Off-the-road (OTR) tires include tires for construction vehicles such as wheel loaders, backhoes, graders, trenchers, and the like, as well as large mining trucks. OTR tires can be of either bias or radial construction, although the industry is trending toward increasing use of radial. Bias OTR tires are built with a large number of reinforcing plies to withstand severe service conditions and high loads.
Disposal of large diameter OTR tires used in construction and mining is a growing, global concern. The physical properties of OTR tires differ significantly from passenger and truck tires, and require specialized processes to ensure a safe and cost-effective means to reduce the overall mass to a workable size for further processing. For perspective, a typical truck tire may weigh one hundred thirty pounds and measure forty two inches in diameter. However, a typical OTR tire weighs around seven thousand pounds and measures nearly twelve feet in diameter. OTR tires also have very large steel beads disposed within the edges of the central tire openings that provide stability to the sidewalls and seal the tire to the rim. In some instances, the beads may account for up to five percent of the total tire weight.
The large steel beads located in the OTR tires represent a distinct problem for tire recyclers. There are some tire shredding machines capable of cutting through these large beads; however, this significantly increases the wear and maintenance costs of the equipment. By removing the bead prior to shredding, tire recyclers are able to reduce these costs and increase the life of their equipment.
Previous owners of scrapped OTR tires face a different problem. Many do not want the tires to be repaired and re-used in order to mitigate potential liability that could arise over defective tires. Most damaged OTR tires can be repaired as long as the casing and bead are still in reasonably good condition. Occasionally, tires will be repaired and resold without the prior owner's knowledge. However, an OTR tire cannot be repaired if the bead has removed. Accordingly, a cost effective method of removing the beads from OTR tires would be desirable to owners of scrapped OTR tires who do not want the tires to be repaired or reused. Presently, there are no machines on the market that are capable of removing the whole bead from an OTR tire.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary, and the foregoing Background, is not intended to identify key aspects or essential aspects of the claimed subject matter. Moreover, this Summary is not intended for use as an aid in determining the scope of the claimed subject matter.
A tire bead removing system and methods of use are presented to selectively remove one or both steel beads from various types and sizes of tires. The tire bead removing system removes the beads from the tires by making a series of overlapping punched cuts in a circumferential pattern in the sidewall of the tire around the beads. In various embodiments, the punching mechanism of the tire bead removing system remains stationary while one or more powered rollers advance the tire through a rotational movement after each successive punching motion of the punching mechanism until the beads have then severed from the sidewalls of the tire.
In various embodiments, a roller arm assembly supports the weight of a tire within the tire bead removing system and advances the tire through a rotational motion during the bead removal process. In some embodiments, the roller arm assembly includes a left hand roller bracket, which rotatably supports a powered roller bar, and a right hand roller bracket, which rotatably supports a non-powered roller bar. A punch arm assembly is positioned, during a bead removing operation, to extend between the left hand roller bracket and right hand roller bracket. The punch arm assembly includes a pair of punch blade mounts and punch blades that are faced opposite one another and moved toward and away from one another by a pair of punch power cylinders.
In various embodiments, a cage assembly is associated with the tire bead removing system to protect the operator from the rotating tire. The cage assembly, in some embodiments, includes a left hand cage arm and a right hand cage arm that are pivotally coupled with a cage connecting bar, which includes a right connecting bar and left connecting bar that may slideably move along one another's lengths in order to lengthen and shorten the cage connecting bar. Pairs of cage hinge pins and cage power cylinders are coupled with the left hand cage arm and the right hand cage arm to extend and retract the cage arms between open and closed positions.
In some embodiments, the tire bead removing system may be provided in a portable arrangement, wherein the tire bead removing system is coupled with a trailer. A loading power cylinder may be associated with the trailer such that it extends between the trailer and the support frame of the tire bead removing system. The tire bead removing system may be securely positioned atop a ground or operating surface with the loading power cylinder. When the user needs to load the tire bead removing system into a transport position, the loading power cylinder retracts, tipping the tire bead removing system in a rearward direction until its support frame is supported on the trailer.
In at least one method of use, the user actuates a control station assembly to open the cage assembly so that a tire may be loaded onto the tire bead removing system. The tire is positioned so that the roller arm assembly and the punch arm assembly penetrate the central opening of the tire and the beads of the tire rest on the powered roller bar and non-powered roller bar. The cage assembly is then actuated to move into a closed position around the tire. The operator may then actuate the punch arm assembly controls so that one or both of the punch power cylinders are actuated and drive the punch blades toward one another until they engage and penetrate the sidewalls of the tire, adjacent the bead. The punch power cylinders are again actuated in a reverse order in order to retract the punch blades. The powered roller bar is then actuated to rotate the tire a distance slightly less than a width of the punch blades. The process may then be repeated by advancing and retracting the punch blades, followed by advancing of the tire with the powered roller bar until the tire has completed a full rotation and the tire beads have been severed from the sidewalls of the tire.
These and other aspects of the present system and method will be apparent after consideration of the Detailed Description and Figures herein. It is to be understood, however, that the scope of the invention shall be determined by the claims as issued and not by whether given subject matter addresses any or all issues noted in the Background or includes any features or aspects recited in this Summary.
Non-limiting and non-exhaustive embodiments of the present invention, including the preferred embodiment, are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
a depicts a perspective view of an off-the-road tire with its sidewall and bead intact.
b depicts a perspective view of the off-the-road tire of
a depicts a perspective view of one embodiment of the tire bead removing system of the present technology.
b depicts a perspective view of the tire bead removing system of
a depicts a rear perspective view of one embodiment of a one embodiment of the tire bead removing system of the present technology and one manner in which the system may be coupled with a mobile trailer and placed in a use position.
b depicts a front perspective view of the tire bead removing system of
Embodiments are described more fully below with reference to the accompanying figures, which form a part hereof and show, by way of illustration, specific exemplary embodiments. These embodiments are disclosed in sufficient detail to enable those skilled in the art to practice the invention. However, embodiments may be implemented in many different forms and should not be construed as being limited to the embodiments set forth herein. The following detailed description is, therefore, not to be taken in a limiting sense.
A tire bead removing system and methods of use are presented to selectively remove one or both steel beads from various types and sizes of tires. In various embodiments, the tire bead removing system 10 is used to remove steel beads from large diameter tires, such as OTR tires.
With reference to
With reference to
With continued reference to
With reference to
In various embodiments, the punch power cylinders may be operated simultaneously or separately from one another. An outer punch arm power cylinder 58 may be secured with the inner punch arm support 50 at a base end portion of the power cylinder and, at a distal end portion, with a slide rail 60 on which the outer punch arm support 58 may be mounted. In this configuration, the outer punch arm support 58 and its punch blade 54 may be moved toward and away from the inner punch arm support 50 to accommodate different tire widths throughout a bead removing operation with tires of various widths. A punch arm extension power cylinder 62 may be provided for moving the punch arm assembly 46 through extended and retracted positions for use in bead removing and storage purposes.
With reference to
With reference to
With reference to
With reference to
In at least one method of use, the tire bead removing system 10 may be placed in a deployed position, such as depicted in
In various embodiments, the powered roller bar 26 could be designed to have a more aggressive gripping roller surface to advance the tire more easily. The powered roller bar 26 could also be designed as a direct drive unit, instead of chain driven. In some embodiments, it is contemplated that various tire cutting operations may make it desirable to have two or more powered roller bars.
It is contemplated that the cage assembly 80 can be shaped and configured to provide greater coverage of the tire and greater protection to the operator. It could also be designed as an adjustable cage with hinged or sliding extension pieces to further guard the tire. In some embodiments, the cage could be made to hinge over the top of the tire instead of closing around the sides of the tire.
In various embodiments, the control station assembly 104 could be equipped with a handheld remote control that allows the operator greater range of motion around or away from the tire during processing. The control station assembly 104 could be incorporated with the power unit, but it would be subject to noise and vibration that may adversely affect operation. It is also contemplated that the control station assembly 104 and the power unit assembly 94 could also be incorporated as an integral part of the tire bead removing system 10 instead of independent assemblies.
Although the technology been described in language that is specific to certain structures, materials, and methodological steps, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific structures, materials, and/or steps described. Rather, the specific aspects and steps are described as forms of implementing the claimed invention. Since many embodiments of the invention can be practiced without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended. Unless otherwise indicated, all numbers or expressions, such as those expressing dimensions, physical characteristics, etc. used in the specification (other than the claims) are understood as modified in all instances by the term “approximately.” At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the claims, each numerical parameter recited in the specification or claims which is modified by the term “approximately” should at least be construed in light of the number of recited significant digits and by applying ordinary rounding techniques. Moreover, all ranges disclosed herein are to be understood to encompass and provide support for claims that recite any and all subranges or any and all individual values subsumed therein. For example, a stated range of 1 to 10 should be considered to include and provide support for claims that recite any and all subranges or individual values that are between and/or inclusive of the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less (e.g., 5.5 to 10, 2.34 to 3.56, and so forth) or any values from 1 to 10 (e.g., 3, 5.8, 9.9994, and so forth).
This application claims the benefit of U.S. Provisional Application No. 61,597,375, filed Feb. 10, 2012, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1459693 | Rand | Jun 1923 | A |
3838492 | Uemura | Oct 1974 | A |
3911772 | Kisielewski | Oct 1975 | A |
3922942 | Fawcett et al. | Dec 1975 | A |
4137101 | Stock | Jan 1979 | A |
4338839 | Farrell et al. | Jul 1982 | A |
4338840 | Farrell et al. | Jul 1982 | A |
4355556 | Ulsky | Oct 1982 | A |
4694716 | Sakamoto | Sep 1987 | A |
4738172 | Barclay | Apr 1988 | A |
4873759 | Burch | Oct 1989 | A |
5054351 | Jolliffe et al. | Oct 1991 | A |
5235888 | Dom | Aug 1993 | A |
5267496 | Roach et al. | Dec 1993 | A |
5551325 | Schutt | Sep 1996 | A |
5765727 | Masley | Jun 1998 | A |
5783035 | Pederson | Jul 1998 | A |
5868328 | Luoma | Feb 1999 | A |
6240819 | Su et al. | Jun 2001 | B1 |
6257113 | Lederbauer | Jul 2001 | B1 |
6467383 | Charbonnier | Oct 2002 | B1 |
7975579 | Pederson | Jul 2011 | B1 |
8225701 | Vainer et al. | Jul 2012 | B2 |
20020035908 | Kawashima et al. | Mar 2002 | A1 |
20030024369 | Dunn et al. | Feb 2003 | A1 |
20040107811 | Schmeling | Jun 2004 | A1 |
20080314216 | Delgado et al. | Dec 2008 | A1 |
20090165619 | Lacey et al. | Jul 2009 | A1 |
20110023668 | McMahon et al. | Feb 2011 | A1 |
20130205963 | Prochello et al. | Aug 2013 | A1 |
20140174637 | Chevaux | Jun 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20130205963 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61597375 | Feb 2012 | US |