1. Technical Field
The present invention relates to an apparatus and method for determining a position with a robotic assembly before performing a manufacturing operation. More specifically, the present invention is directed to an apparatus and method for quickly and accurately finding the location of a workpiece, a desired position on a workpiece, or the start of a manufacturing operation on the workpiece using an interactive search strategy.
Robotic assemblies are commonly used in manufacturing to perform a variety of operations including welding, cutting, trimming, drilling, and other shaping and manufacturing operations. Robotic assemblies in manufacturing facilities are commonly used with individual work cells, but also may be arranged along an assembly line. As a workpiece passes down an assembly line or is placed within a robotic work cell, before the robotic assembly performs a manufacturing operation on the workpiece, the robotic assembly must first be calibrated. Typically, the workpiece will be held within a jig or other structure, fixing its dimensions relative to the robotic assembly during the manufacturing operation. The robotic assembly is initially calibrated with a master part placed within the jig and the relevant dimensions of the workpiece, such as position of the workpiece or position of a feature on the workpiece is entered. The locations and dimensions operations to be performed are added to a controller. Of course, any known method of adding a master part or workpiece, dimensions, or operations to be performed to a controller may be used. Once the initial calibration or entry of the master part is completed, the robotic assembly is typically used to perform repetitive manufacturing operations on identical workpieces. The subsequent workpieces being held by a jig or other fixture, travel along an assembly line or are individually placed within the work cell of the robotic assembly. For most robotic assemblies, and in particular for robotic assemblies along assembly lines, such as for welding robots, the workpieces are dimensionally stable and the manufacturing operation may have a large error tolerance, thereby minimizing the frequency of calibration required. For example, once calibrated, a welding robot on a vehicle body assembly line will rarely need recalibration.
For many robots, the only recalibration needed to accurately determine the location of the workpiece to perform a manufacturing operation within the desired manufacturing tolerances is for the robotic assembly to recalibrate by touching a sensor on the assembly such as a sensor on its arm. Once the robotic assembly is recalibrated, typically between a set number of workpieces or before each workpiece, the robotic assembly starts the manufacturing operation.
Some workpieces on which manufacturing operations are performed require a high degree of accuracy in the performed operation, are not dimensionally stable, or may inconsistently vary from an expected position, requiring the robotic assembly to be calibrated to each workpiece, before the start of a manufacturing operation. For workpieces which are not dimensionally stable, during the manufacturing operation, the robotic assembly may need to recalibrate itself to the workpiece between manufacturing steps. Each calibration to a particular workpiece is time consuming, thereby reducing the speed of a manufacturing operation. To adjust for movement of the workpiece relative to the jig or fixture, robotic assemblies use a digital sensor to find an edge feature or similar variation on the workpiece to determine the location of the workpiece. For some parts, two features are found to locate the workpiece. In determining that a workpiece is accurately positioned, or determining the actual location of the workpiece, the robotic assembly checks the position of a specified point or points on the workpiece for any variation relative to the location of the position(s) on the initial calibrating workpiece. With the article or workpiece sufficiently located, and the robot calibrated to the actual workpiece, the robot switches from the sensor to a tool and the manufacturing operation generally proceeds.
Using a digital sensor to find the workpiece or a position on the workpiece is time consuming or at times inaccurate. For example, if the workpiece is substantially shifted within the jig, it may be difficult for the digital sensor to find the desired calibrating feature, such as an edge of the workpiece. Digital sensors generally require a 3-dimensional surface change to identify an edge or feature on the workpiece. Even if the robotic arm eventually finds the workpiece with the digital sensor, the process may be time consuming because the robotic arm has to place the digital sensor at a starting point and then move the sensor a sufficient distance across the feature to detect the sharp 3-dimensional surface change. This moving of the digital sensor to detect a fracture is time consuming as the digital sensor must not only be moved slow enough to ensure an accurate reading of the exact location of the feature but also must be moved for a distance sufficient to account for all variations in location of the workpiece or in particular the feature. Therefore, the sensor start location is set back sufficiently from the expected feature position, so that the location of the workpiece or feature may be found no matter the position within a jig. If further dimensions must be determined before starting a manufacturing operation, repeating the above-described operation to find one or two more features requires valuable time in the manufacturing operation and reduces potential productivity. Therefore, there is a need for a robotic assembly that includes a method of sensing features on a workpiece or the position of a workpiece to perform a manufacturing operation in a more time efficient manner.
Another problem with present known methods of determining workpiece or feature locations is that articles or workpieces such as parts formed from fiberglass, plastic, or other similar materials may not be dimensionally stable while the manufacturing operation is being performed. Therefore, while the time consuming process of locating the workpiece or a feature on the workpiece is performed, the workpiece may shift, move, or shrink. This movement may even occur as the manufacturing operation is performed thereby causing inaccuracies in the manufacturing operation being performed on the workpiece. For example, in performing trimming, cutting, or drilling operations on a fiberglass part such as a large hot tub or boat, the workpiece may shrink during the manufacturing operation. The workpiece may also shrink unpredictably at different rates in different locations on the workpiece. One cause of variable shrinking of a workpiece is the thickness of the material. Some workpieces have a thickness which may randomly vary within a specified range, making the rate of shrinkage difficult to control or predict. For example, a workpiece may have a long extent within a thin thickness, which would have a high rate of shrinkage and a shorter extent with greater thickness, which would have a lower rate of shrinkage. Due to the unpredictability of the shrinkage rates, these variations cannot be accounted for when calibrating the robotic assembly. Therefore, if a large number of holes need to be drilled or extensive cutting operations need to be performed, as the robotic assembly proceeds with its manufacturing operation, the difference between the expected location of operation and actual location may increase, making the workpiece unusable. Therefore, there is a need for a robotic assembly that quickly and accurately finds the workpiece and allows for quick updates during the manufacturing operation to account for workpiece shrinkage as the manufacturing operation is performed.
In view of the above, the present invention relates to an apparatus and method for determining a position with a robotic assembly before and during manufacturing operations. More specifically, the present invention is directed to an apparatus and method for quickly and accurately finding the location of a workpiece, a desired position on a workpiece or the start of a manufacturing operation using an interactive search strategy. Furthermore, the present invention also allows for adjustments or updates to the relative position of the workpiece due to movement or shrinkage during the manufacturing operation.
The method generally includes the steps of directing an analog sensor to a first measurement position, based upon an expected location of a first surface of the workpiece. The analog sensor then senses a first surface or feature on the workpiece to determine the actual location of the first surface or feature along at least one axis. With the location of the first surface or feature on a workpiece known, an expected location of a second surface or feature on a workpiece is determined. The system moves the sensor to a second measurement position, based upon the determined second measurement position. The system then senses the actual location of the second surface or feature on the workpiece. The method may further include additional steps for finding additional features or surfaces on the workpiece. The manufacturing operation proceeds once the location of the workpiece, feature, or position of the start of the manufacturing operation is sufficiently determined.
The method may also use a digital sensor in combination with an analog sensor. To ensure maximum efficiency and that a digital sensor does not miss or misinterpret a feature or surface, the analog sensor is used to find the first surface or feature on the workpiece. With the actual location of the first surface or feature determined, the system determines a second measurement position at least in part using the actual determined location of the first surface or feature. The digital sensor may be used in place of the analog sensor subsequent to the first measurement.
Further scope of applicability of the present invention will become apparent from the following detailed description, claims, and drawings. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art.
The present invention will become more fully understood from the detailed description given here below, the appended claims, and the accompanying drawings in which:
As illustrated in
The robotic arm 20 is illustrated as a six-axis robotic arm, however other configurations of robotic arms may be easily substituted. The size, shape, or configuration of the robotic arm is irrelevant for purposes of the present invention. In some embodiments, a workpiece support assembly 12 may be configured to move in conjunction with the robotic arm 20. Although only a single robotic arm 20 is illustrated in the figures as performing both the functions location of the workpiece and the manufacturing operation, more than one robotic arm, such as a different robotic arm for each task may be used without departing from the scope of the present invention. The robotic arm 20 may further include an end effector (not illustrated) that is capable of selecting different tools and sensors. The robotic arm 20 is controlled by a controller 50 as is well known in the art. The robotic arm controller 50 may also control the sensors 30 and 40, but as illustrated in
The analog sensor 30 is any analog sensor that has the ability to move with robot arm 20 and be triggered at any desired location. The present invention uses a laser analog sensor, but ultrasonic, infra-red, Doppler, or any other analog sensor capable providing a distance measurement without contacting the workpiece may be used. While some contact analog sensors exist, they have similar drawbacks to the digital sensor and are very time consuming and inefficient to use. Therefore, the present invention only uses non-contact analog sensors. The analog sensor 30 can provide an analog distance measure without contacting the workpiece 20.
The digital sensor 40 can be any digital sensor capable of non-contact measurement providing a digital trigger point when used to search for a feature, such as an edge of the workpiece 20. Examples of digital sensor are laser, ultrasonic, infra-red, Doppler or any other digital sensor providing a digital trigger point regarding a specific desired feature.
The present invention preferably uses one sensor as illustrated in
The present invention may use one of two search strategies or a combination thereof for finding the location of workpieces, features on workpieces, or the start of a manufacturing operation on workpieces placed in a robotic work cell or traveling along an assembly line. Exemplary manufacturing operations commonly performed by robotic assemblies include trimming of the workpiece, cutting operations, as well as drilling holes in the workpiece. Of course, the present invention, which includes the method of finding the workpiece, may be used with any robotic assembly that requires an accurate location of the workpiece to perform the desired manufacturing operation. The first method of finding a workpiece uses a plurality of analog searches to locate the workpiece, feature or location of the start of manufacturing operation. The second method of locating a workpiece uses a combination of analog and digital sensors to locate the workpiece, feature, or location of the start of the manufacturing operation. Of course, in some embodiments, the present invention may use a combination of the first and second methods. In performing the methods of locating a workpiece, feature, or start of a manufacturing operation, the present invention may use touch sensors or non-contact sensors, choosing the best suited sensor for a particular measurement.
Before any manufacturing operation may be performed, the robotic assembly must be calibrated. In some embodiments, the calibration to a master workpiece may be entered without any actual measurements by the particular robotic arm, however, most robotic assemblies still use a master workpiece and physically calibrate the robotic assembly to the master workpiece. The purpose of calibration is to both provide the robotic assembly with the details of the expected location of subsequent workpieces as well as where on the workpiece particular manufacturing operations is to be performed. For example, in creating the master workpiece data file which is generally stored in the controller 50, the subject data is loaded into the controller by the robotic arm either learning physically where the workpiece is or being digitally provided with the expected location of the workpiece or features on the workpiece. Any method of providing a calibration of the master workpiece or part may be used to provide the controller 50 with the necessary information to perform the manufacturing operation. The present invention is specifically directed to the finding of the part both before and during the manufacturing operation and is not directed to providing calibration or inputting of the master workpiece data.
Once the robotic assembly is calibrated to a particular workpiece or feature by identifying data at selected measurement points and that data is placed within the controller's memory, subsequent workpieces or features may be found using this data to determine expected locations for measurement. In the first method and as exemplary illustrated in
The use of an analog sensor 30 to provide the first search for the workpiece is useful because analog sensor 30 may easily find surface locations of parts without movement of the sensor and without contacting the workpiece. Given the magnitude of offset that may occur between the expected workpiece or feature location and the actual location, digital sensors may be time consuming to find the initial location of the workpiece or may easily miss the workpiece entirely. Therefore, the analog sensor 30 easily finds the workpiece, even if the workpiece is substantially offset.
With the actual location of the first surface or feature 62 of a workpiece along a first axis found, the controller 50 may direct the robotic arm 20 and associated sensor to a second measurement position 102. The second measurement position 102 may be based upon the expected location of the particular feature or master workpiece surface to be measured. However, it is preferable to update the location of the workpiece along the axis already measured within the controller 50 based upon the actual location of the first surface measured from the first measurement position 100. More particularly, the analog sensor 30 in the first measurement position 100 senses the actual location of the first surface of the workpiece 60. Typically the analog sensor 30 may do this without movement for a quick and accurate location of the first surface 62 of the workpiece 60. This sensor output is communicated to a controller which determines the actual location of the first surface 62 of the workpiece 60 including the offset of the actual location from the expected location to determine the one dimensional offset 300 distance along an axis as illustrated in
With the analog sensor 30 moved to the second measurement position 102, a second measurement is taken by sensing the actual location of the second surface 64 at the star 65 with the analog sensor 30. The data from the analog sensor 30 output is then provided to the controller, which determines the actual location of the second surface 64 of the workpiece 60 as illustrated in
Multiple measurements may also be performed along a particular axis as illustrated in
As illustrated in
The search strategy may be further improved in the second method by combining a digital sensor with the analog sensor to find features on a workpiece or edges of the workpiece. Digital searches are very useful in finding sharp edges or specific features on a part. The problem with digital searches being very timing consuming to perform is overcome when an analog search is combined with the digital search. Therefore, once the analog search is performed as described above, along at least one dimension, the digital search is performed as the general location of the workpiece is now known. Of course, performing the analog search along multiple dimensions will provide a more accurate location for the digital search to start from thereby in many instances reducing the amount of time required to accurately perform the digital search. Therefore, after performing an analog search as illustrated in
For small, thin, flat parts that are very consistent in size and shape, finding the three dimensional shape of the part is typically first performed by an analog search, such as to find the top surface and then using the digital sensor to find two edges of the part. If the top surface has any height changes within it, then a digital search may be first performed to find an edge so that the analog search occurs within the right location on the top surface such that the potential for height variations to undesirably effect the analog sensor is minimized.
For many parts it is also preferable to offset searches using data from the other searches to accurately find the location of a surface. For example, when multiple operations are performed to a large workpiece, the location of one feature provides data for the controller to change the location of the first measurement position for the next location to be determined. More specifically, if the workpiece is found to have a large longitudinal shift, the next search will start from an updated first measurement position that takes the longitudinal shift into account. Therefore, each subsequent search for a particular location starts for a more accurate first measurement position thereby each time a search is performed, it occurs more quickly and accurately than the last search. Another example is when a workpiece or feature on a workpiece moves by rotation, it may be difficult to get an accurate search. Furthermore, when a workpiece is tapered such as the workpieces illustrated in
Further iterative searches may also be performed that provide greater detail and precision and accuracy of finding the workpiece in three dimensions or 3D, yet also accounting for rotation of a workpiece. While a one dimensional rotation of a workpiece may be easy to determine, it is more difficult to determine a two dimensional and three dimensional rotation of a workpiece. Three dimensional rotation of a workpiece is particularly important to objects that vary in shape and size such as a hot tub or boat hull that is shrinking as it is cooling shortly after being formed. Furthermore, large workpieces may also have features that are three dimensionally shifted relative to the overall workpiece such as assembled workpieces and while the workpiece may be easily found, the feature may be needed to be three dimensionally located as well as determine if there is any rotation three dimensionally. More particularly, these workpieces are typically repeatable in size and shape but can not be located repeatably within a work cell. Typically this means placement plus or minus one inch in each axis.
The key to finding a whole workpiece accurately and finding the rotation of the workpiece is to search locations that were searched on the master part. Therefore, as illustrated in
Therefore, once a part is programmed into a controller the desired searches are programmed and mastered by the controller to create a master data. The master data is stored within the controller. Typically the master data is made inaccessible to the user to insure that the master data does not become corrupt or changed unless specifically desired. Once the controller is prepared with a full set of master data, the next part or workpiece is located into the system for performing a manufacturing operation such as trimming, cutting, or drilling of holes. The appropriate search program is then run in an automatic mode without interaction from the user. The robot assembly performs each of the searches described above as part of the logic program. The differences found from the master position to the next position are calculated into offsets and the offsets are applied as part of the program to be taken into account during manufacturing operations or if necessary to repeat the original part program with a newly located part. The robot assembly then performs the searches iteratively until it is satisfied that the location of the part is found within certain offset parameters. Once the workpiece or part is sufficiently found, the robot assembly starts and performs the manufacturing process.
The foregoing discussion discloses and describes an exemplary embodiment of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the true spirit and fair scope of the invention as defined by the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/893,475, filed Mar. 7, 2007, the entire disclosure of the provisional application being considered part of the disclosure of this application and hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60893475 | Mar 2007 | US |