Advertisers want to know how effective their advertisements are. In particular, they want to know, for any given number of exposures, how effective the advertisements are in driving consumer behavior. In some cases, it is possible to connect “conversion”—meaning, purchase of a product or service following viewing of an advertisement—directly at the household level to corresponding set top box (STBs)-based TV viewing behavior. In particular, the likelihood of conversion or sales success can be in some instances related to frequency of household-level advertisement exposure. Advertisers want to know, moreover, which specific networks, programs, times of day, ad copies, etc. drove the most conversion. However, when a consumer is exposed to multiple advertisements (i.e. cross-exposure), it may be difficult to know which advertisements drove the purchase. Thus, there is a need for an improved system that can account for cross-exposure in determining the effectiveness of advertisements.
An advertising “campaign” is the delivery of one or more related advertisements across one or more distribution networks at different times and/or days. Disclosed herein is a system and method to measure the effectiveness of advertisements in driving purchase behavior, and in particular to disentangle the effectiveness of a particular target portion of a campaign (which might refer to a specific network on which an advertisement appears, or time of day on a given network, or program, or ad copy, etc.) from exposures to other non-target portions of the campaign. To facilitate the measurement of the effectiveness of advertisements at this level of specificity, the system constructs an “exposure interaction matrix” (EIM), which allows isolation of the effectiveness of one group of advertisement exposures while controlling for exposures across other groups.
In some embodiments, the exposure interaction matrix comprises a number of exposures to target advertisements along one axis and a number of exposures to non-target advertisements along the other axis. Household viewing data is reviewed as compared to an advertising campaign schedule in order to measure how many times the household was exposed to target advertisements and non-target advertisements. In accordance with the number of exposures to target advertisements and non-target advertisements, a corresponding cell in the exposure interaction matrix is determined and a record is kept of which households converted (i.e. purchased the advertised product or service) or did not convert. This process is repeated for all of the households in a geographic area that is being analyzed. A conversion rate is then computed for each cell, which comprises a ratio of the number of converted households in the cell to a total number of households in the cell. In addition, a conversion rate is computed for each total number of exposures, which comprises a ratio of a number of converted households relative to a given total number of exposures. An index for each cell is calculated as the conversion rate of the cell, divided by the overall conversion rate for x+y exposures. The index therefore indicates how much the target advertisements influenced the conversion decision, relative to the entire campaign.
In some embodiments, a plurality of target advertisements are determined which are to be analyzed and an exposure interaction matrix is constructed for each target. All of the exposure interaction matrices are then analyzed relative to one another in order to determine a media plan (e.g., an advertising campaign) that attempts to maximize conversion rate.
Various embodiments of the invention are described below. The following description provides specific details for a thorough understanding and an enabling description of these embodiments. One skilled in the art will understand, however, that the invention may be practiced without many of these details. In addition, some well-known structures or functions may not be shown or described in detail, so as to avoid unnecessarily obscuring the relevant description of the various embodiments. The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the invention.
Each subscriber controls which program content they view with the assistance of a household device 104. In some embodiments, a household device 104 can be a set-top unit (STU) or one of various types of a set-top box (STB), such as a cable television converter, satellite receiver, or other similar devices such as gaming stations (e.g. Microsoft X-box) and the like, as well as integrated electronic components (e.g., tuners in a smart television) which allow a user to tune to a desired audio/video stream. In some embodiments, the household device 104 can be a hybrid set-top box (HSTB) that allows various methods of data transmission, such as, cables, satellites, telecommunication and Internet. The household device 104 may include digital video recorder “DVR” capability (e.g. a TiVO recorder) to enable the user to time-shift the viewing of video content. Broadly stated, the phrase “household device” is used herein to refer to any device, component, module, or routine that enables tune data to be collected from an associated video playback device. Household devices 104 may be stand-alone devices or household device functionality may be incorporated into the video playback devices. In some embodiments, household devices have the ability to detect, record, and communicate tuning events at each subscriber's household that are indicative of what channel a user is viewing at any given time. In addition, each household device may also have the ability to detect, record, and communicate how a user interacts with the household device such as by pressing play, fast forward, rewind, pause, etc. if the household device incorporates DVR functionality.
As shown in
As part of the exposure and conversion analysis system 100, a purchase data module 108a is utilized to obtain household-level purchase information 12a. Household-level purchase information reflects when a consumer in the household purchases an advertised product or service. Such purchase information 12a can be based on credit card receipts or other purchase records that can be correlated to a particular set top box or household, as will be described in more detail below with respect to
An exposure and conversion module 109 receives purchase data 13a from the purchase data module 108a, viewing data 13b from the viewing data module 108b, and advertising campaign schedule data 13c from the advertising campaign schedule data module 108c. The exposure and conversion module generates data 14 for one or more exposure interaction matrices, as will be described in more detail below with respect to
At a block 220, the system accesses the viewing data for household n. The viewing or tune data is typically supplied by a content presenter such a cable or satellite television operator that receives tune data from all or some of the set top boxes in the operator's network. A system and method for receiving and analyzing viewing data is described in U.S. patent application Ser. No. 11/701,959, filed on Feb. 1, 2007, entitled “Systems and Methods for Measuring, Targeting, Verifying, and Reporting Advertising Impressions”, which is hereby incorporated by reference in its entirety. A system and method for correcting viewing data so as to not count exposures occurring when a television or other viewing device is off is described in U.S. patent application Ser. No. 13/081,437, filed on Apr. 6, 2011, entitled “Method and System for Detecting Non-Powered Video Playback Devices”, which is hereby incorporated by reference in its entirety.
At a block 230, the system accesses the complete advertising schedule for the campaign of interest. At a block 240, for the household n, the system reviews the household's viewing history, combined with the advertising schedule, and measures how many times the household was exposed to target ads, and how many times the household was exposed to non-target ads. A “target” portion of an advertising campaign is defined as an advertisement or set of advertisements that are presented to the household during an advertising schedule of particular interest to an advertiser (“target ads”). The target portion of the advertising schedule may be defined as occurring on a certain network (e.g., NBC, CNN), in association with a particular program (e.g., CSI, 60 Minutes), at a particular time of day (e.g., during prime time, from 1 pm-3 pm), or any combination thereof. A “non-target” portion of the advertising campaign is defined as the same advertisement or set of advertisements that are presented to the household during the remainder of the advertising schedule (i.e., during all other channels, programs, or times other than the portion of the advertising campaign being analyzed) (“non-target ads”). As will be described in more detail below, it is desirable to understand the effectiveness of the target portion of the advertising campaign in relation to the rest of the advertising campaign (the non-target portion).
At a block 250, the system assigns the household n that was exposed to this combination of target and non-target advertisements to cell (x,y) in a matrix, where x is a number of non-target exposures and y is a number of target exposures. As will be discussed in additional detail herein,
At block 250, the system also determines whether a conversion occurred for each household. Each household that has been assigned to a cell within the matrix 300 has associated purchase information. Using the purchase information and the information about advertisements presented to each household, the system calculates whether a conversion occurred at each household. Conversions are determined by comparing the advertisements presented to a household with the purchases made by the household. Households having viewed an advertisement and then subsequently purchased the product or service are referred to as “converted.” Households that viewed the advertisement but did not purchase the product or service, are referred to as “non-converted.” In some embodiments, various sources (e.g., advertisers, marketers, etc.) may provide the purchase information, which is associated with the specific households for determining the conversions.
At a decision block 260, the system determines if the household n was the last household in the particular geographic area being analyzed. If there are more households to be analyzed, then the system returns to the block 210 where the next household is analyzed. If the last household has been analyzed, then the system continues to a block 270.
At the block 270, a conversion rate is therefore computed by the system for each cell. The conversion rate is the ratio of the number of converted households (in the cell) to total households (including all converted plus non-converted households in the cell). At a block 280, the system computes the conversion rate for each total number of exposures, including both target and non-target exposures. That is, the system computes the percentage of households who converted when overall they were exposed to 5 ads, to 6 ads, to 7 ads, etc. At a block 290, the system computes the index for each cell. The index for each cell is the conversion rate of the cell, divided by the previously-calculated overall conversion rate for the total number of exposures that is represented by that cell (i.e., x+y for each cell). Overall, the index for each cell is therefore expressed by the following equations (1) and (2):
The index of each cell therefore indicates how much the target advertisements influenced the conversion decision, relative to the entire campaign.
Those skilled in the art will appreciate that the system 100 and method 200 may be implemented on any computing system or device. Suitable computing systems or devices include personal computers, server computers, minicomputers, mainframe computers, distributed computing environments that include any of the foregoing, and the like. Such computing systems or devices may include one or more processors that execute software to perform the functions described herein. Processors include programmable general-purpose or special-purpose microprocessors, programmable controllers, application specific integrated circuits (ASICs), programmable logic devices (PLDs), or the like, or a combination of such devices. Software may be stored in memory, such as random access memory (RAM), read-only memory (ROM), flash memory, or the like, or a combination of such components. Software may also be stored in one or more storage devices, such as magnetic or optical based disks, flash memory devices, or any other type of non-volatile storage medium for storing data. Software may include one or more program modules which include routines, programs, objects, components, data structures, and so on that perform particular tasks or implement particular abstract data types. In distributed computing environments, the functionality of the program modules may be combined or distributed across multiple computing systems or devices and accessed via service calls.
As will be appreciated by those skilled in the art, the system can analyze the exposure interaction matrix to determine which combination(s) of advertisement views yield a high or desired level of conversion. The system can present the recommended combinations on a computer monitor, on paper, or store the recommended combinations on a computer readable media or transmit the recommended combinations over a computer communication link to another computer or display device. For example, the system can display the exposure interaction matrix in graphical form, with cells color-coded to reflect levels of performance. Cells indicating particularly good advertising performance may be color-coded in shades of red, whereas cells indicating poor performance may be color-coded in shades of blue. The color-coding of the matrix allows advertisers to quickly assess the various combinations reflected by the matrix and determine which areas reflect an optimal level of performance at a desired cost. With the information determined from the exposure interaction matrix, an advertiser is able to plan their advertising strategy as a combination of direct and indirect advertising exposures that will have the most likely chance of conversion for their desired customers.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the scope of the invention. While
This application claims the benefit of U.S. Provisional Patent Application No. 61/504,997, entitled “System and Method to Perform Exposure and Conversion Analysis” and filed Jul. 6, 2011, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61504997 | Jul 2011 | US |