Downhole rod lift pumps are used in a variety of well applications to pump well fluids to a surface collection location. The downhole rod lift pumps have a strainer which strains the inflowing well fluids to prevent downhole solids from flowing into the pump. Various existing strainers have a washer welded to a perforated gauge plate and this assembly is secured within the pump. Often, however, such an assembly may be poorly mated with corresponding pump components and thus susceptible to fracture or other damage.
In general, a system and methodology are provided for use in a well to filter solids during a pumping operation. The system may comprise a downhole pump, e.g. a downhole rod lift pump, having a pump housing through which a well fluid is moved during pumping of the well fluid. The pump housing is configured to receive a filter assembly which filters solids from the well fluid during pumping. The filter assembly may comprise a strainer having a filter section and a strainer bushing affixed to the filter section. The filter section may have a plurality of filter holes sized to aid in the filtration of solids. The filter assembly also may comprise a mechanical hold down having an interior sized to receive the filter section. An external bushing is secured to the mechanical hold down in a manner which holds the filter section within the mechanical hold down.
However, many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein, and:
In the following description, numerous details are set forth to provide an understanding of some embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The disclosure herein generally involves a system and methodology to facilitate filtration of solids with respect to well fluid during a pumping operation. The system may comprise a downhole pump, e.g. a downhole rod lift pump, having a pump housing through which a well fluid is moved during pumping of the well fluid. The pump housing is configured to receive a filter assembly which filters solids from the well fluid during pumping.
The filter assembly may comprise a strainer having a filter section and a strainer bushing affixed to the filter section. The filter section may have a plurality of filter holes sized to aid in the filtration of solids. In some embodiments, the filter section is generally conical in shape and the filter holes are arranged to filter fluid as it flows from an exterior to an interior of the conical filter section. The filter assembly also may comprise a mechanical hold down having an interior sized to receive the filter section. An external bushing is secured to the mechanical hold down in a manner which holds the filter section within the mechanical hold down.
The filter assembly may be used in downhole rod lift pumps and in various other types of downhole pumps or pumps used in other types of environments and applications. In general, the filter assembly uses a strainer to prevent downhole solids from flowing into the pump during pumping of fluid, e.g. well fluid. The filter assembly positions the strainer in a mechanical hold down and is able to entrap or block solids to ensure the efficiency of the pump is not compromised by the solids.
An advantage of the filter assembly is derived from the position and location at which it is installed. As explained in greater detail below, the strainer has a filter section combined with a bushing, e.g. a machined bushing. The filter section is disposed within the mechanical hold down and the bushing is secured within the mechanical hold down. In this manner, the strainer is secured, protected, and kept from interfering with outside mating components without restricting flow into the pump and without risk of poorly mated components.
Referring generally to
In the illustrated embodiment, the hold down filter assembly 32 comprises a strainer 34 having a filter section 36 and a strainer bushing 38, as further illustrated in
In some embodiments, the filter section 36 may be conical in shape. The conical shape may be oriented such that the filter section 36 continually tapers to a smaller external diameter until reaching the smallest diameter at a bottom 41 of the filter section 36. According to one example, the filter section 36 may be constructed from a sheet material formed in a generally conical shape with the filter openings 40 arranged to filter fluid as it flows from an exterior to an interior of the conically shaped filter section 36.
With additional reference to
Referring also to the embodiments illustrated in
In some embodiments, the top end 54 may comprise an external threaded region 56 to which the external bushing 42 may be secured. In
Depending on the parameters of a given application, environment, and/or pump structure, the mechanical hold down 50 may have a variety of configurations. In the illustrated embodiment, for example, the mechanical hold down 50 comprises a tapered section 60 having an external surface 62 oriented to seal against a corresponding surface 64 of the pump housing 26 (see
The mechanical hold down 50 also may comprise a slot 66 or a plurality of slots 66 position to accommodate flow of the well fluid to the filter section 36. For example, well fluids flowing into the pump 22 are able to readily flow through slots 66 of mechanical hold down 50 and through openings 40 of filter section 36 so as to move into the interior of filter section 36. From the interior of filter section 36, the well fluids are able to flow up through pump 22 as the well fluids are pumped to the surface or to other suitable collection locations. In some embodiments, the mechanical hold down 50 also may comprise a tapered seat member 68 which, in some pump configurations, can be used to seat the pump at its operational, downhole location.
Effectively, the filter assembly 32 provides an improved approach to protecting, handling, and utilizing filters in pumps 22, e.g. in downhole rod lift pumps. The mechanical hold down 50 may be in the form of a hold down mandrel, as described above, which allows the filter assembly to be completed as a single unit. This configuration is beneficial because it reduces the number of moving parts (or potentially moving parts) in the hole while the pump 22 is running and/or while assembling the pump 22. Additionally, the strainer 34 is enclosed and protected. The strainer bushing 38 also provides a mechanism for securing the strainer 34 within mechanical hold down 50 and external bushing 42 without placing undesirable stress on mating parts. As a result, the life of the pump 22 is increased and the pump is less prone to vibrate during operation downhole.
Although a few embodiments of the disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
The present document is based on and claims priority to U.S. Provisional Application Ser. No. 62/623,366, filed Jan. 29, 2018, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/015373 | 1/28/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/148078 | 8/1/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2501237 | Sanders | Mar 1950 | A |
4231767 | Acker | Nov 1980 | A |
5553669 | Trainer | Sep 1996 | A |
7909092 | Cobb | Mar 2011 | B2 |
8950491 | Frost | Feb 2015 | B2 |
9421484 | Ford | Aug 2016 | B2 |
9771786 | Raglin | Sep 2017 | B2 |
10385663 | Lane | Aug 2019 | B2 |
10731446 | Stachowiak | Aug 2020 | B2 |
10883354 | Watson | Jan 2021 | B2 |
20040079551 | Herst | Apr 2004 | A1 |
20100236833 | Hall et al. | Sep 2010 | A1 |
20130327528 | Frost | Dec 2013 | A1 |
20150047830 | Morton et al. | Feb 2015 | A1 |
20170089154 | Cantrell et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
154005 | Aug 2015 | RU |
2015171333 | Nov 2015 | WO |
Entry |
---|
International Search Report and Written Opinion issued in the PCT Application PCT/US2019/015373, dated May 1, 2019 (13 pages). |
American Petroleum Institute, Specification for Subsurface Sucker Rod Pump Assemblies, Components, and Fittings, API Specification 11AX, 13th Edition, May 2015, p. 79. |
Number | Date | Country | |
---|---|---|---|
20210222524 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62623366 | Jan 2018 | US |