al. | Dec 2002 | B1 |
6502212 | Coyle et al. | Dec 2002 | B1 |
6505287 | Uematsu | Jan 2003 | B2 |
6507899 | Oberlaender et al. | Jan 2003 | B1 |
6523092 | Fanning | Feb 2003 | B1 |
6523093 | Bogin et al. | Feb 2003 | B1 |
6526111 | Prasad | Feb 2003 | B1 |
6526483 | Cho et al. | Feb 2003 | B1 |
6526498 | Mirsky et al. | Feb 2003 | B1 |
6539490 | Forbes et al. | Mar 2003 | B1 |
6552304 | Hirose et al. | Apr 2003 | B1 |
6552564 | Forbes et al. | Apr 2003 | B1 |
6553479 | Mirsky et al. | Apr 2003 | B2 |
6564329 | Cheung et al. | May 2003 | B1 |
6570429 | Hellriegel | May 2003 | B1 |
6580531 | Swanson et al. | Jun 2003 | B1 |
6584543 | Williams et al. | Jun 2003 | B2 |
6587912 | Leddige et al. | Jul 2003 | B2 |
6590816 | Perner | Jul 2003 | B2 |
6594713 | Fuoco et al. | Jul 2003 | B1 |
6594722 | Willke, II et al. | Jul 2003 | B1 |
6598154 | Vaid et al. | Jul 2003 | B1 |
6599031 | Li | Jul 2003 | B2 |
6615325 | Mailloux et al. | Sep 2003 | B2 |
6622227 | Zumkehr et al. | Sep 2003 | B2 |
6628294 | Sadowsky et al. | Sep 2003 | B1 |
6629220 | Dyer | Sep 2003 | B1 |
6631440 | Jenne et al. | Oct 2003 | B2 |
6636110 | Ooishi et al. | Oct 2003 | B1 |
6636957 | Stevens et al. | Oct 2003 | B2 |
6643787 | Zerbe et al. | Nov 2003 | B1 |
6646929 | Moss et al. | Nov 2003 | B1 |
6647470 | Janzen | Nov 2003 | B1 |
6651139 | Ozeki et al. | Nov 2003 | B1 |
6658509 | Bonella et al. | Dec 2003 | B1 |
6661943 | Li | Dec 2003 | B2 |
6662304 | Keeth et al. | Dec 2003 | B2 |
6665202 | Lindahl et al. | Dec 2003 | B2 |
6665222 | Wright et al. | Dec 2003 | B2 |
6667895 | Jang et al. | Dec 2003 | B2 |
6681292 | Creta et al. | Jan 2004 | B2 |
6694496 | Goslin et al. | Feb 2004 | B2 |
6697926 | Johnson et al. | Feb 2004 | B2 |
6707726 | Nishio et al. | Mar 2004 | B2 |
6715018 | Farnworth et al. | Mar 2004 | B2 |
6718440 | Maiyuran et al. | Apr 2004 | B2 |
6721187 | Hall et al. | Apr 2004 | B2 |
6721195 | Brunelle et al. | Apr 2004 | B2 |
6724685 | Braun et al. | Apr 2004 | B2 |
6728800 | Lee et al. | Apr 2004 | B1 |
6735679 | Herbst et al. | May 2004 | B1 |
6735682 | Segelken et al. | May 2004 | B2 |
6745275 | Chang | Jun 2004 | B2 |
6751113 | Bhakta et al. | Jun 2004 | B2 |
6751703 | Chilton | Jun 2004 | B2 |
6751722 | Mirsky et al. | Jun 2004 | B2 |
6752539 | Colgan et al. | Jun 2004 | B2 |
6754117 | Jeddeloh | Jun 2004 | B2 |
6754812 | Abdallah et al. | Jun 2004 | B1 |
6756661 | Tsuneda et al. | Jun 2004 | B2 |
6760833 | Dowling | Jul 2004 | B1 |
6771538 | Shukuri et al. | Aug 2004 | B2 |
6772261 | D'Antonio et al. | Aug 2004 | B1 |
6775747 | Venkatraman | Aug 2004 | B2 |
6785780 | Klein et al. | Aug 2004 | B1 |
6789173 | Tanaka et al. | Sep 2004 | B1 |
6792059 | Yuan et al. | Sep 2004 | B2 |
6792496 | Aboulenein et al. | Sep 2004 | B2 |
6793408 | Levy et al. | Sep 2004 | B2 |
6795899 | Dodd et al. | Sep 2004 | B2 |
6799246 | Wise et al. | Sep 2004 | B1 |
6799268 | Boggs et al. | Sep 2004 | B1 |
6804760 | Wiliams | Oct 2004 | B2 |
6804764 | LaBerge et al. | Oct 2004 | B2 |
6807630 | Lay et al. | Oct 2004 | B2 |
6809555 | Nguyen | Oct 2004 | B1 |
6811320 | Abbott | Nov 2004 | B1 |
6816931 | Shih | Nov 2004 | B2 |
6816947 | Huffman | Nov 2004 | B1 |
6816987 | Olson et al. | Nov 2004 | B1 |
6820181 | Jeddeloh et al. | Nov 2004 | B2 |
6821029 | Grung et al. | Nov 2004 | B1 |
6823023 | Hannah | Nov 2004 | B1 |
6845409 | Talagala et al. | Jan 2005 | B1 |
6889304 | Perego et al. | May 2005 | B2 |
6910109 | Holman et al. | Jun 2005 | B2 |
6910146 | Dow | Jun 2005 | B2 |
6950956 | Zerbe et al. | Sep 2005 | B2 |
6956996 | Gordon et al. | Oct 2005 | B2 |
6961259 | Lee et al. | Nov 2005 | B2 |
6980824 | Hsu et al. | Dec 2005 | B2 |
6982892 | Lee et al. | Jan 2006 | B2 |
7000062 | Perego et al. | Feb 2006 | B2 |
7016213 | Reeves et al. | Mar 2006 | B2 |
7016606 | Cai et al. | Mar 2006 | B2 |
7024547 | Kartoz | Apr 2006 | B2 |
7035212 | Mittal et al. | Apr 2006 | B1 |
7047351 | Jeddeloh | May 2006 | B2 |
7062595 | Lindsay et al. | Jun 2006 | B2 |
7106973 | Kube et al. | Sep 2006 | B2 |
7120727 | Lee et al. | Oct 2006 | B2 |
20010023474 | Kyozuka et al. | Sep 2001 | A1 |
20010034839 | Karjoth et al. | Oct 2001 | A1 |
20010039612 | Lee | Nov 2001 | A1 |
20020038412 | Nizar et al. | Mar 2002 | A1 |
20020112119 | Halbert et al. | Aug 2002 | A1 |
20020116588 | Beckert et al. | Aug 2002 | A1 |
20020144064 | Fanning | Oct 2002 | A1 |
20020178319 | Sanchez-Olea | Nov 2002 | A1 |
20030005223 | Coulson et al. | Jan 2003 | A1 |
20030043158 | Wasserman et al. | Mar 2003 | A1 |
20030043426 | Baker et al. | Mar 2003 | A1 |
20030093630 | Richard et al. | May 2003 | A1 |
20030110368 | Kartoz | Jun 2003 | A1 |
20030149809 | Jensen et al. | Aug 2003 | A1 |
20030163649 | Kapur et al. | Aug 2003 | A1 |
20030177320 | Sah et al. | Sep 2003 | A1 |
20030193927 | Hronik | Oct 2003 | A1 |
20030217223 | Nino, Jr. et al. | Nov 2003 | A1 |
20030227798 | Pax | Dec 2003 | A1 |
20030229734 | Chang et al. | Dec 2003 | A1 |
20030229762 | Maiyuran et al. | Dec 2003 | A1 |
20030229770 | Jeddeloh | Dec 2003 | A1 |
20040022094 | Radhakrishnan et al. | Feb 2004 | A1 |
20040024959 | Taylor | Feb 2004 | A1 |
20040028412 | Murphy | Feb 2004 | A1 |
20040044833 | Ryan | Mar 2004 | A1 |
20040047169 | Lee et al. | Mar 2004 | A1 |
20040064602 | George | Apr 2004 | A1 |
20040123088 | Poisner et al. | Jun 2004 | A1 |
20040126115 | Levy et al. | Jul 2004 | A1 |
20040128421 | Forbes | Jul 2004 | A1 |
20040144994 | Lee et al. | Jul 2004 | A1 |
20040148482 | Grundy et al. | Jul 2004 | A1 |
20040230718 | Polzin et al. | Nov 2004 | A1 |
20040236885 | Fredriksson et al. | Nov 2004 | A1 |
20040251929 | Pax et al. | Dec 2004 | A1 |
20040257890 | Lee et al. | Dec 2004 | A1 |
20040268009 | Shin et al. | Dec 2004 | A1 |
20050030797 | Pax et al. | Feb 2005 | A1 |
20050044304 | James | Feb 2005 | A1 |
20050044327 | Howard et al. | Feb 2005 | A1 |
20050071542 | Weber et al. | Mar 2005 | A1 |
20050105350 | Zimmerman | May 2005 | A1 |
20050162882 | Reeves et al. | Jul 2005 | A1 |
20050177690 | LaBerge | Aug 2005 | A1 |
20050210185 | Renick | Sep 2005 | A1 |
20050210216 | Jobs et al. | Sep 2005 | A1 |
20050216648 | Jeddeloh | Sep 2005 | A1 |
20050228939 | Janzen | Oct 2005 | A1 |
20050257021 | James | Nov 2005 | A1 |
20050268060 | Cronin et al. | Dec 2005 | A1 |
20060023528 | Pax et al. | Feb 2006 | A1 |
20060047891 | James et al. | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
0 171 720 | Feb 1986 | EP |
0 295 515 | Dec 1988 | EP |
0 406 786 | Jan 1991 | EP |
0 450 871 | Oct 1991 | EP |
0 476 585 | Mar 1992 | EP |
0 655 741 | May 1995 | EP |
0 655 834 | May 1995 | EP |
0 680 049 | Nov 1995 | EP |
0 703 663 | Mar 1996 | EP |
0 704 848 | Apr 1996 | EP |
0 704 975 | Apr 1996 | EP |
0 767 538 | Apr 1997 | EP |
0849685 | Jun 1998 | EP |
2288066 | Oct 1995 | GB |
6-1237512 | Oct 1986 | JP |
2-112317 | Apr 1990 | JP |
4-135311 | May 1992 | JP |
5-136664 | Jun 1993 | JP |
5-282868 | Oct 1993 | JP |
0-7319577 | Dec 1995 | JP |
2001265539 | Sep 2001 | JP |
WO 9319422 | Sep 1993 | WO |
WO 9429871 | Dec 1994 | WO |
WO 9522200 | Aug 1995 | WO |
WO 9522206 | Aug 1995 | WO |
WO 9610866 | Apr 1996 | WO |
WO 9714289 | Apr 1997 | WO |
WO 9742557 | Nov 1997 | WO |
WO 0227499 | Apr 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060206742 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10695383 | Oct 2003 | US |
Child | 11433181 | US |