System and method for using a learning sequence to establish communications on a high-speed nonsynchronous interface in the absence of clock forwarding

Information

  • Patent Grant
  • 7461286
  • Patent Number
    7,461,286
  • Date Filed
    Thursday, May 11, 2006
    18 years ago
  • Date Issued
    Tuesday, December 2, 2008
    16 years ago
Abstract
A memory system includes a memory hub controller that sends write data to a plurality of memory modules through a downstream data bus and receives read data from the memory modules through an upstream data bus. The memory hub controller includes a receiver coupled to the upstream data bus and a transmitter coupled to the downstream data bus. Similarly, each of the memory modules includes a receiver coupled to the downstream data bus and a transmitter coupled to the upstream data bus. Each receiver includes a receive clock generator that is synchronized by coupling a known pattern of data to the receiver. The receiver determines which phase of the receive clock best captures the known pattern and uses that receive clock phase during normal operation.
Description
TECHNICAL FIELD

The present invention relates to a processor-based system, and more particularly, to a processor-based system having a memory module with a memory hub coupling several memory devices to a processor or other memory access device.


BACKGROUND OF THE INVENTION

Processor-based systems, such as computer systems, use memory devices, such as dynamic random access memory (“DRAM”) devices, as system memory to store instructions and data that are accessed by a processor. In a typical computer system, the processor communicates with the system memory through a processor bus and a memory controller. The processor issues a memory request, which includes a memory command, such as a read command, and an address designating the location from which data or instructions are to be read or to which data or instructions are to be written. The memory controller uses the command and address to generate appropriate command signals as well as row and column addresses, which are applied to the system memory. In response to the commands and addresses, data is transferred between the system memory and the processor. The memory controller is often part of a system controller, which also includes bus bridge circuitry for coupling the processor bus to an expansion bus, such as a PCI bus.


Although the operating speed of memory devices has continuously increased, this increase in operating speed has not kept pace with increases in the operating speed of processors. Even slower has been the increase in operating speed of memory controllers coupling processors to memory devices. The relatively slow speed of memory controllers and memory devices limits the data bandwidth between the processor and the memory devices.


One approach to increasing the data bandwidth to and from memory devices is to use multiple memory devices coupled to the processor through a memory hub as shown in FIG. 1. A computer system 10 using a memory hub architecture includes a processor 104 for performing various computing functions, such as executing specific software to perform specific calculations or tasks. The processor 104 includes a processor bus 106 that normally includes an address bus, a control bus, and a data bus. The processor bus 106 is typically coupled to cache memory 108, which, is typically static random access memory (“SRAM”). Finally, the processor bus 106 is coupled to a system controller 110, which is also sometimes referred to as a bus bridge.


The system controller 110 contains a memory hub controller 112 that is coupled to the processor 104. The memory hub controller 112 is also coupled to several memory modules 114a-n through a bus system 115. Each of the memory modules 114a-n includes a memory hub 116 coupled to several memory devices 118 through command, address and data buses 117. The memory hub 116 efficiently routes memory requests and responses between the controller 112 and the memory devices 118. Computer systems employing this architecture can have a higher bandwidth because the processor 104 can access one memory module 114a-n while another memory module 114a-n is responding to a prior memory access. For example, the processor 104 can output write data to one of the memory modules 114a-n in the system while another memory module 114a-n in the system is preparing to provide read data to the processor 104. The operating efficiency of computer systems using a memory hub architecture can make it more practical to vastly increase data bandwidth of a memory system. A memory hub architecture can also provide greatly increased memory capacity in computer systems.


The system controller 110 also serves as a communications path to the processor 104 for a variety of other components. More specifically, the system controller 110 includes a graphics port that is typically coupled to a graphics controller 116, which is, in turn, coupled to a video terminal 118. The system controller 110 is also coupled to one or more input devices 120, such as a keyboard or a mouse, to allow an operator to interface with the computer system 10. Typically, the computer system 10 also includes one or more output devices 122, such as a printer, coupled to the processor 104 through the system controller 110. One or more data storage devices 124 are also typically coupled to the processor 104 through the system controller 110 to allow the processor 104 to store data or retrieve data from internal or external storage media (not shown). Examples of typical storage devices 124 include hard and floppy disks, tape cassettes, and compact disk read-only memories (CD-ROMs).


Although there are advantages to utilizing a memory hub for accessing memory devices, the design of the hub memory system, and more generally, computer systems including such a memory hub architecture, becomes increasingly difficult. For example, the memory modules 114a-n each operates internally in a synchronous manner so that the command, address, and data signals transferred to the memory module 114a-n are normally latched or strobed into the memory modules 114a-n by a clock signal. However, operations between memory modules 114a-n are asynchronous. As transfer rates increase, the time during which the command, address and data signals as received at the memory hubs 116 are valid decreases. This period during which the signals are valid is commonly referenced by those ordinarily skilled in the art as the “window” or “eye.” Not only does the size of the eye for command, address, and data signals decrease, but the time or location of the eye can also vary because of various factors, such as timing skew, voltage and current drive capability, and the like. In the case of timing skew of signals, it often arises from a variety of timing errors such as loading on the lines of the bus and the physical lengths of such lines.


As the size of signal eyes decrease at higher transfer rates, the variations in the location of the signal eyes become more of a problem. One technique to alleviate this problem to some extent is to couple a clock to the memory modules, a technique known as clock forwarding. As shown in FIG. 1, a clock generator 500 generates a clock signal CLK and couples it to the memory hub controller 112 and each of the memory hubs 116 in respective memory modules 114a-n. The memory hubs 116 in respective memory modules 114a-n also receive command, address and data signals from the memory hub controller 112 that are coupled through the bus system 115. The CLK signal is coupled from the clock generator 500 in synchronism with the command, address and data signals so it, in theory, should be usable by the memory hubs 116 to define the eye during for the command, address and data signals as they are received at the memory hubs 116. However, in practice, even this approach becomes ineffective as signal transfer rates continue to decrease. In particular, the CLK signal may be subject to different conditions than the command, address and data signals, such as being coupled through a physically different signal path or being loaded to a greater degree. Also, for the clock forwarding techniques used in the computer system 10 to successfully function at higher clock speeds, the layout of conductors between the memory hub controller 112 and the memory hubs 116 must be precisely controlled.


One technique that has been proposed to allow the CLK signal to continue being used to strobe command, address and data signals at higher transfer rates is to include circuitry (not shown) in the memory hubs 116 that adjusts the timing of the CLK signal within each of the hubs 116 so that it is aligned with the signal eye. However, this technique adds a fair degree of complexity to the memory hubs 116 and is not always effective.


There is therefore a need for a system and method that allows command, address and data signals to be coupled between a memory hub controller and one or more memory hubs in respective memory modules that avoids problems of synchronizing a clock signal coupled between the memory hub controller and memory hubs along with the command, address, and data signals.


SUMMARY OF THE INVENTION

A memory hub controller is coupled to a memory module having a memory hub and a plurality of memory devices. The memory hub controller communicates with the memory module through an upstream data bus and a downstream data bus. The memory hub controller includes a receiver coupled to the upstream data bus and a transmitter coupled to the downstream data bus. The memory module includes a receiver coupled to the downstream data bus and a transmitter coupled to the upstream data bus. Each of the transmitters is operable in an initialization mode to generate an expected data pattern and to repeatedly couple the generated data pattern to the data bus to which it is coupled. Each of the receivers is operable responsive to a receive clock signal to capture data coupled to the data bus to which it is coupled, including the repeatedly coupled expected data pattern. The receiver being operable in the initialization mode to incrementally alter the phase of the receive clock signal to determine the phases of the receive clock signal that are able to capture received data patterns that match a expected data pattern. The receiver then determines a final value for the phase of the receive clock signal based on the determination of the phases of the receive clock signal that are able to capture received data patterns that match the expected data pattern. This final phase value is then used during normal operation as the phase of the receive clock signal.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a computer system that includes several memory modules having a memory hub architecture coupled to a memory hub controller.



FIG. 2 is a block diagram of a computer system that includes several memory modules having a memory hub architecture according to one embodiment of the present invention.



FIG. 3 is a block diagram of one embodiment of receivers and transmitters used in the computer system of FIG. 2 or some other system.



FIG. 4 is a block diagram of one embodiment of a pattern comparator used in the receivers of FIG. 3.



FIG. 5 is a flow chart showing the operation of a receive interface controller that controls the operation of the receivers shown in FIGS. 3 and 4.



FIG. 6 is a block diagram of a memory hub that may be used the memory modules that are used in the computer system of FIG. 2.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention are directed to a memory module and memory controller each having the capability of generating a clock signal for strobing data signals during the “eye” of the data signals when the data signals are valid. Certain details are set forth below to provide a sufficient understanding of various embodiments of the invention. However, it will be clear to one skilled in the art that the invention may be practiced without these particular details. In other instances, well-known circuits, control signals, and timing protocols have not been shown in detail in order to avoid unnecessarily obscuring the invention. Also, although the embodiments are explained with reference to generating a clock signal to strobe data signals, it will be understood that the same principle can be used to generate a clock signal to strobe command and address signals.


A computer system 100 having a hub memory system according to one embodiment of the invention is shown in FIG. 2. The computer system 100 uses many of the same components that are used in the computer system 10 of FIG. 1. Therefore, in the interest of brevity, these components have been provided with the same reference numerals, and an explanation of their the functions and operation will not be repeated.


As in the computer system 10 of FIG. 1, the system controller 110 also includes a memory hub controller 128 that is coupled to several memory modules 130a,b . . . n, which serve as system memory for the computer system 100. The memory modules 130 are each coupled to a high-speed downstream bus 132 and a high-speed upstream bus 134. The downstream bus 132 extends downstream from the memory hub controller 128 and downstream from each of the memory modules 130 except the memory module 130n furthest from the memory hub controller 128. Similarly, the upstream bus 134 extends upstream from each of the memory modules 130. Each of these buses 132, 134, include a discrete data bus, although they may also include discrete command and address buses, a combined command/address bus, or some other bus system. However, the explanation of the various embodiments will be with respect to a data bus, it being understood that a similar technique can be used to strobe command and address signals.


The downstream bus 132 couple data away from the memory hub controller 128, and the upstream bus 134 couple data toward the memory hub controller 128. Therefore, the downstream bus 132 couples write data to and from each of the memory modules 130, except for the memory module 130n furthest downstream from the memory hub controller 128, which only receives write data. Similarly, the upstream bus 134 couples read data to and from each of the memory modules 130, except for the memory module 130n furthest downstream from the memory hub controller 128, which only transmits read data. The downstream bus 132 also couples write data from the memory hub controller 128, and the upstream bus 134 couples read data to the memory hub controller 128. Significantly, the buses 132, 134 need not couple clock signals to and from the memory modules 130 and the memory hub controller 128 for the purpose of allowing the memory modules 130 to capture data transmitted through the buses 132, 134. Instead, as explained in greater detail below, each of the memory modules 130 and the memory hub controller 128 generates signals internally to strobe the data coupled through the buses 132, 134.


The memory modules 130 are shown coupled to the memory hub controller 128 in a point-to-point coupling arrangement in which each of the buses 132, 134 are coupled only between two points. However, it will be understood that other topologies may also be used. For example, it may be possible to use a multi-drop arrangement in which a single downstream bus (not shown) and a single upstream bus (not shown) are coupled to all of the memory modules 130. A switching topology may also be used in which the, memory hub controller 1Z8 is selectively coupled to each of the memory modules 130 through a switch (not shown). Other topologies that may be used will be apparent to one skilled in the art.


Each of the memory modules 130 includes a first receiver 142 that receives write data through the downstream bus 132, a first transmitter 144 that transmits read data upstream through the upstream bus 134, a second transmitter 146 that transmits write data downstream through the downstream bus 132, and a second receiver 148 that receives read data through the upstream bus 134.


The memory modules 130 also each include a memory hub local 150 that is coupled to its first receiver 142 and its first transmitter 144. The memory hub local 150 receives write data through the downstream bus 132 and the first receiver 142 and couples the write data to one or more of sixteen memory devices 160, which, in the example illustrated in FIG. 2, are synchronous dynamic random access memory (“SDRAM”) devices. However, a fewer or greater number of memory devices 160 may be used, and memory devices other than SDRAM devices may also be used. The memory hub local 150 is coupled to each of the memory devices 160 through a bus system 164, which normally includes a control bus, an address bus, and a data bus. However, other bus systems, such as a bus system using a shared command/address bus, may also be used.


The memory hub local 150 also receives read data from one or more of the memory devices 160 and couples the read data through the first transmitter 144 and the upstream bus 134. In the event the write data coupled through the downstream bus 132 and the first receiver 142 is not being directed to the memory devices 160 in the memory module 130 receiving the write data, the write data are coupled though a downstream bypass path 170 to the second transmitter 146 for coupling through the downstream bus 132. Similarly, if read data is being transmitted from a downstream memory module 130, the read data is coupled through the upstream bus 134 and the second receiver 148. The read data are then coupled upstream through an upstream bypass path 174, and then through the first transmitter 144 and the upstream bus 134. The second receiver 148 and the second transmitter 146 in the memory module 130n furthest downstream from the memory hub controller 128 are not used and may be omitted from the memory module 130n.


The memory hub controller 128 also includes a transmitter 180 coupled to the downstream bus 132, and a receiver 182 coupled to the upstream bus 134. The downstream bus 132 from the transmitter 180 and the upstream bus 134 to the receiver 182 are coupled only to the memory module 130a that is the furthest upstream to the memory hub controller 128. The transmitter 180 couples write data from the memory hub controller 128, and the receiver 182 couples read data to the memory hub controller 128.


The computer system 100 also includes a reference clock generator 190, which generates a clock signal that is coupled to the memory hub controller 128 and each of the memory modules 130. The memory hub controller 128 and the memory modules 130 use the reference clock to generate two internal clock signals that, in the embodiment of FIG. 2, have frequencies of two times, and one-half the frequency of the reference clock signal. The 2× internal clock signal is used as a transmit clock to strobe data from the transmitters 144, 146, 180. As explained in considerable detail below, the receivers 142, 148, 182 adjust the phase of the internal clock signal to generate a receive clock signal that is used to strobe data into the receivers 142, 148, 182. Briefly, the receivers 142, 148, 182 perform this function by receiving a known data pattern from a transmitter 144, 146, 180 to which it is coupled, and attempt to capture that data pattern by strobing the data as the phases of the receive clock signals are incrementally varied. The phase of the receive clock signal that best captures the data pattern is then used to strobe data into the receivers 142, 148, 182 in normal operation.


One embodiment of the receivers 142, 182 and the transmitters 144, 180 in the memory hub controller 128 and in one of the memory modules 130 is shown in FIG. 3. In both cases, a receiver 200 functions as both receivers 142, 148 in the memory module 130 and the receiver 182 in the memory hub controller 128, and a transmitter 210 functions as both transmitters 144, 146 in the memory module 130 as well as the single transmitter 180 in the memory hub controller 128. The transmitter 210 includes a pattern generator 220 that generates a predetermined pattern of data bits, and a transmit interface control 224 that controls the transmitting of the pattern. In the embodiment of FIG. 3, the same pattern is transmitted on all of the data bits of the buses 132, 134. During an initialization phase of the receiver 200 and transmitter 210, the transmitter 210 continuously repeats its transmission of the data pattern.


As previously explained, the receiver 200 receives the data bits from the transmitter 210 and strobes them in using a receive clock signal generated from the clock signal received from the clock generator 500 and having four times the frequency of the core clock. More specifically, in one embodiment of the invention, the pattern transmitted by the transmitter 210 is the following 32-bit pattern divided into four cycles each having 8 bits: “01011011 11000101 10010011 00101100” (hex “5BC5932C”). The data bit pattern is transmitted from right to left. In the embodiment of FIG. 3, a bit is strobed into the receiver 200 on each transition of the receive clock signal, so two bits are captured by the receiver 200 on each receive clock cycle. Since the receive clock has a frequency of four times the core clock, eight bits of data are captured during each cycle of the core clock.


In the embodiment of FIG. 3, the first bit is always captured on the positive edge of the receive clock signal. As a result, there are 16 possible patterns of valid data captured by the receiver 200, namely, the transmitted 32-bit pattern shifted by two bits for each pattern. An expected pattern memory 230 stores all 16 of these possible patterns, which, as previously explained, consists of eight bits.


In the embodiment of FIG. 3, a pattern comparator 234 performs three comparisons. First, it checks all of the data bits of the bus 132 to ensure that they all have the same value as each data bit is captured since the same data are transmitted on each data bit of the bus 132. The same comparison is performed on the bus 134.


In the second comparison, the pattern comparator 234 compares the eight data bits captured in the receiver 200 for each core cycle to the sixteen valid 8-bit data bit patterns stored in an expected pattern memory 230. For purposes of this comparison, it can use any of the 32 bits captured on each transition of the receive clock signal since the first comparison confirmed that all 32 bits were the same. Based on this comparison, phase adjustment logic 240 adjusts the phase of the receive clock signal so that it can best capture the data coupled to the receiver. More specifically, the pattern comparator 234 compares the 8 bits received during any core cycle to the 16 valid patterns stored in the expected pattern memory 230 to adjust the phase of the receive clock signal. The above operation is controlled by a receive interface controller 244, the operation of which will be explained with reference to the flow chart of FIG. 5.


In the third comparison, the pattern comparator 234 checks an additional 33rd bit, which functions as a control bit. The pattern that is sent on the buses 132, 134 is also sent on the control bit for each of these buses. The eight bits captured on one core clock is compared in the same manner as the second comparison.


One embodiment of the pattern comparator 234 is shown in FIG. 4 along with the pattern generator 220 and the transmit interface controller 224 in the transmitter 210 and the expected pattern memory 230, the phase adjustment logic 240 and the receive interface controller 244 as shown in FIG. 3. The pattern comparator 234 includes a set of 32 double data rate (“DDR”) flip-flops 250 that receive the receive clock signal from a receive clock generator 254 and capture 32 bits of data responsive to each transition of the receive clock signal. As each 32 bits of data are captured by the flip-flops 250, the 32 bits of data that were captured on the previous transition of the receive clock signal are transferred to a receive capture buffer 258. The buffer 258 is a recirculating buffer that is able to store data from 24 transitions of the receive clock signal, which occur responsive to twelve periods of the receive clock signal or three periods of the core clock signal. Thus, the buffer 258 stores 768 bits of data (i.e., 24*32), and, since it is a recirculating buffer, the oldest data bits stored in the buffer 258 are overwritten with new data bits. The data stored in the receive capture buffer 258 are 32 bits for each of the positive edge and the negative edge of the receive clock signal. There are 12 locations in the buffer 258 that store data for the positive edge and 12 locations in the buffer 258 that store data for the negative edge. Each of these locations is 32 bits wide. The receive capture buffer 258 outputs data from 4 locations for the positive edge and 4 locations for the negative edge. As a result, 256 bits are coupled from the buffer 258, i.e., 32 bits for each of 8 locations.


The 32 bits from the receive capture buffer 258 are applied to a multiplexer 260, which selects one of four sets of bits for coupling to a set of flip-flops 264. Each set consists of 4 bits from 4 respective locations for the positive edge and 4 bits from 4 respective locations for the negative edge. The first set consists of bits 0, 1, 2, 3 for both the positive and negative edges, the second set consists of bits 4, 5, 6, 7 for both the positive and negative edges, the third set consists of bits 8, 9, 10, 11 for both the positive and negative edges. One of these three sets of eight data bits are selected by a pointer register 266, which is incremented by the receive interface controller 244 in a manner that will be explained below. The flip-flops 264 are clocked by an internal core clock signal that is generated from the reference clock signal.


The eight received data bits captured by the flip-flops 264 are coupled to pattern comparison logic 270, which also receives the sixteen 8-bit patterns stored in the expected pattern memory 230. The pattern comparison logic 270 then issues a pass/fail (“P/F*”) signal to the receive interface controller 244 indicative of whether the data bits from the flip-flops 264 match any of the patterns stored in the expected pattern memory 230.


The manner in which the receive interface controller 244 operates the receiver 200 will now be explained with reference to the flow-chart of FIG. 5. It will be understood by one skilled in the art that the receive interface controller 244 can be implemented as a properly programmed processor or by some other means.


After the receiver 200 is powered-up, a reset occurs at step 276, an initial startup indicator flag is set to “0” at step 278, and a variable N is set to 0 at step 280. The pattern comparator 234 then determines if the received data pattern is a valid data pattern at step 284. The received pattern will be a valid pattern if the first data bit captured is any even numbered bit, each of which is transmitted on a rising edge of the transmit clock signal. Specifically, if the data pattern “01011011 11000101 10010011 00101100” is transmitted (again, from right to left), a valid data pattern will be any eight-bit sequence of the transmitted pattern that starts on an even bit, i.e., “00101100”, “11001011”, or “00110010” . . . . If the pattern comparator 134 detected a valid pattern at step 284, it checks the value of the flag at step 286. The flag will initially be the “0” because it was set to that value at step 278. The flag is used to indicate if this is the first pass through step 284. This is needed because an initial passing condition needs to be handled differently from other passes. The pattern comparator 134 will increment a pointer at step 288 to cause the expected pattern memory 230 to output the next 8-bit pattern in sequence, which will subsequently be compared to 8 bits strobed into the receiver 200 by the receive clock signal. Additionally, if the pattern comparator 134 detected a valid pattern at step 284, the phase adjustment logic 240 decrements the phase (“P”) of the receive clock signal at step 290 by a number of increments equal to one-half of a receive clock signal period. In the embodiment of FIGS. 3 and 4, the receive clock signal is divided into 128 increments, so, in the event a valid pattern is detected, the phase of the receive clock signal is decremented by 64 increments. The first pass flag is then set to “1” at step 292, and the operation then returns to step 284, where an invalid pattern should be detected because each data bit that was strobed in by a positive edge of the receive clock signal will now be strobed in by a negative edge of the receive clock signal.


If the pattern comparator 234 detected an invalid pattern at step 284, the phase of the receive clock signal is increased by one increment during step 294, and a check is made at 296 to determine if the phase adjustment causes the phase of the receive clock signal exceeds its limit. If so, the phase of the receive clock signal is reset to an initial value at step 298 and a pointer register 555 is incremented by one. Operation then returns to step 284 to determine if a valid pattern has been received. In summary, if the received data pattern is initially valid, the receive clock is shifted by 180 degrees so that it is no longer valid. When the received pattern either becomes invalid in this manner or is initially invalid, the phase of the receive clock signal is repetitively incremented by 1 by looping through steps 284, 296, and 300.


After steps 284, 296, and 300 have occurred one or more times, the received data pattern will eventually become valid. When this occurs, the “left” edge of the data valid “eye,” the minimum phase shift of the receive clock signal that can capture valid data, has been found. The operation then progresses from step 284 to step 286. However, since the flag was set to “1” at either step 292 or step 300, the operation now progress to step 310 where addition phase shifts are added to the receive clock signal to ensure that it will always be able to capture valid data with this phase shift. Specifically, the phase is incremented by 3 increments at step 310, and a determination is made at step 314 whether a variable N that was set to 0 at step 280 is equal to 2. The first time the phase of the receive clock signal is incremented at step 310, N will still be equal to 0. Therefore, the operation will increment the variable in step 318 and return to step 284 to determine if the receive clock signal can still capture valid data. If so, the operation loops through steps 286, 310, 314 and 318 until the variable N is equal to 2. At this point the phase of the receive clock signal is saved at step 320 as the phase PL corresponding to the left edge of the data valid eye.


After the left edge of the data valid eye has been found, the receive interface controller 244 operates to find the right edge of the data valid eye. It does so by incrementing the phase of the receive clock signal by one increment at step 330 and then checking if doing so causes an invalid data pattern to be captured at step 334. Since the left edge of the data eye was found by the captured data pattern becoming valid, the data pattern is not likely to be invalid during the first pass through step 334. As a result, the operation returns to step 330 to again increment the phase of the receive clock signal. The operation continues to loop through steps 330, 334 until an invalid data pattern is detected at step 334. When this occurs, the “right” edge of the data valid “eye,” the maximum phase shift of the receive clock signal that can capture valid data, has been found. The program then saves the phase of the receive clock signal at step 338 as the phase PR corresponding to the right edge of the data valid eye.


The phase PF of the receive clock signal that will be used during normal operation is then calculated at step 340 using the formula PF=(PF+PL)/2, which sets PF midway between PF and PL. This phase value PF is then saved at step 344, and normal operation is enabled at step 348.


After the phase PF of the receive clock signal has been finalized, the receiver 200 in the memory hub controller 128 and each memory module 130 causes its respective transmitter 210 to communicate that fact to an upstream receiver. When the memory hub controller 128 has determined that all of the receivers 200 have been initialized, it ends the initialization mode and begins normal operation. One embodiment of a technique for communicating the synchronization status of the receivers 200 is described in U.S. patent application, Ser. No. 10/848,606 having a common inventor, which is incorporated herein by reference.



FIG. 6 shows an embodiment of the memory hub local 150 according to the present invention, which can be used in the memory modules 130 of FIG. 2. The memory hub local 150 include two input bus interfaces 410a,d, which may be used to couple data into the memory hub local 150, and two output bus interfaces 412a,b, which may be used to couple data from the memory hub the memory hub local 150.


The bus interfaces 410a,b, 412a,b are coupled to a switch 460 through a plurality of bus and signal lines, represented by buses 414. The buses 414 are conventional, and include a write data bus and a read data bus, although a single bi-directional data bus may alternatively be provided to couple data in both directions through the bus interfaces 410a,b, 412a,b. It will be appreciated by those ordinarily skilled in the art that the buses 414 are provided by way of example, and that the buses 414 may include fewer or greater signal lines, such as further including a request line and a snoop line, which can be used for maintaining cache coherency.


The switch 460 is coupled to four memory interfaces 470a-d which are, in turn, coupled to the memory devices 160 (FIG. 2). By providing a separate and independent memory interface 470a-d for each set of memory devices 160, the memory hub local 150 avoids bus or memory bank conflicts that typically occur with single channel memory architectures. The switch 460 is coupled to each memory interface through a plurality of bus and signal lines, represented by buses 474. The buses 474 include a write data bus, a read data bus, and a request line. However, it will be understood that a single bidirectional data bus may alternatively be used instead of a separate write data bus and read data bus. Moreover, the buses 474 can include a greater or lesser number of signal lines than those previously described.


In an embodiment of the present invention, each memory interface 470a-d is specially adapted to the memory devices 160 to which it is coupled. More specifically, each memory interface 470a-d is specially adapted to provide and receive the specific signals received and generated, respectively, by the memory devices 160 to which it is coupled. Also, the memory interfaces 470a-d are capable of operating with memory devices 160 operating at different clock frequencies. As a result, the memory interfaces 470a-d isolate the processor 104 from changes that may occur at the interface between the memory hub 130 and memory devices 160 coupled to the memory hub local 150, and it provides a more controlled environment to which the memory devices 160 may interface.


The switch 460 coupling the bus interfaces 410a,b, 412a,b and the memory interfaces 470a-d can be any of a variety of conventional or hereinafter developed switches. For example, the switch 460 may be a cross-bar switch that can simultaneously couple bus interfaces 410a,b, 412a,b to each other to provide the downstream bypass path 170 and the upstream bypass path 174 shown in FIG. 2. The switch 460 can also be a set of multiplexers that do not provide the same level of connectivity as a cross-bar switch but nevertheless can couple the some or all of the bus interfaces 410a,b, 412a,b to each of the memory interfaces 470a-d. The switch 460 may also includes arbitration logic (not shown) to determine which memory accesses should receive priority over other memory accesses. Bus arbitration performing this function is well known to one skilled in the art.


With further reference to FIG. 6, each of the memory interfaces 470a-d includes a respective memory controller 480, a respective write buffer 482, and a respective cache memory unit 484. The memory controller 480 performs the same functions as a conventional memory controller by providing control, address and data signals to the memory devices 160 to which it is coupled and receiving data signals from the memory device 160 to which it is coupled. However, the nature of the signals sent and received by the memory controller 480 will correspond to the nature of the signals that the memory devices 160 are adapted to send and receive. The cache memory unit 484 includes the normal components of a cache memory, including a tag memory, a data memory, a comparator, and the like, as is well known in the art. The memory devices used in the write buffer 482 and the cache memory unit 484 may be either DRAM devices, static random access memory (“SRAM”) devices, other types of memory devices, or a combination of all three. Furthermore, any or all of these memory devices as well as the other components used in the cache memory unit 484 may be either embedded or stand-alone devices.


The write buffer 482 in each memory interface 470a-d is used to store write requests while a read request is being serviced. In such a system, the processor 104 can issue a write request to a system memory device 440a-d even if the memory device to which the write request is directed is busy servicing a prior write or read request. The write buffer 482 preferably accumulates several write requests received from the switch 460, which may be interspersed with read requests, and subsequently applies them to each of the memory devices 160 in sequence without any intervening read requests. By pipelining the write requests in this manner, they can be more efficiently processed since delays inherent in read/write turnarounds are avoided. The ability to buffer write requests to allow a read request to be serviced can also greatly reduce memory read latency since read requests can be given first priority regardless of their chronological order.


The use of the cache memory unit 484 in each memory interface 470a-d allows the processor 104 to receive data responsive to a read command directed to a respective system memory device 160 without waiting for the memory device 160 to provide such data in the event that the data was recently read from or written to that memory device 160. The cache memory unit 484 thus reduces the read latency of the system memory devices 440a-d to maximize the memory bandwidth of the computer system. Similarly, the processor 104 can store write data in the cache memory unit 484 and then perform other functions while the memory controller 480 in the same memory interface 470a-d transfers the write data from the cache memory unit 484 to the memory device 160 to which it is coupled.


Further included in the memory hub local 150 may be a self-test module 490 coupled to the switch 460 through a test bus 492. The self-test module 490 is further coupled to a maintenance bus 496, such as a System Management Bus (SMBus) or a maintenance bus according to the Joint Test Action Group (JTAG) and IEEE 1149.1 standards. Both the SMBus and JTAG standards are well known by those ordinarily skilled in the art. Generally, the maintenance bus 496 provides a user access to the self-test module 490 in order to set memory testing parameters and receive test results. For example, the user can couple a separate PC host via the maintenance bus 496 to set the relative timing between signals that are applied to the memory devices 160. Similarly, data indicative of the relative timing between signals that are received from the memory devices 160 can be coupled to the PC host via the maintenance bus 496.


Further included in the memory hub local 150 may be a DMA engine 486 coupled to the switch 460 through a bus 488. The DMA engine 486 enables the memory hub 30 to move blocks of data from one location in one of the memory devices 160 to another location in the memory device without intervention from the processor 104. The bus 488 includes a plurality of conventional bus lines and signal lines, such as address, control, data buses, and the like, for handling data transfers in the system memory. Conventional DMA operations well known by those ordinarily skilled in the art can be implemented by the DMA engine 486.


From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims
  • 1. A memory system comprising: a reference clock generator operable to generate a reference clock signal;a first memory module coupled to the reference clock generator, the first memory module operable to generate an internal clock signal based at least in part on the reference clock signal;a second memory module coupled to the reference clock generator and operable to generate an internal clock signal based at least in part on the reference clock signal, the second memory module being coupled to the first memory module, the second memory module operable to transmit data to the first memory module and to receive data from the first memory module; andwherein the first and second memory modules each comprises a receiver comprising:a phase adjustment circuit configured to receive data and a predetermined pattern of data, and operable to compare the received data and the predetermined pattern of data to adjust a phase of its internal clock signal based on the comparison to generate a receive clock signal; anda capture circuit coupled to receive the receive clock signal from the phase adjustment circuit and the data transmitted from the other memory module, the capture circuit being operable to capture the data transmitted from the other memory module in the receiver responsive to the receive clock signal.
  • 2. The memory system of claim 1 wherein the first memory module further comprises a plurality of memory devices coupled to the receiver.
  • 3. The memory system of claim 2 wherein the plurality of memory devices comprises a plurality of synchronous random access memory devices.
  • 4. The memory system of claim 1 wherein the receiver is operable to generate a second internal clock signal based at least in part on the reference clock signal, wherein either the first or second memory modules are each operable to transmit the data to the other memory module using the second internal clock signal.
  • 5. The memory system of claim 1 wherein the second memory module further comprises a second plurality of memory devices, the data transmitted to the first memory module comprising read data originating from at least one of the second plurality of memory devices.
  • 6. The memory system of claim 1, the data comprising a read request.
  • 7. The memory system of claim 1, the data comprising a write request.
  • 8. The memory system of claim 1 further comprising: a processor; anda bus serially coupling the processor, the first memory module, and the second module, and wherein the data is transmitted from the second module to the first module on the bus.
  • 9. The memory system of claim 1 wherein a frequency of the reference clock signal is different from a frequency of the internal clock signal.
  • 10. The memory system of claim 1, the first memory module further comprising: an expected pattern memory operable to provide the predetermined pattern of data; anda comparator coupled to the expected pattern memory and the phase adjustment circuit, the comparator operable to compare data captured at the receiver with data stored in the expected pattern memory and generate a comparison signal, the phase adjustment circuit operable to adjust the phase of the internal clock signal responsive to the comparison signal.
  • 11. The memory system of claim 1 wherein the first memory module is operable to generate a second internal clock signal based at least in part on the reference clock signal.
  • 12. The memory system of claim 11 wherein the first memory module further comprises a transmitter operable to transmit data utilizing the second internal clock signal.
  • 13. A method for managing asynchronous communication between a first and a second memory module, the method comprising: receiving a reference clock signal at the first memory module;generating a receive clock signal in the first memory module, the receive clock signal having a phase that is different from a phase of the reference clock signal;receiving a data pattern to match to a predetermined pattern of data;incrementally adjusting the phase of the receive clock signal based on the received data pattern matching the predetermined pattern of data; andutilizing the receive clock signal to strobe data into the first memory module.
  • 14. The method according to claim 13 wherein the data is transmitted to the first memory module by the second memory module utilizing a second internal clock signal generated by the second memory module.
  • 15. The method according to claim 13 wherein a frequency of the reference clock signal is different from a frequency of the receive clock signal.
  • 16. The method according to claim 13 wherein the act of generating the receive clock signal comprises generating an internal clock signal having a different frequency than the reference clock signal and adjusting a phase of the internal clock signal to generate the receive clock signal.
  • 17. The method according to claim 16 further comprising: determining a phase adjustment; andapplying the phase adjustment to the internal clock signal to generate the receive clock signal.
  • 18. The method according to claim 17 wherein the act of determining a phase adjustment comprises identifying a left edge of a data valid eye at the receiver.
  • 19. The method according to claim 17 wherein the act of determining a phase adjustment comprises identifying a right edge of a data valid eye at the receiver.
  • 20. The method according to claim 17 wherein the act of determining a phase adjustment comprises identifying a left and a right edge of a data valid eye at the receiver and setting the phase adjustment equal to a value between a left phase shift corresponding to the left edge of the data valid eye and a right phase shift corresponding to the right edge of the data valid eye.
  • 21. The method according to claim 20 wherein the phase adjustment is midway between the left phase shift and the right phase shift.
  • 22. A memory module configured to receive data and operable to generate an internal clock signal responsive to a received reference clock signal, the memory module comprising: a plurality of memory devices; anda receiver coupled to the memory devices, the receiver comprising:a phase adjustment circuit configured to receive the receive data and a predetermined pattern of data, and operable to compare the receive data to the predetermined pattern of data and adjust a phase of the internal clock signal based on the comparision to generate a receive clock signal; anda capture circuit coupled to receive the receive clock signal from the phase adjustment circuit and data transmitted to the memory module, the capture circuit being operable to capture data in the receiver responsive to the receive clock signal.
  • 23. The memory module of claim 22 wherein the plurality of memory devices comprises a plurality of synchronous random access memory devices.
  • 24. The memory module of claim 22 wherein a frequency of the reference clock signal is different from a frequency of the internal clock signal.
  • 25. The memory module of claim 22 further comprising: an expected pattern memory operable to provide a predetermined pattern of data; anda comparator coupled to the expected pattern memory and the phase adjustment circuit, the comparator operable to compare data captured at the receiver with data stored in the expected pattern memory and generate a comparison signal, the phase adjustment circuit operable to adjust the phase of the internal clock signal responsive to the comparison signal.
  • 26. The memory module of claim 22 wherein the memory module is further operable to generate a second internal clock signal based at least in part on the reference clock signal.
  • 27. The memory module of claim 26 wherein the memory module further comprises a transmitter operable to transmit data utilizing the second internal clock signal.
  • 28. The memory module of claim 22 further comprising a second receiver, the first receiver coupleable to a downstream bus and the second receiver coupleable to an upstream bus.
  • 29. The memory module of claim 22 further comprising a memory hub coupled to the plurality of memory devices and the receiver.
Parent Case Info

CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation of pending U.S. patent application Ser. No. 10/695,383, filed Oct. 27, 2003.

US Referenced Citations (592)
Number Name Date Kind
3633174 Griffin Jan 1972 A
3742253 Kronies Jun 1973 A
3777154 Lindsey Dec 1973 A
4004100 Takimoto Jan 1977 A
4045781 Levy et al. Aug 1977 A
4077016 Sanders et al. Feb 1978 A
4096402 Schroeder et al. Jun 1978 A
4240143 Besemer et al. Dec 1980 A
4245306 Besemer et al. Jan 1981 A
4253144 Bellamy et al. Feb 1981 A
4253146 Bellamy et al. Feb 1981 A
4404474 Dingwall Sep 1983 A
4443845 Hamilton et al. Apr 1984 A
4481625 Roberts et al. Nov 1984 A
4508983 Allgood et al. Apr 1985 A
4511846 Nagy et al. Apr 1985 A
4514647 Shoji Apr 1985 A
4524448 Hullwegen Jun 1985 A
4573017 Levine Feb 1986 A
4600895 Landsman Jul 1986 A
4603320 Farago Jul 1986 A
4608702 Hirzel et al. Aug 1986 A
4638187 Boler et al. Jan 1987 A
4638451 Hester et al. Jan 1987 A
4687951 McElroy Aug 1987 A
4697167 O'Keeffe et al. Sep 1987 A
4707823 Holdren et al. Nov 1987 A
4724520 Athanas et al. Feb 1988 A
4727541 Mori et al. Feb 1988 A
4740962 Kish, III Apr 1988 A
4746996 Furuhata et al. May 1988 A
4773085 Cordell Sep 1988 A
4789796 Foss Dec 1988 A
4791622 Clay et al. Dec 1988 A
4813772 Kowel et al. Mar 1989 A
4818995 Takahashi et al. Apr 1989 A
4823403 Twietmeyer Apr 1989 A
4825208 Mueller et al. Apr 1989 A
4831520 Rubinfeld et al. May 1989 A
4891808 Williams Jan 1990 A
4893087 Davis Jan 1990 A
4902986 Lesmeister Feb 1990 A
4924516 Bremer et al. May 1990 A
4930128 Suzuki et al. May 1990 A
4953128 Kawai et al. Aug 1990 A
4953930 Ramsey et al. Sep 1990 A
4958088 Farah-Bakhsh et al. Sep 1990 A
4972470 Farago Nov 1990 A
4979185 Bryans et al. Dec 1990 A
4984204 Sato et al. Jan 1991 A
4984255 Davis et al. Jan 1991 A
5020023 Smith May 1991 A
5038115 Myers et al. Aug 1991 A
5062082 Choi Oct 1991 A
5075569 Branson Dec 1991 A
5086500 Greub Feb 1992 A
5087828 Sato et al. Feb 1992 A
5113519 Johnson et al. May 1992 A
5120990 Koker Jun 1992 A
5122690 Bianchi Jun 1992 A
5128560 Chern et al. Jul 1992 A
5128563 Hush et al. Jul 1992 A
5130565 Girmay Jul 1992 A
5134311 Biber et al. Jul 1992 A
5150186 Pinney et al. Sep 1992 A
5165046 Hesson Nov 1992 A
5168199 Huffman et al. Dec 1992 A
5179298 Hirano et al. Jan 1993 A
5182524 Hopkins Jan 1993 A
5194765 Dunlop et al. Mar 1993 A
5212601 Wilson May 1993 A
5220208 Schenck Jun 1993 A
5223755 Richley Jun 1993 A
5229929 Shimizu et al. Jul 1993 A
5233314 McDermott et al. Aug 1993 A
5233564 Ohshima et al. Aug 1993 A
5239206 Yanai Aug 1993 A
5241506 Motegi et al. Aug 1993 A
5243703 Farmwald et al. Sep 1993 A
5251303 Fogg, Jr. et al. Oct 1993 A
5254883 Horowitz et al. Oct 1993 A
5256989 Parker et al. Oct 1993 A
5257294 Pinto et al. Oct 1993 A
5268639 Gasbarro et al. Dec 1993 A
5269022 Shinjo et al. Dec 1993 A
5272729 Bechade et al. Dec 1993 A
5274276 Casper et al. Dec 1993 A
5276642 Lee Jan 1994 A
5278460 Casper Jan 1994 A
5281865 Yamashita et al. Jan 1994 A
5283631 Koerner et al. Feb 1994 A
5289580 Latif et al. Feb 1994 A
5295164 Yamamura Mar 1994 A
5304952 Quiet et al. Apr 1994 A
5307381 Ahuja Apr 1994 A
5311481 Casper et al. May 1994 A
5311483 Takasugi May 1994 A
5313431 Uruma et al. May 1994 A
5313590 Taylor May 1994 A
5315269 Fujii May 1994 A
5315388 Shen et al. May 1994 A
5317752 Jewett et al. May 1994 A
5319755 Farmwald et al. Jun 1994 A
5321368 Hoelzle Jun 1994 A
5327553 Jewett et al. Jul 1994 A
5337285 Ware et al. Aug 1994 A
5341405 Mallard, Jr. Aug 1994 A
5347177 Lipp Sep 1994 A
5347179 Casper et al. Sep 1994 A
5355391 Horowitz et al. Oct 1994 A
5361002 Casper Nov 1994 A
5367649 Cedar Nov 1994 A
5379299 Schwartz Jan 1995 A
5379382 Work et al. Jan 1995 A
5390308 Ware et al. Feb 1995 A
5400283 Raad Mar 1995 A
5402389 Flannagan et al. Mar 1995 A
5408640 MacIntyre et al. Apr 1995 A
5410263 Waizman Apr 1995 A
5414819 Redmond et al. May 1995 A
5416436 Rainard May 1995 A
5416909 Long et al. May 1995 A
5420544 Ishibashi May 1995 A
5423009 Zhu Jun 1995 A
5424687 Fukuda Jun 1995 A
5428311 McClure Jun 1995 A
5428317 Sanchez et al. Jun 1995 A
5430408 Ovens et al. Jul 1995 A
5430676 Ware et al. Jul 1995 A
5432823 Gasbarro et al. Jul 1995 A
5432907 Picazo, Jr. et al. Jul 1995 A
5438545 Sim Aug 1995 A
5440260 Hayashi et al. Aug 1995 A
5440514 Flannagan et al. Aug 1995 A
5442770 Barratt Aug 1995 A
5444667 Obara Aug 1995 A
5446696 Ware et al. Aug 1995 A
5448193 Baumert et al. Sep 1995 A
5451898 Johnson Sep 1995 A
5457407 Shu et al. Oct 1995 A
5461627 Rypinski Oct 1995 A
5463337 Leonowich Oct 1995 A
5465076 Yamauchi et al. Nov 1995 A
5465229 Bechtolsheim et al. Nov 1995 A
5473274 Reilly et al. Dec 1995 A
5473575 Farmwald et al. Dec 1995 A
5473639 Lee et al. Dec 1995 A
5479370 Furuyama et al. Dec 1995 A
5485490 Leung et al. Jan 1996 A
5488321 Johnson Jan 1996 A
5489864 Ashuri Feb 1996 A
5497127 Sauer Mar 1996 A
5497355 Mills et al. Mar 1996 A
5497476 Oldfield et al. Mar 1996 A
5498990 Leung et al. Mar 1996 A
5500808 Wang Mar 1996 A
5502621 Schumacher et al. Mar 1996 A
5502672 Kwon Mar 1996 A
5506814 Hush et al. Apr 1996 A
5508638 Cowles et al. Apr 1996 A
5513327 Farmwald et al. Apr 1996 A
5515403 Sloan et al. May 1996 A
5532714 Knapp et al. Jul 1996 A
5539345 Hawkins Jul 1996 A
5544124 Zagar et al. Aug 1996 A
5544203 Casasanta et al. Aug 1996 A
5544319 Acton et al. Aug 1996 A
5544345 Carpenter et al. Aug 1996 A
5550515 Liang et al. Aug 1996 A
5550549 Procter, Jr. et al. Aug 1996 A
5550783 Stephens, Jr. et al. Aug 1996 A
5552727 Nakao Sep 1996 A
5555429 Parkinson et al. Sep 1996 A
5557224 Wright et al. Sep 1996 A
5557781 Stones et al. Sep 1996 A
5563546 Tsukada Oct 1996 A
5566325 Bruce, II et al. Oct 1996 A
5568075 Curran et al. Oct 1996 A
5568077 Sato et al. Oct 1996 A
5568574 Tanguay, Jr. et al. Oct 1996 A
5572557 Aoki Nov 1996 A
5572722 Vogley Nov 1996 A
5574698 Raad Nov 1996 A
5576645 Farwell Nov 1996 A
5577079 Zenno et al. Nov 1996 A
5577220 Combs et al. Nov 1996 A
5577236 Johnson et al. Nov 1996 A
5578940 Dillon et al. Nov 1996 A
5578941 Sher et al. Nov 1996 A
5579326 McClure Nov 1996 A
5581197 Motley et al. Dec 1996 A
5581767 Katsuki et al. Dec 1996 A
5589788 Goto Dec 1996 A
5590073 Arakawa et al. Dec 1996 A
5594690 Rothenberger et al. Jan 1997 A
5606717 Farmwald et al. Feb 1997 A
5608264 Gaul Mar 1997 A
5610558 Mittel et al. Mar 1997 A
5614855 Lee et al. Mar 1997 A
5619473 Hotta Apr 1997 A
5621340 Lee et al. Apr 1997 A
5621690 Jungroth et al. Apr 1997 A
5621739 Sine et al. Apr 1997 A
5623523 Gehrke Apr 1997 A
5623534 Desai et al. Apr 1997 A
5627780 Malhi May 1997 A
5627791 Wright et al. May 1997 A
5631872 Naritake et al. May 1997 A
5636163 Furatani et al. Jun 1997 A
5636173 Schaefer Jun 1997 A
5636174 Rao Jun 1997 A
5638334 Farmwald et al. Jun 1997 A
5638335 Akiyama et al. Jun 1997 A
5638534 Mote, Jr. Jun 1997 A
5644743 Barrett, Jr. et al. Jul 1997 A
5646904 Ohno et al. Jul 1997 A
5652530 Ashuri Jul 1997 A
5657289 Hush et al. Aug 1997 A
5657481 Farmwald et al. Aug 1997 A
5659798 Blumrich et al. Aug 1997 A
5663921 Pascucci et al. Sep 1997 A
5666313 Ichiguchi Sep 1997 A
5666322 Conkle Sep 1997 A
5668763 Fujioka et al. Sep 1997 A
5668774 Furatani Sep 1997 A
5673005 Pricer Sep 1997 A
5675274 Kobayashi et al. Oct 1997 A
5675588 Maruyama et al. Oct 1997 A
5687325 Chang Nov 1997 A
5692165 Jeddeloh et al. Nov 1997 A
5694065 Hamasaki et al. Dec 1997 A
5706224 Srinivasan et al. Jan 1998 A
5708611 Iwamoto Jan 1998 A
5710733 Chengson et al. Jan 1998 A
5712580 Baumgartner et al. Jan 1998 A
5712883 Miller et al. Jan 1998 A
5715456 Bennett et al. Feb 1998 A
5719508 Daly Feb 1998 A
5729709 Harness Mar 1998 A
5737342 Ziperovich Apr 1998 A
5740123 Uchida Apr 1998 A
5748616 Riley May 1998 A
5751665 Tanoi May 1998 A
5764092 Wada et al. Jun 1998 A
5767715 Marquis et al. Jun 1998 A
5768177 Sakuragi Jun 1998 A
5774699 Nagae Jun 1998 A
5778214 Taya et al. Jul 1998 A
5781499 Koshikawa Jul 1998 A
5784422 Heermann Jul 1998 A
5787475 Pawlowski Jul 1998 A
5789947 Sato Aug 1998 A
5790612 Chengson et al. Aug 1998 A
5794020 Tanaka et al. Aug 1998 A
5796413 Shipp et al. Aug 1998 A
5805931 Morzano et al. Sep 1998 A
5812619 Runaldue Sep 1998 A
5818844 Singh et al. Oct 1998 A
5818984 Ahmad et al. Oct 1998 A
5819304 Nilsen et al. Oct 1998 A
5822255 Uchida Oct 1998 A
5822314 Chater-Lea Oct 1998 A
5831467 Leung et al. Nov 1998 A
5831545 Murray et al. Nov 1998 A
5831929 Manning Nov 1998 A
5832250 Whittaker Nov 1998 A
5841707 Cline et al. Nov 1998 A
5852378 Keeth Dec 1998 A
5872959 Nguyen et al. Feb 1999 A
5875352 Gentry et al. Feb 1999 A
5875454 Craft et al. Feb 1999 A
5887159 Burrows Mar 1999 A
5889828 Miyashita et al. Mar 1999 A
5889829 Chiao et al. Mar 1999 A
5898242 Peterson Apr 1999 A
5898674 Mawhinney et al. Apr 1999 A
5909130 Martin et al. Jun 1999 A
5917760 Millar Jun 1999 A
5920518 Harrison et al. Jul 1999 A
5926047 Harrison Jul 1999 A
5926436 Toda et al. Jul 1999 A
5928343 Farmwald et al. Jul 1999 A
5940608 Manning Aug 1999 A
5940609 Harrison Aug 1999 A
5945855 Momtaz Aug 1999 A
5946244 Manning Aug 1999 A
5953284 Baker et al. Sep 1999 A
5953386 Anderson Sep 1999 A
5964884 Partovi et al. Oct 1999 A
5966724 Ryan Oct 1999 A
5973935 Schoenfeld et al. Oct 1999 A
5973951 Bechtolsheim et al. Oct 1999 A
5978567 Rebane et al. Nov 1999 A
5987196 Noble Nov 1999 A
5990719 Dai et al. Nov 1999 A
6005694 Liu Dec 1999 A
6005823 Martin et al. Dec 1999 A
6011732 Harrison et al. Jan 2000 A
6011822 Dreyer Jan 2000 A
6014042 Nguyen Jan 2000 A
6016282 Keeth Jan 2000 A
6021268 Johnson Feb 2000 A
6023489 Hatch Feb 2000 A
6023726 Saksena Feb 2000 A
6026050 Baker et al. Feb 2000 A
6026134 Duffy et al. Feb 2000 A
6026226 Heile et al. Feb 2000 A
6029250 Keeth Feb 2000 A
6031241 Silfvast et al. Feb 2000 A
6033951 Chao Mar 2000 A
6038219 Mawhinney et al. Mar 2000 A
6038630 Foster et al. Mar 2000 A
6061263 Boaz et al. May 2000 A
6061296 Ternullo, Jr. et al. May 2000 A
6067262 Irrinki et al. May 2000 A
6067592 Farmwald et al. May 2000 A
6067649 Goodwin May 2000 A
6072802 Uhm et al. Jun 2000 A
6073190 Rooney Jun 2000 A
6076139 Welker et al. Jun 2000 A
6078451 Ioki Jun 2000 A
6079008 Clery, III Jun 2000 A
6087857 Wang Jul 2000 A
6088774 Gillingham Jul 2000 A
6092158 Harriman et al. Jul 2000 A
6098158 Lay et al. Aug 2000 A
6101151 Watanabe et al. Aug 2000 A
6101152 Farmwald et al. Aug 2000 A
6101197 Keeth et al. Aug 2000 A
6105075 Ghaffari Aug 2000 A
6105088 Pascale et al. Aug 2000 A
6105157 Miller Aug 2000 A
6111757 Dell et al. Aug 2000 A
6115318 Keeth Sep 2000 A
6119242 Harrison Sep 2000 A
6125157 Donnelly et al. Sep 2000 A
6125431 Kobayashi Sep 2000 A
6128703 Bourekas et al. Oct 2000 A
6131149 Lu et al. Oct 2000 A
6134624 Burns et al. Oct 2000 A
6137709 Boaz et al. Oct 2000 A
6144587 Yoshida Nov 2000 A
6147905 Seino Nov 2000 A
6147916 Ogura Nov 2000 A
6150889 Gulliver et al. Nov 2000 A
6160423 Haq Dec 2000 A
6167465 Parvin et al. Dec 2000 A
6167486 Lee et al. Dec 2000 A
6173432 Harrison Jan 2001 B1
6175571 Haddock et al. Jan 2001 B1
6185352 Hurley Feb 2001 B1
6185676 Poplingher et al. Feb 2001 B1
6186400 Dvorkis et al. Feb 2001 B1
6191663 Hannah Feb 2001 B1
6194917 Deng Feb 2001 B1
6201724 Ishizaki et al. Mar 2001 B1
6208180 Fisch et al. Mar 2001 B1
6219725 Diehl et al. Apr 2001 B1
6223301 Santeler et al. Apr 2001 B1
6226729 Stevens et al. May 2001 B1
6229712 Munoz-Bustamante et al. May 2001 B1
6229727 Doyle May 2001 B1
6233376 Updegrove May 2001 B1
6243769 Rooney Jun 2001 B1
6243831 Mustafa et al. Jun 2001 B1
6246618 Yamamoto et al. Jun 2001 B1
6247107 Christie Jun 2001 B1
6249802 Richardson et al. Jun 2001 B1
6253360 Yoshiba Jun 2001 B1
6256253 Oberlaender et al. Jul 2001 B1
6256692 Yoda et al. Jul 2001 B1
6262921 Manning Jul 2001 B1
6266730 Perino et al. Jul 2001 B1
6269451 Mullarkey Jul 2001 B1
6272609 Jeddeloh Aug 2001 B1
6285349 Smith Sep 2001 B1
6285726 Gaudet Sep 2001 B1
6286083 Chin et al. Sep 2001 B1
6294937 Crafts et al. Sep 2001 B1
6295328 Kim et al. Sep 2001 B1
6298450 Liu et al. Oct 2001 B1
6301637 Krull et al. Oct 2001 B1
6327196 Mullarkey Dec 2001 B1
6327318 Bhullar et al. Dec 2001 B1
6327642 Lee et al. Dec 2001 B1
6330205 Shimizu et al. Dec 2001 B2
6338127 Manning Jan 2002 B1
6344664 Trezza et al. Feb 2002 B1
6347055 Motomura Feb 2002 B1
6349363 Cai et al. Feb 2002 B2
6356573 Jonsson et al. Mar 2002 B1
6366375 Sakai et al. Apr 2002 B1
6367074 Bates et al. Apr 2002 B1
6370068 Rhee Apr 2002 B2
6370611 Callison et al. Apr 2002 B1
6373777 Suzuki Apr 2002 B1
6377646 Sha Apr 2002 B1
6378079 Mullarkey Apr 2002 B1
6381190 Shinkai Apr 2002 B1
6389514 Rokicki May 2002 B1
6392653 Malandain et al. May 2002 B1
6401213 Jeddeloh Jun 2002 B1
6405273 Fleck et al. Jun 2002 B1
6405280 Ryan Jun 2002 B1
6421744 Morrison et al. Jul 2002 B1
6430696 Keeth Aug 2002 B1
6433785 Garcia et al. Aug 2002 B1
6434639 Haghighi Aug 2002 B1
6434654 Story et al. Aug 2002 B1
6434696 Kang Aug 2002 B1
6434736 Schaecher et al. Aug 2002 B1
6438043 Gans et al. Aug 2002 B2
6438622 Haghighi et al. Aug 2002 B1
6438668 Esfahani et al. Aug 2002 B1
6442644 Gustavson et al. Aug 2002 B1
6449308 Knight, Jr. et al. Sep 2002 B1
6453393 Holman et al. Sep 2002 B1
6457116 Mirsky et al. Sep 2002 B1
6460114 Jeddeloh Oct 2002 B1
6462978 Shibata et al. Oct 2002 B2
6463059 Movshovich et al. Oct 2002 B1
6470422 Cai et al. Oct 2002 B2
6473828 Matsui Oct 2002 B1
6473871 Coyle et al. Oct 2002 B1
6477592 Chen et al. Nov 2002 B1
6477614 Leddige et al. Nov 2002 B1
6477621 Lee et al. Nov 2002 B1
6479322 Kawata et al. Nov 2002 B2
6484244 Manning Nov 2002 B1
6487556 Downs et al. Nov 2002 B1
6490188 Nuxoll et al. Dec 2002 B2
6493320 Schober et al. Dec 2002 B1
6493784 Kamimura et al. Dec 2002 B1
6493803 Pham et al. Dec 2002 B1
6496193 Surti et al. Dec 2002 B1
6496909 Schimmel Dec 2002 B1
6499111 Mullarkey Dec 2002 B2
6501471 Venkataraman et al. Dec 2002 B1
6502161 Perego et al. Dec 2002 B1
6502212 Coyle et al. Dec 2002 B1
6505287 Uematsu Jan 2003 B2
6507899 Oberlaender et al. Jan 2003 B1
6523092 Fanning Feb 2003 B1
6523093 Bogin et al. Feb 2003 B1
6526111 Prasad Feb 2003 B1
6526483 Cho et al. Feb 2003 B1
6526498 Mirsky et al. Feb 2003 B1
6539490 Forbes et al. Mar 2003 B1
6552304 Hirose et al. Apr 2003 B1
6552564 Forbes et al. Apr 2003 B1
6553479 Mirsky et al. Apr 2003 B2
6564329 Cheung et al. May 2003 B1
6570429 Hellriegel May 2003 B1
6580531 Swanson et al. Jun 2003 B1
6584543 Williams et al. Jun 2003 B2
6587912 Leddige et al. Jul 2003 B2
6590816 Perner Jul 2003 B2
6594713 Fuoco et al. Jul 2003 B1
6594722 Willke, II et al. Jul 2003 B1
6598154 Vaid et al. Jul 2003 B1
6599031 Li Jul 2003 B2
6615325 Mailloux et al. Sep 2003 B2
6622227 Zumkehr et al. Sep 2003 B2
6628294 Sadowsky et al. Sep 2003 B1
6629220 Dyer Sep 2003 B1
6631440 Jenne et al. Oct 2003 B2
6636110 Ooishi et al. Oct 2003 B1
6636957 Stevens et al. Oct 2003 B2
6643787 Zerbe et al. Nov 2003 B1
6646929 Moss et al. Nov 2003 B1
6647470 Janzen Nov 2003 B1
6651139 Ozeki et al. Nov 2003 B1
6658509 Bonella et al. Dec 2003 B1
6661943 Li Dec 2003 B2
6662304 Keeth et al. Dec 2003 B2
6665202 Lindahl et al. Dec 2003 B2
6665222 Wright et al. Dec 2003 B2
6667895 Jang et al. Dec 2003 B2
6681292 Creta et al. Jan 2004 B2
6694496 Goslin et al. Feb 2004 B2
6697926 Johnson et al. Feb 2004 B2
6707726 Nishio et al. Mar 2004 B2
6715018 Farnworth et al. Mar 2004 B2
6718440 Maiyuran et al. Apr 2004 B2
6721187 Hall et al. Apr 2004 B2
6721195 Brunelle et al. Apr 2004 B2
6724685 Braun et al. Apr 2004 B2
6728800 Lee et al. Apr 2004 B1
6735679 Herbst et al. May 2004 B1
6735682 Segelken et al. May 2004 B2
6745275 Chang Jun 2004 B2
6751113 Bhakta et al. Jun 2004 B2
6751703 Chilton Jun 2004 B2
6751722 Mirsky et al. Jun 2004 B2
6752539 Colgan et al. Jun 2004 B2
6754117 Jeddeloh Jun 2004 B2
6754812 Abdallah et al. Jun 2004 B1
6756661 Tsuneda et al. Jun 2004 B2
6760833 Dowling Jul 2004 B1
6771538 Shukuri et al. Aug 2004 B2
6772261 D'Antonio et al. Aug 2004 B1
6775747 Venkatraman Aug 2004 B2
6785780 Klein et al. Aug 2004 B1
6789173 Tanaka et al. Sep 2004 B1
6792059 Yuan et al. Sep 2004 B2
6792496 Aboulenein et al. Sep 2004 B2
6793408 Levy et al. Sep 2004 B2
6795899 Dodd et al. Sep 2004 B2
6799246 Wise et al. Sep 2004 B1
6799268 Boggs et al. Sep 2004 B1
6804760 Wiliams Oct 2004 B2
6804764 LaBerge et al. Oct 2004 B2
6807630 Lay et al. Oct 2004 B2
6809555 Nguyen Oct 2004 B1
6811320 Abbott Nov 2004 B1
6816931 Shih Nov 2004 B2
6816947 Huffman Nov 2004 B1
6816987 Olson et al. Nov 2004 B1
6820181 Jeddeloh et al. Nov 2004 B2
6821029 Grung et al. Nov 2004 B1
6823023 Hannah Nov 2004 B1
6845409 Talagala et al. Jan 2005 B1
6889304 Perego et al. May 2005 B2
6910109 Holman et al. Jun 2005 B2
6910146 Dow Jun 2005 B2
6950956 Zerbe et al. Sep 2005 B2
6956996 Gordon et al. Oct 2005 B2
6961259 Lee et al. Nov 2005 B2
6980824 Hsu et al. Dec 2005 B2
6982892 Lee et al. Jan 2006 B2
7000062 Perego et al. Feb 2006 B2
7016213 Reeves et al. Mar 2006 B2
7016606 Cai et al. Mar 2006 B2
7024547 Kartoz Apr 2006 B2
7035212 Mittal et al. Apr 2006 B1
7047351 Jeddeloh May 2006 B2
7062595 Lindsay et al. Jun 2006 B2
7106973 Kube et al. Sep 2006 B2
7120727 Lee et al. Oct 2006 B2
20010023474 Kyozuka et al. Sep 2001 A1
20010034839 Karjoth et al. Oct 2001 A1
20010039612 Lee Nov 2001 A1
20020038412 Nizar et al. Mar 2002 A1
20020112119 Halbert et al. Aug 2002 A1
20020116588 Beckert et al. Aug 2002 A1
20020144064 Fanning Oct 2002 A1
20020178319 Sanchez-Olea Nov 2002 A1
20030005223 Coulson et al. Jan 2003 A1
20030043158 Wasserman et al. Mar 2003 A1
20030043426 Baker et al. Mar 2003 A1
20030093630 Richard et al. May 2003 A1
20030110368 Kartoz Jun 2003 A1
20030149809 Jensen et al. Aug 2003 A1
20030163649 Kapur et al. Aug 2003 A1
20030177320 Sah et al. Sep 2003 A1
20030193927 Hronik Oct 2003 A1
20030217223 Nino, Jr. et al. Nov 2003 A1
20030227798 Pax Dec 2003 A1
20030229734 Chang et al. Dec 2003 A1
20030229762 Maiyuran et al. Dec 2003 A1
20030229770 Jeddeloh Dec 2003 A1
20040022094 Radhakrishnan et al. Feb 2004 A1
20040024959 Taylor Feb 2004 A1
20040028412 Murphy Feb 2004 A1
20040044833 Ryan Mar 2004 A1
20040047169 Lee et al. Mar 2004 A1
20040064602 George Apr 2004 A1
20040123088 Poisner et al. Jun 2004 A1
20040126115 Levy et al. Jul 2004 A1
20040128421 Forbes Jul 2004 A1
20040144994 Lee et al. Jul 2004 A1
20040148482 Grundy et al. Jul 2004 A1
20040230718 Polzin et al. Nov 2004 A1
20040236885 Fredriksson et al. Nov 2004 A1
20040251929 Pax et al. Dec 2004 A1
20040257890 Lee et al. Dec 2004 A1
20040268009 Shin et al. Dec 2004 A1
20050030797 Pax et al. Feb 2005 A1
20050044304 James Feb 2005 A1
20050044327 Howard et al. Feb 2005 A1
20050071542 Weber et al. Mar 2005 A1
20050105350 Zimmerman May 2005 A1
20050162882 Reeves et al. Jul 2005 A1
20050177690 LaBerge Aug 2005 A1
20050210185 Renick Sep 2005 A1
20050210216 Jobs et al. Sep 2005 A1
20050216648 Jeddeloh Sep 2005 A1
20050228939 Janzen Oct 2005 A1
20050257021 James Nov 2005 A1
20050268060 Cronin et al. Dec 2005 A1
20060023528 Pax et al. Feb 2006 A1
20060047891 James et al. Mar 2006 A1
Foreign Referenced Citations (29)
Number Date Country
0 171 720 Feb 1986 EP
0 295 515 Dec 1988 EP
0 406 786 Jan 1991 EP
0 450 871 Oct 1991 EP
0 476 585 Mar 1992 EP
0 655 741 May 1995 EP
0 655 834 May 1995 EP
0 680 049 Nov 1995 EP
0 703 663 Mar 1996 EP
0 704 848 Apr 1996 EP
0 704 975 Apr 1996 EP
0 767 538 Apr 1997 EP
0849685 Jun 1998 EP
2288066 Oct 1995 GB
6-1237512 Oct 1986 JP
2-112317 Apr 1990 JP
4-135311 May 1992 JP
5-136664 Jun 1993 JP
5-282868 Oct 1993 JP
0-7319577 Dec 1995 JP
2001265539 Sep 2001 JP
WO 9319422 Sep 1993 WO
WO 9429871 Dec 1994 WO
WO 9522200 Aug 1995 WO
WO 9522206 Aug 1995 WO
WO 9610866 Apr 1996 WO
WO 9714289 Apr 1997 WO
WO 9742557 Nov 1997 WO
WO 0227499 Apr 2002 WO
Related Publications (1)
Number Date Country
20060206742 A1 Sep 2006 US
Continuations (1)
Number Date Country
Parent 10695383 Oct 2003 US
Child 11433181 US