System and methods for aging compensation in AMOLED displays

Abstract
A voltage-programmed display system allows measurement of effects on pixels in a panel that includes both active pixels and reference pixels coupled to a supply line and a programming line. The reference pixels are controlled so that they are not subject to substantial changes due to aging and operating conditions over time. A readout circuit is coupled to the active pixels and the reference pixels for reading at least one of current, voltage or charge from the pixels when they are supplied with known input signals. The readout circuit is subject to changes due to aging and operating conditions over time, but the readout values from the reference pixels are used to adjust the readout values from the active pixels to compensate for the unwanted effects.
Description
FIELD OF THE INVENTION

The present invention generally relates to active matrix organic light emitting device (AMOLED) displays, and particularly determining aging conditions requiring compensation for the pixels of such displays.


BACKGROUND

Currently, active matrix organic light emitting device (“AMOLED”) displays are being introduced. The advantages of such displays include lower power consumption, manufacturing flexibility and faster refresh rate over conventional liquid crystal displays. In contrast to conventional liquid crystal displays, there is no backlighting in an AMOLED display as each pixel consists of different colored OLEDs emitting light independently. The OLEDs emit light based on current supplied through a drive transistor. The drive transistor is typically a thin film transistor (TFT). The power consumed in each pixel has a direct relation with the magnitude of the generated light in that pixel.


The drive-in current of the drive transistor determines the pixel's OLED luminance. Since the pixel circuits are voltage programmable, the spatial-temporal thermal profile of the display surface changing the voltage-current characteristic of the drive transistor impacts the quality of the display. The rate of the short-time aging of the thin film transistor devices is also temperature dependent. Further the output of the pixel is affected by long term aging of the drive transistor. Proper corrections can be applied to the video stream in order to compensate for the unwanted thermal-driven visual effects. Long term aging of the drive transistor may be properly determined via calibrating the pixel against stored data of the pixel to determine the aging effects. Accurate aging data is therefore necessary throughout the lifetime of the display device.


Currently, displays having pixels are tested prior to shipping by powering all the pixels at full brightness. The array of pixels is then optically inspected to determine whether all of the pixels are functioning. However, optical inspection fails to detect electrical faults that may not manifest themselves in the output of the pixel. The baseline data for pixels is based on design parameters and characteristics of the pixels determined prior to leaving the factory but this does not account for the actual physical characteristics of the pixels in themselves.


Various compensation systems use a normal driving scheme where a video frame is always shown on the panel and the OLED and TFT circuitries are constantly under electrical stress. Moreover, pixel calibration (data replacement and measurement) of each sub-pixel occurs during each video frame by changing the grayscale value of the active sub-pixel to a desired value. This causes a visual artifact of seeing the measured sub-pixel during the calibration. It may also worsen the aging of the measured sub-pixel, since the modified grayscale level is kept on the sub-pixel for the duration of the entire frame.


Therefore, there is a need for techniques to provide accurate measurement of the display temporal and spatial information and ways of applying this information to improve display uniformity in an AMOLED display. There is also a need to determine baseline measurements of pixel characteristics accurately for aging compensation purposes.


SUMMARY

A voltage-programmed display system allowing measurement of effects on pixels in a panel that includes a plurality of active pixels forming the display panel to display an image under an operating condition, the active pixels each being coupled to a supply line and a programming line, and a plurality of reference pixels included in the display area. Both the active pixels and the reference pixels are coupled to the supply line and the programming line. The reference pixels are controlled so that they are not subject to substantial changes due to aging and operating conditions over time. A readout circuit is coupled to the active pixels and the reference pixels for reading at least one of current, voltage or charge from the pixels when they are supplied with known input signals. The readout circuit is subject to changes due to aging and operating conditions over time, but the readout values from the reference pixels are used to adjust the readout values from the active pixels to compensate for the unwanted effects.


The foregoing and additional aspects and embodiments of the present invention will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments and/or aspects, which is made with reference to the drawings, a brief description of which is provided next.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.



FIG. 1 is a block diagram of a AMOLED display with reference pixels to correct data for parameter compensation control;



FIG. 2A is a block diagram of a driver circuit of one of the pixels of the AMOLED that may be tested for aging parameters;



FIG. 2B is a circuit diagram of a driver circuit of one of the pixels of the AMOLED;



FIG. 3 is a block diagram for a system to determine one of the baseline aging parameters for a device under test;



FIG. 4A is a block diagram of the current comparator in FIG. 3 for comparison of a reference current level to the device under test for use in aging compensation;



FIG. 4B is a detailed circuit diagram of the current comparator in FIG. 4A;



FIG. 4C is a detailed block diagram of the device under test in FIG. 3 coupled to the current comparator in FIG. 4A;



FIG. 5A is a signal timing diagram of the signals for the current comparator in FIGS. 3-4 in the process of determining the current output of a device under test;



FIG. 5B is a signal timing diagram of the signals for calibrating the bias current for the current comparator in FIGS. 3-4;



FIG. 6 is a block diagram of a reference current system to compensate for the aging of the AMOLED display in FIG. 1;



FIG. 7 is a block diagram of a system for the use of multiple luminance profiles for adjustment of a display in different circumstances;



FIG. 8 are frame diagrams of video frames for calibration of pixels in a display; and



FIG. 9 is a graph showing the use of a small current applied to a reference pixel for more accurate aging compensation.



FIG. 10 is a diagrammatic illustration of a display having a matrix of pixels that includes rows of reference pixels.





While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION


FIG. 1 is an electronic display system 100 having an active matrix area or pixel array 102 in which an array of active pixels 104a-d are arranged in a row and column configuration. For ease of illustration, only two rows and columns are shown. External to the active matrix area which is the pixel array 102 is a peripheral area 106 where peripheral circuitry for driving and controlling the area of the pixel array 102 are disposed. The peripheral circuitry includes a gate or address driver circuit 108, a source or data driver circuit 110, a controller 112, and an optional supply voltage (e.g., Vdd) driver 114. The controller 112 controls the gate, source, and supply voltage drivers 108, 110, 114. The gate driver 108, under control of the controller 112, operates on address or select lines SEL[i], SEL[i+1], and so forth, one for each row of pixels 104 in the pixel array 102. In pixel sharing configurations described below, the gate or address driver circuit 108 can also optionally operate on global select lines GSEL[j] and optionally /GSEL[j], which operate on multiple rows of pixels 104a-d in the pixel array 102, such as every two rows of pixels 104a-d. The source driver circuit 110, under control of the controller 112, operates on voltage data lines Vdata[k], Vdata[k+1], and so forth, one for each column of pixels 104a-d in the pixel array 102. The voltage data lines carry voltage programming information to each pixel 104 indicative of brightness of each light emitting device in the pixel 104. A storage element, such as a capacitor, in each pixel 104 stores the voltage programming information until an emission or driving cycle turns on the light emitting device. The optional supply voltage driver 114, under control of the controller 112, controls a supply voltage (EL_Vdd) line, one for each row of pixels 104a-d in the pixel array 102.


The display system 100 may also include a current source circuit, which supplies a fixed current on current bias lines. In some configurations, a reference current can be supplied to the current source circuit. In such configurations, a current source control controls the timing of the application of a bias current on the current bias lines. In configurations in which the reference current is not supplied to the current source circuit, a current source address driver controls the timing of the application of a bias current on the current bias lines.


As is known, each pixel 104a-d in the display system 100 needs to be programmed with information indicating the brightness of the light emitting device in the pixel 104a-d. A frame defines the time period that includes a programming cycle or phase during which each and every pixel in the display system 100 is programmed with a programming voltage indicative of a brightness and a driving or emission cycle or phase during which each light emitting device in each pixel is turned on to emit light at a brightness commensurate with the programming voltage stored in a storage element. A frame is thus one of many still images that compose a complete moving picture displayed on the display system 100. There are at least two schemes for programming and driving the pixels: row-by-row, or frame-by-frame. In row-by-row programming, a row of pixels is programmed and then driven before the next row of pixels is programmed and driven. In frame-by-frame programming, all rows of pixels in the display system 100 are programmed first, and all of the frames are driven row-by-row. Either scheme can employ a brief vertical blanking time at the beginning or end of each frame during which the pixels are neither programmed nor driven.


The components located outside of the pixel array 102 may be disposed in a peripheral area 106 around the pixel array 102 on the same physical substrate on which the pixel array 102 is disposed. These components include the gate driver 108, the source driver 110 and the optional supply voltage control 114. Alternately, some of the components in the peripheral area can be disposed on the same substrate as the pixel array 102 while other components are disposed on a different substrate, or all of the components in the peripheral area can be disposed on a substrate different from the substrate on which the pixel array 102 is disposed. Together, the gate driver 108, the source driver 110, and the supply voltage control 114 make up a display driver circuit. The display driver circuit in some configurations may include the gate driver 108 and the source driver 110 but not the supply voltage control 114.


The display system 100 further includes a current supply and readout circuit 120, which reads output data from data output lines, VD [k], VD [k+1], and so forth, one for each column of pixels 104a, 104c in the pixel array 102. A set of column reference pixels 130 is fabricated on the edge of the pixel array 102 at the end of each column such as the column of pixels 104a and 104c. The column reference pixels 130 also may receive input signals from the controller 112 and output data signals to the current supply and readout circuit 120. The column reference pixels 130 include the drive transistor and an OLED but are not part of the pixel array 102 that displays images. As will be explained below, the column reference pixels 130 are not driven for most of the programming cycle because they are not part of the pixel array 102 to display images and therefore do not age from the constant application of programming voltages as compared to the pixels 104a and 104c. Although only one column reference pixel 130 is shown in FIG. 1, it is to be understood that there may be any number of column reference pixels although two to five such reference pixels may be used for each column of pixels in this example. Each row of pixels in the array 102 also includes row reference pixels 132 at the ends of each row of pixels 104a-d such as the pixels 104a and 104b. The row reference pixels 132 include the drive transistor and an OLED but are not part of the pixel array 102 that displays images. As will be explained the row reference pixels 132 have the function of providing a reference check for luminance curves for the pixels which were determined at the time of production.



FIG. 2A shows a block diagram of a driver circuit 200 for the pixel 104 in FIG. 1. The driver circuit 200 includes a drive device 202, an organic light emitting device (“OLED”) 204, a storage element 206, and a switching device 208. A voltage source 212 is coupled to the drive transistor 206. A select line 214 is coupled to the switching device to activate the driver circuit 200. A data line 216 allows a programming voltage to be applied to the drive device 202. A monitoring line 218 allows outputs of the OLED 204 and or the drive device 202 to be monitored. Alternatively, the monitor line 218 and the data line 216 may be merged into one line (i.e. Data/Mon) to carry out both the programming and monitoring functions through that single line.



FIG. 2B shows one example of a circuit to implement the driver circuit 200 in FIG. 2A. As shown in FIG. 2B, the drive device 202 is a drive transistor which is a thin film transistor in this example that is fabricated from amorphous silicon. The storage element 206 is a capacitor in this example. The switching device 208 includes a select transistor 226 and a monitoring transistor 230 that switch the different signals to the drive circuit 200. The select line 214 is coupled to the select transistor 226 and the monitoring transistor 230. During the readout time, the select line 214 is pulled high. A programming voltage may be applied via the programming voltage input line 216. A monitoring voltage may be read from the monitoring line 218 that is coupled to the monitoring transistor 230. The signal to the select line 214 may be sent in parallel with the pixel programming cycle. As will be explained below, the driver circuit 200 may be periodically tested by applying reference voltage to the gate of the drive transistor.


There are several techniques for extracting electrical characteristics data from a device under test (DUT) such as the display system 100. The device under test (DUT) can be any material (or device) including (but not limited to) a light emitting diode (LED), or OLED. This measurement may be effective in determining the aging (and/or uniformity) of an OLED in a panel composed of an array of pixels such as the array 102 in FIG. 1. This extracted data can be stored in lookup tables as raw or processed data in memory in the controller 112 in FIG. 1. The lookup tables may be used to compensate for any shift in the electrical parameters of the backplane (e.g., threshold voltage shift) or OLED (e.g., shift in the OLED operating voltage). Despite using an OLED display in FIG. 1 in these examples, the techniques described herein may be applied to any display technology including but not limited to OLED, liquid crystal displays (LCD), light emitting diode displays, or plasma displays. In the case of OLED, the electrical information measured may provide an indication of any aging that may have occurred.


Current may be applied to the device under test and the output voltage may be measured. In this example, the voltage is measured with an analog to digital converter (ADC). A higher programming voltage is necessary for a device such as an OLED that ages as compared to the programming voltage for a new OLED for the same output. This method gives a direct measurement of that voltage change for the device under test. Current flow can be in any direction but the current is generally fed into the device under test (DUT) for illustration purposes.



FIG. 3 is a block diagram of a comparison system 300 that may be used to determine a baseline value for a device under test 302 to determine the effects of aging on the device under test 302. The comparison system uses two reference currents to determine the baseline current output of the device under test 302. The device under test 302 may be either the drive transistor such as the drive transistor 202 in FIG. 2B or an OLED such as the OLED 204 in FIG. 2B. Of course other types of display devices may also be tested using the system shown in FIG. 3. The device under test 302 has a programming voltage input 304 that is held at a constant level to output a current. A current comparator 306 has a first reference current input 308 and a second reference current input 310. The reference current input 308 is coupled to a first reference current source 312 via a switch 314. The second current input 310 of the comparator 306 is coupled to a second reference current source 316 via a switch 318. An output 320 of the device under test 302 is also coupled to the second current input 310. The current comparator 306 includes a comparison output 322.


By keeping the voltage to the input 304 constant, the output current of the device under test 302 is also constant. This current depends on the characteristics of the device under test 302. A constant current is established for the first reference current from the first reference current source 312 and via the switch 314 the first reference current is applied to the first input 308 of the current comparator 306. The second reference current is adjusted to different levels with each level being connected via the switch 318 to the second input 310 of the comparator 306. The second reference current is combined with the output current of the device under test 302. Since the first and second reference current levels are known, the difference between the two reference current levels from the output 322 of the current comparator 306 is the current level of the device under test 302. The resulting output current is stored for the device under test 302 and compared with the current measured based on the same programming voltage level periodically during the lifetime operation of the device under test 302 to determine the effects of aging.


The resulting determined device current may be stored in look up tables for each device in the display. As the device under test 302 ages, the current will change from the expected level and therefore the programming voltage may be changed to compensate for the effects of aging based on the base line current determined through the calibration process in FIG. 3.



FIG. 4A is a block diagram of a current comparator circuit 400 that may be used to compare reference currents with a device under test 302 such as in FIG. 3. The current comparator circuit 400 has a control junction 402 that allows various current inputs such as two reference currents and the current of the device under test such as the pixel driver circuit 200 in FIG. 1. The current may be a positive current when the current of the drive transistor 202 is compared or negative when the current of the OLED 204 is compared. The current comparator circuit 400 also includes an operational trans-resistance amplifier circuit 404, a preamplifier 406 and a voltage comparator circuit 408 that produces a voltage output 410. The combined currents are input to the operational trans-resistance amplifier circuit 404 and converted to a voltage. The voltage is fed to the preamplifier and the voltage comparator circuit 408 determines whether the difference in currents is positive or negative and outputs a respective one or a zero value.



FIG. 4B is a circuit diagram of the components of the example current comparator system 400 in FIG. 4A that may be used to compare the currents as described in the process in FIG. 3 for a device under test such as the device 302. The operational trans-resistance amplifier circuit 404 includes an operational amplifier 412, a first voltage input 414 (CMP_VB), a second voltage input 416 (CMP_VB), a current input 418, and a bias current source 420. The operational trans-resistance amplifier circuit 404 also includes two calibration switches 424 and 426. As will be explained below, various currents such as the current of the device under test 302, a variable first reference current and a fixed second reference current as shown in FIG. 3 are coupled to the current input 418 in this example. Of course, the fixed second reference current may be set to zero if desired.


The first reference current input is coupled to the negative input of the operational amplifier 412. The negative input of the operational amplifier 412 is therefore coupled to the output current of the device under test 302 in FIG. 3 as well as one or two reference currents. The positive input of the operational amplifier 412 is coupled to the first voltage input 414. The output of the operational amplifier 412 is coupled to the gate of a transistor 432. A resistor 434 is coupled between the negative input of the operational amplifier 412 and the source of the transistor 432. A resistor 436 is coupled between the source of the transistor 432 and the second voltage input 416.


The drain of the transistor 432 is coupled directly to the drain of a transistor 446 and via the calibration switch 426 to the gate. A sampling capacitor 444 is coupled between the gate of the transistor 446 and a voltage supply rail 411 through a switch 424. The source of the 446 is also coupled to the supply rail 411. The drain and gate of the transistor 446 are coupled to the gate terminals of transistors 440 and 442, respectively. The sources of the transistors 440 and 442 are tied together and coupled to a bias current source 438. The drains of the transistors 442 and 440 are coupled to respective transistors 448 and 450 which are wired in diode-connected configuration to the supply voltage rail 411. As shown in FIG. 4B, the transistors 440, 442, 448 and 450 and the bias current source 438 are parts of the preamplifier 406


The drains of the transistors 442 and 440 are coupled to the gates of the respective transistors 452 and 454. The drains of the transistors 452 and 454 are coupled to the transistors 456 and 458. The drains of the transistors 456 and 458 are coupled to the respective sources of the transistors 460 and 462. The drain and gate terminals of the transistors 460 and 462 are coupled to the respective drain and gate terminals of the transistors 464 and 466. The source terminals of the transistors 464 and 466 are coupled to the supply voltage rail 411. The sources and drains of the transistors 464 and 466 are tied to the respective sources and drains of transistors 468 and 470. The gates of the transistors 456 and 458 are tied to an enable input 472. The enable input 472 is also tied to the gates of dual transistors 468 and 470.


A buffer circuit 474 is coupled to the drain of the transistor 462 and the gate of the transistor 460. The output voltage 410 is coupled to a buffer circuit 476 which is coupled to the drain of the transistor 460 and the gate of the transistor 462. The buffer circuit 474 is used to balance the buffer 476. The transistors 452, 454, 456, 458, 460, 462, 464, 466, 468 and 470 and the buffer circuits 474 and 476 make up the voltage comparator circuit 408.


The current comparator system 400 may be based on any integrated circuit technology including but not limited to CMOS semiconductor fabrication. The components of the current comparator system 400 are CMOS devices in this example. The values for the input voltages 414 and 416 are determined for a given reference current level from the first current input 418 (Iref). In this example, the voltage levels for both the input voltages 414 and 416 are the same. The voltage inputs 414 and 416 to the operational amplifier 412 may be controlled using a digital to analog converter (DAC) device which is not shown in FIG. 4. Level shifters can also be added if the voltage ranges of the DACs are insufficient. The bias current may originate from a voltage controlled current source such as a transimpedance amplifier circuit or a transistor such as a thin film transistor.



FIG. 4C shows a detailed block diagram of one example of a test system such as the system 300 shown in FIG. 3. The test system in FIG. 4C is coupled to a device under test 302 which may be a pixel driver circuit such as the pixel driver circuit 200 shown in FIG. 2. In this example, all of the driver circuits for a panel display are tested. A gate driver circuit 480 is coupled to the select lines of all of the driver circuits. The gate driver circuit 480 includes an enable input, which in this example enables the device under test 302 when the signal on the input is low.


The device under test 302 receives a data signal from a source driver circuit 484. The source circuit 484 may be a source driver such as the source driver 120 in FIG. 1. The data signal is a programming voltage of a predetermined value. The device under test 302 outputs a current on a monitoring line when the gate driver circuit 480 enables the device. The output of the monitoring line from the device under test 302 is coupled to an analog multiplexer circuit 482 that allows multiple devices to be tested. In this example, the analog multiplexer circuit 482 allows multiplexing of 210 inputs, but of course any number of inputs may be multiplexed.


The signal output from the device under test 302 is coupled to the reference current input 418 of the operational trans-resistance amplifier circuit 404. In this example a variable reference current source is coupled to the current input 418 as described in FIG. 3. In this example, there is no fixed reference current such as the first reference current source in FIG. 3. The value of first reference current source in FIG. 3 in this example is therefore considered to be zero.



FIG. 5A is a timing diagram of the signals for the current comparator shown in FIGS. 4A-4C. The timing diagram in FIG. 5A shows a gate enable signal 502 to the gate driver 480 in FIG. 4C, a CSE enable signal 504 that is coupled to the analog multiplexer 482, a current reference signal 506 that is produced by a variable reference current source that is set at a predetermined level for each iteration of the test process and coupled to the current input 418, a calibration signal 508 that controls the calibration switch 426, a calibration signal 510 that controls the calibration switch 424, a comparator enable signal 512 that is coupled to the enable input 472, and the output voltage 514 over the output 410. The CSE enable signal 504 is kept high to ensure that any leakage on the monitoring line of the device under test 302 is eliminated in the final current comparison.


In a first phase 520, the gate enable signal 502 is pulled high and therefore the output of the device under test 302 in FIG. 4C is zero. The only currents that are input to the current comparator 400 are therefore leakage currents from the monitoring line of the device under test 302. The output of the reference current 506 is also set to zero such that the optimum quiescent condition of the transistors 432 and 436 in FIGS. 4B and 4C is minimally affected only by line leakage or the offset of the readout circuitry. The calibration signal 508 is set high causing the calibration switch 426 to close. The calibration signal 510 is set high to cause the calibration switch 424 to close. The comparator enable signal 512 is set low and therefore the output from the voltage comparator circuit 408 is reset to a logical one. The leakage current is therefore input to the current input 418 and a voltage representing the leakage current of the monitoring line on the panel is stored on the capacitor 444.


In a second phase 522, the gate enable signal 502 is pulled low and therefore the output of the device under test 302 produces an unknown current at a set programming voltage input from the source circuit 484. The current from the device under test 302 is input through the current input 418 along with the reference current 506 which is set at a first predetermined value and opposite the direction of the current of the device under test. The current input 418 therefore is the difference between the reference current 506 and the current from the device under test 302. The calibration signal 510 is momentarily set low to open the switch 424. The calibration signal 508 is then set low and therefore the switch 426 is opened. The calibration signal 510 to the switch 424 is then set high to close the switch 424 to stabilize the voltage on the gate terminal of the transistor 446. The comparator enable signal 512 remains low and therefore there is no output from the voltage comparator circuit 408.


In a third phase 524, the comparator enable signal 512 is pulled high and the voltage comparator 408 produces an output on the voltage output 410. In this example, a positive voltage output logical one for the output voltage signal 514 indicates a positive current therefore showing that the current of the device under test 302 is greater than the predetermined reference current. A zero voltage on the voltage output 410 indicates a negative current showing that the current of the device under test 302 is less than the predetermined level of the reference current. In this manner, any difference between the current of the device under test and the reference current is amplified and detected by the current comparator circuit 400. The value of the reference current is then shifted based on the result to a second predetermined level and the phases 520, 522 and 524 are repeated. Adjusting the reference current allows the comparator circuit 400 to be used by the test system to determine the current output by the device under test 302.



FIG. 5B is a timing diagram of the signals applied to the test system shown in FIG. 4C in order to determine an optimal bias current value for the bias current source 420 in FIG. 4B for the operational trans-resistance amplifier circuit 404. In order to achieve the maximum signal-to-noise ratio (SNR) for the current comparator circuit 400 it is essential to calibrate the current comparator. The calibration is achieved by means of fine tuning of the bias current source 420. The optimum bias current level for the bias current source 420 minimizes the noise power during the measurement of a pixel which is also a function of the line leakage. Accordingly, it is required to capture the line leakage during the calibration of the current comparator.


The timing diagram in FIG. 5B shows a gate enable signal 552 to the gate driver 480 in FIG. 4C, a CSE enable signal 554 that is coupled to the analog multiplexer 482, a current reference signal 556 that is produced by a variable reference current source that is set at a predetermined level for each iteration of the calibration process and coupled to the current input 418, a calibration signal 558 that controls the calibration switch 426, a comparator enable signal 560 that is coupled to the enable input 472, and the output voltage 562 over the output 410.


The CSE enable signal 554 is kept high to ensure that any leakage on the line is included in the calibration process. The gate enable signal 552 is also kept high in order to prevent the device under test 302 from outputting current from any data inputs. In a first phase 570, the calibration signal 556 is pulled high thereby closing the calibration switch 426. Another calibration signal is pulled high to close the calibration switch 424. The comparator enable signal 558 is pulled low in order to reset the voltage output from the voltage comparator circuit 408. Any leakage current from the monitoring line of the device under test 302 is converted to a voltage which is stored on the capacitor 444.


A second phase 572 occurs when the calibration signal to the switch 424 is pulled low and then the calibration signal 556 is pulled low thereby opening the switch 426. The signal to the switch 424 is then pulled high closing the switch 424. A small current is output from the reference current source to the current input 418. The small current value is a minimum value corresponding to the minimum detectable signal (MDS) range of the current comparator 400.


A third phase 574 occurs when the comparator enable signal 560 is pulled high thereby allowing the voltage comparator circuit 408 to read the inputs. The output of the voltage comparator circuit 408 on the output 410 should be positive indicating a positive current comparison with the leakage current.


A fourth phase 576 occurs when the calibration signal 556 is pulled high again thereby closing the calibration switch 426. The comparator enable signal 558 is pulled low in order to reset the voltage output from the voltage comparator circuit 408. Any leakage current from the monitoring line of the device under test 302 is converted to a voltage which is stored on the capacitor 444.


A fifth phase 578 occurs when the calibration signal to the switch 424 is pulled low and then the calibration signal 556 is pulled low thereby opening the switch 426. The signal to the switch 424 is then pulled high closing the switch 424. A small current is output from the reference current source to the current input 418. The small current value is a minimum value corresponding to the minimum detectable signal (MDS) range of the current comparator 400 but is a negative current as opposed to the positive current in the second phase 572.


A sixth phase 580 occurs when the comparator enable signal 560 is pulled high thereby allowing the voltage comparator circuit 408 to read the inputs. The output of the voltage comparator circuit 408 on the output 410 should be zero indicating a negative current comparison with the leakage current.


The phases 570, 572, 574, 576, 578 and 580 are repeated. By adjusting the value of the bias current, eventually the rate of the valid output voltage toggles between a one and a zero will maximize indicating an optimal bias current value.



FIG. 6 is a block diagram of the compensation components of the controller 112 of the display system 100 in FIG. 1. The compensation components include an aging extraction unit 600, a backplane aging/matching module 602, a color/share gamma correction module 604, an OLED aging memory 606, and a compensation module 608. The backplane with the electronic components for driving the display system 100 may be any technology including (but not limited to) amorphous silicon, poly silicon, crystalline silicon, organic semiconductors, oxide semiconductors. Also, the display system 100 may be any display material (or device) including (but not limited to) LEDs, or OLEDs.


The aging extraction unit 600 is coupled to receive output data from the array 102 based on inputs to the pixels of the array and corresponding outputs for testing the effects of aging on the array 102. The aging extraction unit 600 uses the output of the column reference pixels 130 as a baseline for comparison with the output of the active pixels 104a-d in order to determine the aging effects on each of the pixels 104a-d on each of the columns that include the respective column reference pixels 130. Alternatively, the average value of the pixels in the column may be calculated and compared to the value of the reference pixel. The color/share gamma correction module 604 also takes data from the column reference pixels 130 to determine appropriate color corrections to compensate from aging effects on the pixels. The baseline to compare the measurements for the comparison may be stored in lookup tables on the memory 606. The backplane aging/matching module 602 calculates adjustments for the components of the backplane and electronics of the display. The compensation module 608 is provided inputs from the extraction unit 600 the backplane/matching module 602 and the color/share gamma correction module 604 in order to modify programming voltages to the pixels 104a-d in FIG. 1 to compensate for aging effects. The compensation module 608 accesses the look up table for the base data for each of the pixels 104a-d on the array 102 to be used in conjunction with calibration data. The compensation module 608 modifies the programming voltages to the pixels 104a-d accordingly based on the values in the look up table and the data obtained from the pixels in the display array 102.


The controller 112 in FIG. 2 measures the data from the pixels 104a-d in the display array 102 in FIG. 1 to correctly normalize the data collected during measurement. The column reference pixels 130 assist in these functions for the pixels on each of the columns. The column reference pixels 130 may be located outside the active viewing area represented by the pixels 104a-d in FIG. 1, but such reference pixels may also be embedded within the active viewing areas. The column reference pixels 130 are preserved with a controlled condition such as being un-aged, or aged in a predetermined fashion, to provide offset and cancellation information for measurement data of the pixels 104a-d in the display array 102. This information helps the controller 112 cancel out common mode noise from external sources such as room temperature, or within the system itself such as leakage currents from other pixels 104a-d. Using a weighted average from several pixels on the array 102 may also provide information on panel-wide characteristics to address problems such as voltage drops due to the resistance across the panel, i.e. current/resistance (IR) drop. Information from the column reference pixels 130 being stressed by a known and controlled source may be used in a compensation algorithm run by the compensation module 608 to reduce compensation errors occurring from any divergence. Various column reference pixels 130 may be selected using the data collected from the initial baseline measurement of the panel. Bad reference pixels are identified, and alternate reference pixels 130 may be chosen to insure further reliability. Of course it is to be understood that the row reference pixels 132 may be used instead of the column reference pixels 130 and the row may be used instead of columns for the calibration and measurement.


In displays that use external readout circuits to compensate the drift in pixel characteristics, the readout circuits read at least one of current, voltage and charge from the pixels when the pixels are supplied with known input signals over time. The readout signals are translated into the pixel parameters' drift and used to compensate for the pixel characteristics change. These systems are mainly prone to the shift in the readout circuitry changes due to different phenomena such as temperature variation, aging, leakage and more. As depicted in FIG. 10, rows of reference pixels (the cross hatched pixels in FIG. 10) may be used to remove these effects from the readout circuit, and these reference rows may be used in the display array. These rows of reference pixels are biased in a way that they are substantially immune to aging. The readout circuits read these rows as well as normal display rows. After that, the readout values of the normal rows are trimmed by the reference values to eliminate the unwanted effects. Since each column is connected to one readout circuit, a practical way is to use the reference pixels in a column to tune its normal pixels.


The major change will be the global effects on the panel such as temperature which affects both reference pixel and normal pixel circuits. In this case, this effect will be eliminated from the compensation value and so there will be a separated compensation for such phenomena.


To provide compensation for global phenomena without extra compensation factors or sensors, the effect of global phenomena is subtracted from the reference pixels. There are different methods to calculate the effect of the global phenomena. However, the direct effects are:

    • (a) Average reference value: here, the average value of the reference pixel values is used as effect of global phenomena. Then this value can be subtracted from all the reference pixels. As a result, if the reference values are modified with a global phenomenon it will be subtracted from them. Thus, when the pixel measured values are being trimmed by the reference values, the global effect in the pixel values will stay intact. Therefore, it will be able to compensate for such an effect.
    • (b) Master reference pixels: another method is to use master reference pixels (the master references can be a subset of the reference pixels or completely different ones). Similar to the previous method, the average value of master references is subtracted from the reference pixel circuits resulting in leaving the effect of global phenomena in the pixel measured values.


There are various compensation methods that may make use of the column reference pixels 130 in FIG. 1. For example in thin film transistor measurement, the data value required for the column reference pixel 130 to output a current is subtracted from the data value of a pixel 104a-d in the same column of pixels in the active area (the pixel array 102) to output the same current. The measurement of both the column reference pixels 130 and pixels 104a-d may occur very close in time, e.g. during the same video frame. Any difference in current indicates the effects of aging on the pixels 104a-d. The resulting value may be used by the controller 112 to calculate the appropriate adjustment to programming voltage to the pixels 104a-d to maintain the same luminance during the lifetime of the display. Another use of a column reference pixel 130 is to provide a reference current for the other pixels 104 to serve as a baseline and determine the aging effects on the current output of those pixels. The reference pixels 130 may simplify the data manipulation since some of the common mode noise cancellation is inherent in the measurement because the reference pixels 130 have common data and supply lines as the active pixels 104. The row reference pixels 132 may be measured periodically for the purpose of verifying that luminance curves for the pixels that are stored for use of the controller for compensation during display production are correct.


A measurement of the drive transistors and OLEDs of all of the driver circuits such as the driver circuit 200 in FIG. 2 on a display before shipping the display take 60-120 seconds for a 1080p display, and will detect any shorted and open drive transistors and OLEDs (which result in stuck or unlit pixels). It will also detect non-uniformities in drive transistor or OLED performance (which result in luminance non-uniformities). This technique may replace optical inspection by a digital camera, removing the need for this expensive component in the production facility. AMOLEDs that use color filters cannot be fully inspected electrically, since color filters are a purely optical component. In this case, technology that compensates for aging such as MaxLife™ from Ignis may be useful in combination with an optical inspection step, by providing extra diagnostic information and potentially reducing the complexity of optical inspection.


These measurements provide more data than an optical inspection may provide. Knowing whether a point defect is due to a short or open driver transistor or a short or open OLED may help to identify the root cause or flaw in the production process. For example, the most common cause for a short circuit OLED is particulate contamination that lands on the glass during processing, shorting the anode and cathode of the OLED. An increase in OLED short circuits could indicate that the production line should be shut down for chamber cleaning, or searches could be initiated for new sources of particles (changes in processes, or equipment, or personnel, or materials).


A relaxation system for compensating for aging effects such as the MaxLife™ system may correct for process non-uniformities, which increases yield of the display. However the measured current and voltage relationships or characteristics in the TFT or OLED are useful for diagnostics as well. For example, the shape of an OLED current-voltage characteristic may reveal increased resistance. A likely cause might be variations in the contact resistance between the transistor source/drain metal and the ITO (in a bottom emission AMOLED). If OLEDs in a corner of a display showed a different current-voltage characteristic, a likely cause could be mask misalignment in the fabrication process.


A streak or circular area on the display with different OLED current-voltage characteristics could be due to defects in the manifolds used to disperse the organic vapor in the fabrication process. In one possible scenario, a small particle of OLED material may flake from an overhead shield and land on the manifold, partially obstructing the orifice. The measurement data would show the differing OLED current-voltage characteristics in a specific pattern which would help to quickly diagnose the issue. Due to the accuracy of the measurements (for example, the 4.8 inch display measures current with a resolution of 100 nA), and the measurement of the OLED current-voltage characteristic itself (instead of the luminance), variations can be detected that are not visible with optical inspection.


This high-accuracy data may be used for statistical process control, identifying when a process has started to drift outside of its control limits. This may allow corrective action to be taken early (in either the OLED or drive transistor (TFT) fabrication process), before defects are detected in the finished product. The measurement sample is maximized since every TFT and OLED on every display is sampled.


If the drive transistor and the OLED are both functioning properly, a reading in the expected range will be returned for the components. The pixel driver circuit requires that the OLED be off when the drive transistor is measured (and vice-versa), so if the drive transistor or OLED is in a short circuit, it will obscure the measurement of the other. If the OLED is a short circuit (so the current reading is MAX), the data will show the drive transistor is an open circuit (current reading MIN) but in reality, the drive transistor could be operational or an open circuit. If extra data about the drive transistor is needed, temporarily disconnecting the supply voltage (EL_VSS) and allowing it to float will yield a correct drive transistor measurement indicating whether the TFT is actually operational or in an open circuit.


In the same way, if the drive transistor is a short circuit, the data will show the OLED is an open circuit (but the OLED could be operational or an open circuit). If extra data about the OLED is needed, disconnecting the supply voltage (EL_VDD) and allowing it to float will yield a correct OLED measurement indicating whether the OLED is actually operational or in an open circuit.


If both the OLED and TFT in a pixel behave as a short circuit, one of the elements in the pixel (likely the contact between TFT and OLED) will quickly burn out during the measurement, causing an open circuit, and moving to a different state. These results are summarized in Table 1 below.











TABLE 1









OLED











Short
OK
Open















Drive transistor
Short
n/a
TFT max
TFT max


(TFT)


OLED min
OLED min



OK
TFT min
TFT OK
TFT OK




OLED max
OLED OK
OLED min



Open
TFT min
TFT min
TFT min




OLED max
OLED OK
OLED min










FIG. 7 shows a system diagram of a control system 700 for controlling the brightness of a display 702 over time based on different aspects. The display 702 may be composed of an array of OLEDs or other pixel based display devices. The system 700 includes a profile generator 704 and a decision making machine 706. The profile generator 704 receives characteristics data from an OLED characteristics table 710, a backplane characteristics table 712 and a display specifications file 714. The profile generator 704 generates different luminance profiles 720a, 720b . . . 720n for different conditions. Here, to improve the power consumption, display lifetime, and image quality, the different brightness profiles 720a, 720b . . . 720n may be defined based on OLED and backplane information. Also, based on different applications, one can select different profiles from the luminance profiles 720a, 720b . . . 720n. For example, a flat brightness vs. time profile can be used for displaying video outputs such as movies whereas for brighter applications, the brightness can be drop at a defined rate. The decision making machine 706 may be software or hardware based and includes applications inputs 730, environmental parameter inputs 732, backplane aging data inputs 734 and OLED aging data inputs 736 that are factors in making adjustments in programming voltage to insure the proper brightness of the display 702.


To compensate for display aging perfectly, the short term and long term changes are separated in the display characteristics. One way is to measure a few points across the display with faster times between the measurements. As a result, the fast scan can reveal the short term effects while the normal aging extraction can reveal the long term effects.


The previous implementation of compensation systems uses a normal driving scheme, in which there was always a video frame shown on the panel and the OLED and TFT circuitries were constantly under electrical stress. Calibration of each pixel occurred during a video frame by changing the grayscale value of the active pixel to a desired value which caused a visual artifact of seeing the measured sub-pixel during the calibration. If the frame rate of the video is X, then in normal video driving, each video frame is shown on the pixel array 102 in FIG. 1 for 1/X of second and the panel is always running a video frame. In contrast, the relaxation video driving in the present example divides the frame time into four sub-frames as shown in FIG. 8. FIG. 8 is a timing diagram of a frame 800 that includes a video sub-frame 802, a dummy sub-frame 804, a relaxation sub-frame 806 and a replacement sub-frame 808.


The video sub-frame 802 is the first sub-frame which is the actual video frame. The video frame is generated the same way as normal video driving to program the entire pixel array 102 in FIG. 1 with the video data received from the programming inputs. The dummy sub-frame 804 is an empty sub-frame without any actual data being sent to the pixel array 102. The dummy sub-frame 804 functions to keep the same video frame displayed on the panel 102 for some time before applying the relaxation sub-frame 806. This increases the luminance of the panel.


The relaxation sub-frame 806 is the third sub-frame which is a black frame with zero gray scale value for all of the red green blue white (RGBW) sub-pixels in the pixel array 102. This makes the panel black and sets all of the pixels 104 to a predefined state ready for calibration and next video sub-frame insertion. The replacement sub-frame 808 is a short sub-frame generated solely for the purpose of calibration. When the relaxation sub-frame 806 is complete and the panel is black the data replacement phase starts for the next video frame. No video or blank data is sent to the pixel array 102 during this phase except for the rows with replacement data. For the non-replacement rows only the gate driver's clock is toggled to shift the token throughout the gate driver. This is done to speed up the scanning of the entire panel and also to be able to do more measurement per each frame.


Another technique is used to further alleviate the visual artifact of the measured sub-pixel during the replacement sub-frame 808. This has been done by re-programming the measured row with black as soon as the calibration is done. This returns the sub-pixel to the same state as it was during the relaxation sub-frame 806. However, there is still a small current going through the OLEDs in the pixels, which makes the pixel light up and become noticeable to the outside world. Therefore to re-direct the current going though OLED, the controller 112 is programmed with a non-zero value to sink the current from the drive transistor of the pixel and keep the OLED off.


Having a replacement sub-frame 808 has a drawback of limiting the time of the measurement to a small portion of the entire frame. This limits the number of sub-pixel measurements per each frame. This limitation is acceptable during the working time of the pixel array 102. However, for a quick baseline measurement of the panel it would be a time-consuming task to measure the entire display because each pixel must be measured. To overcome this issue a baseline mode is added to the relaxation driving scheme. FIG. 8 also shows a baseline frame 820 for the driving scheme during the baseline measurement mode for the display. The baseline measurement frame 820 includes a video sub-frame 822 and a replacement sub-frame 824. If the system is switched to the baseline mode, the driving scheme changes such that there would only be two sub-frames in a baseline frame such as the frame 820. The video sub-frame 822 includes the normal programming data for the image. In this example, the replacement (measurement sub-frame) 824 has a longer duration than the normal replacement frame as shown in FIG. 8. The longer sub-frame drastically increases the total number of measurements per each frame and allows more accurate measurements of the panel because more pixels may be measured during the frame time.


The steep slope of the ΔV shift (electrical aging) at the early OLED stress time results in a curve of efficiency drop versus ΔV shift that behaves differently for the low value of ΔV compared to the high ΔV ranges. This may produce a highly non-linear Δη-ΔV curve that is very sensitive to initial electrical aging of the OLED or to the OLED pre-aging process. Moreover, the shape (the duration and slope) of the early ΔV shift drop can vary significantly from panel to panel due to process variations.


The use of a reference pixel and corresponding OLED is explained above. The use of such a reference pixel cancels the thermal effects on the ΔV measurements since the thermal effects affect both the active and reference pixels equally. However, instead of using an OLED that is not aging (zero stress) as a reference pixel such as the column reference pixels 130 in FIG. 1, a reference pixel with an OLED having a low level of stress may be used. The thermal impact on the voltage is similar to the non-aging OLED, therefore the low stress OLED may still be used to remove the measurement noise due to thermal effects. Meanwhile, due to the similar manufacturing condition with the rest of OLED based devices on the same panel the slightly stressed OLED may be as a good reference to cancel the effects of process variations on the Δη-ΔV curve for the active pixels in a column. The steep early ΔV shift will also be mitigated if such an OLED is used as a reference.


To use a stressed-OLED as a reference, the reference OLED is stressed with a constant low current (⅕ to ⅓ of full current) and its voltage (for a certain applied current) must be used to cancel the thermal and process issues of the pixel OLEDs as follows:






W
=



V
pixelOLED

-

V
refOLED



V
refOLED







In this equation, W is the relative electrical aging based on the difference between the voltage of the active pixel OLED and the reference pixel OLED is divided by the voltage of the reference pixel OLED. FIG. 9 is a graph 900 that shows a plot 902 of points for a stress current of 268 uA based on the W value. As shown by the graph 900, the W value is a close-to-linear relation with the luminance drop for the pixel OLEDs as shown for a high stress OLED.


The above described methods of extracting baseline measurements of the pixels in the array may be performed by a processing device such as the 112 in FIG. 1 or another such device which may be conveniently implemented using one or more general purpose computer systems, microprocessors, digital signal processors, micro-controllers, application specific integrated circuits (ASIC), programmable logic devices (PLD), field programmable logic devices (FPLD), field programmable gate arrays (FPGA) and the like, programmed according to the teachings as described and illustrated herein, as will be appreciated by those skilled in the computer, software and networking arts.


In addition, two or more computing systems or devices may be substituted for any one of the controllers described herein. Accordingly, principles and advantages of distributed processing, such as redundancy, replication, and the like, also can be implemented, as desired, to increase the robustness and performance of controllers described herein.


The operation of the example baseline data determination methods may be performed by machine readable instructions. In these examples, the machine readable instructions comprise an algorithm for execution by: (a) a processor, (b) a controller, and/or (c) one or more other suitable processing device(s). The algorithm may be embodied in software stored on tangible media such as, for example, a flash memory, a CD-ROM, a floppy disk, a hard drive, a digital video (versatile) disk (DVD), or other memory devices, but persons of ordinary skill in the art will readily appreciate that the entire algorithm and/or parts thereof could alternatively be executed by a device other than a processor and/or embodied in firmware or dedicated hardware in a well known manner (e.g., it may be implemented by an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable logic device (FPLD), a field programmable gate array (FPGA), discrete logic, etc.). For example, any or all of the components of the baseline data determination methods could be implemented by software, hardware, and/or firmware. Also, some or all of the machine readable instructions represented may be implemented manually.


While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.

Claims
  • 1. A voltage-programmed display panel having a display area containing multiple pixels and allowing measurement of effects on pixels in the panel, comprising: a plurality of normal pixels to display an image under an operating condition, the normal pixels each being coupled to a supply line and a programming line for displaying images under said operating condition;a plurality of reference pixels included in the display area and coupled to said supply line and said programming line, the reference pixels being coupled to said supply line and said programming line in a manner that said reference pixels are controlled so that they are subject only to global effects on said display panel over time;a readout circuit coupled to said normal pixels and said reference pixels for reading at least one of current, voltage and charge from said normal and reference pixels when said normal and reference pixels are supplied with known input signals; anda controller coupled to each of said plurality of reference pixels and configured to measure data from said normal pixels and said reference pixels,correct the measured data from the reference pixels by subtracting the effect of global effects from the data measured from the reference pixels,trim the data measured from the normal pixels with the corrected data read from the reference pixels, andcompensate the signals supplied to said normal pixels on said programming line, based on said trimmed data.
  • 2. The system of claim 1, wherein said global effects include temperature.
  • 3. The system of claim 1, wherein said effects affect both said active normal pixels and said reference pixels.
  • 4. The voltage-programmed display panel of claim 1 in which said effect of global effects is determined by averaging the values of at least a selected group of said reference pixels.
Priority Claims (1)
Number Date Country Kind
2688870 Nov 2009 CA national
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 12/956,842, filed Nov. 30, 2010, which claims priority to Canadian Application No. 2,688,870, filed Nov. 30, 2009, each of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (428)
Number Name Date Kind
3506851 Polkinghorn et al. Apr 1970 A
3774055 Bapat et al. Nov 1973 A
4090096 Nagami May 1978 A
4160934 Kirsch Jul 1979 A
4354162 Wright Oct 1982 A
4943956 Noro Jul 1990 A
4996523 Bell et al. Feb 1991 A
5153420 Hack et al. Oct 1992 A
5181118 Kimura Jan 1993 A
5198803 Shie et al. Mar 1993 A
5204661 Hack et al. Apr 1993 A
5266515 Robb et al. Nov 1993 A
5489918 Mosier Feb 1996 A
5498880 Lee et al. Mar 1996 A
5572444 Lentz et al. Nov 1996 A
5589847 Lewis Dec 1996 A
5619033 Weisfield Apr 1997 A
5648276 Hara et al. Jul 1997 A
5670973 Bassetti et al. Sep 1997 A
5691783 Numao et al. Nov 1997 A
5714968 Ikeda Feb 1998 A
5723950 Wei et al. Mar 1998 A
5744824 Kousai et al. Apr 1998 A
5745660 Kolpatzik et al. Apr 1998 A
5748160 Shieh et al. May 1998 A
5815303 Berlin Sep 1998 A
5870071 Kawahata Feb 1999 A
5874803 Garbuzov et al. Feb 1999 A
5880582 Sawada Mar 1999 A
5903248 Irwin May 1999 A
5917280 Burrows et al. Jun 1999 A
5923794 McGrath et al. Jul 1999 A
5945972 Okumura et al. Aug 1999 A
5949398 Kim Sep 1999 A
5952789 Stewart et al. Sep 1999 A
5952991 Akiyama Sep 1999 A
5982104 Sasaki et al. Nov 1999 A
5990629 Yamada et al. Nov 1999 A
6023259 Howard et al. Feb 2000 A
6069365 Chow et al. May 2000 A
6091203 Kawashima et al. Jul 2000 A
6097360 Holloman Aug 2000 A
6144222 Ho Nov 2000 A
6177915 Beeteson et al. Jan 2001 B1
6229506 Dawson et al. May 2001 B1
6229508 Kane May 2001 B1
6246180 Nishigaki Jun 2001 B1
6252248 Sano et al. Jun 2001 B1
6259424 Kurogane Jul 2001 B1
6262589 Tamukai Jul 2001 B1
6271825 Greene et al. Aug 2001 B1
6288696 Holloman Sep 2001 B1
6304039 Appelberg et al. Oct 2001 B1
6307322 Dawson et al. Oct 2001 B1
6310962 Chung et al. Oct 2001 B1
6320325 Cok et al. Nov 2001 B1
6323631 Juang Nov 2001 B1
6356029 Hunter Mar 2002 B1
6373454 Knapp et al. Apr 2002 B1
6392617 Gleason May 2002 B1
6414661 Shen et al. Jul 2002 B1
6417825 Stewart et al. Jul 2002 B1
6433488 Bu Aug 2002 B1
6437106 Stoner et al. Aug 2002 B1
6445369 Yang et al. Sep 2002 B1
6475845 Kimura Nov 2002 B2
6501098 Yamazaki Dec 2002 B2
6501466 Yamagishi et al. Dec 2002 B1
6522315 Ozawa et al. Feb 2003 B2
6525683 Gu Feb 2003 B1
6531827 Kawashima Mar 2003 B2
6542138 Shannon et al. Apr 2003 B1
6580408 Bae et al. Jun 2003 B1
6580657 Sanford et al. Jun 2003 B2
6583398 Harkin Jun 2003 B2
6583775 Sekiya et al. Jun 2003 B1
6594606 Everitt Jul 2003 B2
6618030 Kane et al. Sep 2003 B2
6639244 Yamazaki et al. Oct 2003 B1
6668645 Gilmour et al. Dec 2003 B1
6677713 Sung Jan 2004 B1
6680580 Sung Jan 2004 B1
6687266 Ma et al. Feb 2004 B1
6690000 Muramatsu et al. Feb 2004 B1
6690344 Takeuchi et al. Feb 2004 B1
6693388 Oomura Feb 2004 B2
6693610 Shannon et al. Feb 2004 B2
6697057 Koyama et al. Feb 2004 B2
6720942 Lee et al. Apr 2004 B2
6724151 Yoo Apr 2004 B2
6734636 Sanford et al. May 2004 B2
6738034 Kaneko et al. May 2004 B2
6738035 Fan May 2004 B1
6753655 Shih et al. Jun 2004 B2
6753834 Mikami et al. Jun 2004 B2
6756741 Li Jun 2004 B2
6756952 Decaux et al. Jun 2004 B1
6756985 Hirotsune et al. Jun 2004 B1
6771028 Winters Aug 2004 B1
6777712 Sanford et al. Aug 2004 B2
6777888 Kondo Aug 2004 B2
6781567 Kimura Aug 2004 B2
6806497 Jo Oct 2004 B2
6806638 Lih et al. Oct 2004 B2
6806857 Sempel et al. Oct 2004 B2
6809706 Shimoda Oct 2004 B2
6815975 Nara et al. Nov 2004 B2
6828950 Koyama Dec 2004 B2
6853371 Miyajima et al. Feb 2005 B2
6859193 Yumoto Feb 2005 B1
6873117 Ishizuka Mar 2005 B2
6876346 Anzai et al. Apr 2005 B2
6885356 Hashimoto Apr 2005 B2
6900485 Lee May 2005 B2
6903734 Eu Jun 2005 B2
6909243 Inukai Jun 2005 B2
6909419 Zavracky et al. Jun 2005 B2
6911960 Yokoyama Jun 2005 B1
6911964 Lee et al. Jun 2005 B2
6914448 Jinno Jul 2005 B2
6919871 Kwon Jul 2005 B2
6924602 Komiya Aug 2005 B2
6937215 Lo Aug 2005 B2
6937220 Kitaura et al. Aug 2005 B2
6940214 Komiya et al. Sep 2005 B1
6943500 LeChevalier Sep 2005 B2
6947022 McCartney Sep 2005 B2
6954194 Matsumoto et al. Oct 2005 B2
6956547 Bae et al. Oct 2005 B2
6975142 Azami et al. Dec 2005 B2
6975332 Arnold et al. Dec 2005 B2
6995510 Murakami et al. Feb 2006 B2
6995519 Arnold et al. Feb 2006 B2
7023408 Chen et al. Apr 2006 B2
7027015 Booth, Jr. et al. Apr 2006 B2
7027078 Reihl Apr 2006 B2
7034793 Sekiya et al. Apr 2006 B2
7038392 Libsch et al. May 2006 B2
7057359 Hung et al. Jun 2006 B2
7061451 Kimura Jun 2006 B2
7064733 Cok et al. Jun 2006 B2
7071932 Libsch et al. Jul 2006 B2
7088051 Cok Aug 2006 B1
7088052 Kimura Aug 2006 B2
7102378 Kuo et al. Sep 2006 B2
7106285 Naugler Sep 2006 B2
7112820 Chang et al. Sep 2006 B2
7116058 Lo et al. Oct 2006 B2
7119493 Fryer et al. Oct 2006 B2
7122835 Ikeda et al. Oct 2006 B1
7127380 Iverson et al. Oct 2006 B1
7129914 Knapp et al. Oct 2006 B2
7164417 Cok Jan 2007 B2
7193589 Yoshida et al. Mar 2007 B2
7224332 Cok May 2007 B2
7245277 Ishizuka Jul 2007 B2
7248236 Nathan et al. Jul 2007 B2
7262753 Tanghe et al. Aug 2007 B2
7274363 Ishizuka et al. Sep 2007 B2
7310092 Imamura Dec 2007 B2
7315295 Kimura Jan 2008 B2
7321348 Cok et al. Jan 2008 B2
7339560 Sun Mar 2008 B2
7355574 Leon et al. Apr 2008 B1
7358941 Ono et al. Apr 2008 B2
7368868 Sakamoto May 2008 B2
7411571 Huh Aug 2008 B2
7414600 Nathan et al. Aug 2008 B2
7423617 Giraldo et al. Sep 2008 B2
7474285 Kimura Jan 2009 B2
7502000 Yuki et al. Mar 2009 B2
7528812 Tsuge et al. May 2009 B2
7535449 Miyazawa May 2009 B2
7554512 Steer Jun 2009 B2
7569849 Nathan et al. Aug 2009 B2
7576718 Miyazawa Aug 2009 B2
7580012 Kim et al. Aug 2009 B2
7589707 Chou Sep 2009 B2
7609239 Chang Oct 2009 B2
7619594 Hu Nov 2009 B2
7619597 Nathan et al. Nov 2009 B2
7633470 Kane Dec 2009 B2
7656370 Schneider et al. Feb 2010 B2
7800558 Routley et al. Sep 2010 B2
7847764 Cok et al. Dec 2010 B2
7859492 Kohno Dec 2010 B2
7868859 Tomida et al. Jan 2011 B2
7876294 Sasaki et al. Jan 2011 B2
7924249 Nathan et al. Apr 2011 B2
7932883 Klompenhouwer et al. Apr 2011 B2
7969390 Yoshida Jun 2011 B2
7978187 Nathan et al. Jul 2011 B2
7994712 Sung et al. Aug 2011 B2
8026876 Nathan et al. Sep 2011 B2
8049420 Tamura et al. Nov 2011 B2
8077123 Naugler, Jr. Dec 2011 B2
8115707 Nathan et al. Feb 2012 B2
8223177 Nathan et al. Jul 2012 B2
8232939 Nathan et al. Jul 2012 B2
8259044 Nathan et al. Sep 2012 B2
8264431 Bulovic et al. Sep 2012 B2
8279143 Nathan et al. Oct 2012 B2
8339386 Leon et al. Dec 2012 B2
8493296 Ogawa Jul 2013 B2
20010002703 Koyama Jun 2001 A1
20010009283 Arao et al. Jul 2001 A1
20010024181 Kubota et al. Sep 2001 A1
20010024186 Kane et al. Sep 2001 A1
20010026257 Kimura Oct 2001 A1
20010030323 Ikeda Oct 2001 A1
20010040541 Yoneda et al. Nov 2001 A1
20010043173 Troutman Nov 2001 A1
20010045929 Prache Nov 2001 A1
20010052606 Sempel et al. Dec 2001 A1
20010052940 Hagihara et al. Dec 2001 A1
20020000576 Inukai Jan 2002 A1
20020011796 Koyama Jan 2002 A1
20020011799 Kimura Jan 2002 A1
20020012057 Kimura Jan 2002 A1
20020014851 Tai et al. Feb 2002 A1
20020018034 Ohki et al. Feb 2002 A1
20020030190 Ohtani et al. Mar 2002 A1
20020047565 Nara et al. Apr 2002 A1
20020052086 Maeda May 2002 A1
20020067134 Kawashima Jun 2002 A1
20020084463 Sanford et al. Jul 2002 A1
20020101172 Bu Aug 2002 A1
20020105279 Kimura Aug 2002 A1
20020117722 Osada et al. Aug 2002 A1
20020122308 Ikeda Sep 2002 A1
20020158587 Komiya Oct 2002 A1
20020158666 Azami et al. Oct 2002 A1
20020158823 Zavracky et al. Oct 2002 A1
20020167474 Everitt Nov 2002 A1
20020180369 Koyama Dec 2002 A1
20020180721 Kimura et al. Dec 2002 A1
20020186214 Siwinski Dec 2002 A1
20020190924 Asano et al. Dec 2002 A1
20020190971 Nakamura et al. Dec 2002 A1
20020195967 Kim et al. Dec 2002 A1
20020195968 Sanford et al. Dec 2002 A1
20030020413 Oomura Jan 2003 A1
20030030603 Shimoda Feb 2003 A1
20030043088 Booth et al. Mar 2003 A1
20030057895 Kimura Mar 2003 A1
20030058226 Bertram et al. Mar 2003 A1
20030062524 Kimura Apr 2003 A1
20030063081 Kimura et al. Apr 2003 A1
20030071821 Sundahl et al. Apr 2003 A1
20030076048 Rutherford Apr 2003 A1
20030090447 Kimura May 2003 A1
20030090481 Kimura May 2003 A1
20030107560 Yumoto et al. Jun 2003 A1
20030111966 Mikami et al. Jun 2003 A1
20030122745 Miyazawa Jul 2003 A1
20030122813 Ishizuki et al. Jul 2003 A1
20030142088 LeChevalier Jul 2003 A1
20030151569 Lee et al. Aug 2003 A1
20030156101 Le Chevalier Aug 2003 A1
20030174152 Noguchi Sep 2003 A1
20030179626 Sanford et al. Sep 2003 A1
20030197663 Lee et al. Oct 2003 A1
20030210256 Mori et al. Nov 2003 A1
20030230141 Gilmour et al. Dec 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20030231148 Lin et al. Dec 2003 A1
20040032382 Cok et al. Feb 2004 A1
20040066357 Kawasaki Apr 2004 A1
20040070557 Asano et al. Apr 2004 A1
20040070565 Nayar et al. Apr 2004 A1
20040090186 Kanauchi et al. May 2004 A1
20040090400 Yoo May 2004 A1
20040095297 Libsch et al. May 2004 A1
20040100427 Miyazawa May 2004 A1
20040108518 Jo Jun 2004 A1
20040135749 Kondakov et al. Jul 2004 A1
20040145547 Oh Jul 2004 A1
20040150592 Mizukoshi et al. Aug 2004 A1
20040150594 Koyama et al. Aug 2004 A1
20040150595 Kasai Aug 2004 A1
20040155841 Kasai Aug 2004 A1
20040174347 Sun et al. Sep 2004 A1
20040174354 Ono et al. Sep 2004 A1
20040178743 Miller et al. Sep 2004 A1
20040183759 Stevenson et al. Sep 2004 A1
20040196275 Hattori Oct 2004 A1
20040207615 Yumoto Oct 2004 A1
20040239596 Ono et al. Dec 2004 A1
20040252089 Ono et al. Dec 2004 A1
20040257313 Kawashima et al. Dec 2004 A1
20040257353 Imamura et al. Dec 2004 A1
20040257355 Naugler Dec 2004 A1
20040263437 Hattori Dec 2004 A1
20040263444 Kimura Dec 2004 A1
20040263445 Inukai et al. Dec 2004 A1
20040263541 Takeuchi et al. Dec 2004 A1
20050007355 Miura Jan 2005 A1
20050007357 Yamashita et al. Jan 2005 A1
20050017650 Fryer et al. Jan 2005 A1
20050024081 Kuo et al. Feb 2005 A1
20050024393 Kondo et al. Feb 2005 A1
20050030267 Tanghe et al. Feb 2005 A1
20050057484 Diefenbaugh et al. Mar 2005 A1
20050057580 Yamano et al. Mar 2005 A1
20050067970 Libsch et al. Mar 2005 A1
20050067971 Kane Mar 2005 A1
20050068270 Awakura Mar 2005 A1
20050068275 Kane Mar 2005 A1
20050073264 Matsumoto Apr 2005 A1
20050083323 Suzuki et al. Apr 2005 A1
20050088103 Kageyama et al. Apr 2005 A1
20050110420 Arnold et al. May 2005 A1
20050110807 Chang May 2005 A1
20050140598 Kim et al. Jun 2005 A1
20050140610 Smith et al. Jun 2005 A1
20050145891 Abe Jul 2005 A1
20050156831 Yamazaki et al. Jul 2005 A1
20050168416 Hashimoto et al. Aug 2005 A1
20050179626 Yuki et al. Aug 2005 A1
20050179628 Kimura Aug 2005 A1
20050185200 Tobol Aug 2005 A1
20050200575 Kim et al. Sep 2005 A1
20050206590 Sasaki et al. Sep 2005 A1
20050219184 Zehner et al. Oct 2005 A1
20050248515 Naugler et al. Nov 2005 A1
20050269959 Uchino et al. Dec 2005 A1
20050269960 Ono et al. Dec 2005 A1
20050280615 Cok et al. Dec 2005 A1
20050280766 Johnson et al. Dec 2005 A1
20050285822 Reddy et al. Dec 2005 A1
20050285825 Eom et al. Dec 2005 A1
20060001613 Routley et al. Jan 2006 A1
20060007072 Choi et al. Jan 2006 A1
20060012310 Chen et al. Jan 2006 A1
20060012311 Ogawa Jan 2006 A1
20060027807 Nathan et al. Feb 2006 A1
20060030084 Young Feb 2006 A1
20060038758 Routley et al. Feb 2006 A1
20060038762 Chou Feb 2006 A1
20060066533 Sato et al. Mar 2006 A1
20060077135 Cok et al. Apr 2006 A1
20060082523 Guo et al. Apr 2006 A1
20060092185 Jo et al. May 2006 A1
20060097628 Suh et al. May 2006 A1
20060097631 Lee May 2006 A1
20060103611 Choi May 2006 A1
20060149493 Sambandan et al. Jul 2006 A1
20060170623 Naugler, Jr. et al. Aug 2006 A1
20060176250 Nathan et al. Aug 2006 A1
20060208961 Nathan et al. Sep 2006 A1
20060232522 Roy et al. Oct 2006 A1
20060244697 Lee et al. Nov 2006 A1
20060261841 Fish Nov 2006 A1
20060273997 Nathan et al. Dec 2006 A1
20060284801 Yoon et al. Dec 2006 A1
20060284895 Marcu et al. Dec 2006 A1
20060290618 Goto Dec 2006 A1
20070001937 Park et al. Jan 2007 A1
20070001939 Hashimoto et al. Jan 2007 A1
20070008268 Park et al. Jan 2007 A1
20070008297 Bassetti Jan 2007 A1
20070057873 Uchino et al. Mar 2007 A1
20070069998 Naugler et al. Mar 2007 A1
20070075727 Nakano et al. Apr 2007 A1
20070076226 Klompenhouwer et al. Apr 2007 A1
20070080905 Takahara Apr 2007 A1
20070080906 Tanabe Apr 2007 A1
20070080908 Nathan et al. Apr 2007 A1
20070097038 Yamazaki et al. May 2007 A1
20070097041 Park et al. May 2007 A1
20070103419 Uchino et al. May 2007 A1
20070115221 Buchhauser et al. May 2007 A1
20070182671 Nathan et al. Aug 2007 A1
20070236517 Kimpe Oct 2007 A1
20070241999 Lin Oct 2007 A1
20070273294 Nagayama Nov 2007 A1
20070285359 Ono Dec 2007 A1
20070290958 Cok Dec 2007 A1
20070296672 Kim et al. Dec 2007 A1
20080001525 Chao et al. Jan 2008 A1
20080001544 Murakami et al. Jan 2008 A1
20080036708 Shirasaki Feb 2008 A1
20080042942 Takahashi Feb 2008 A1
20080042948 Yamashita et al. Feb 2008 A1
20080048951 Naugler, Jr. et al. Feb 2008 A1
20080055209 Cok Mar 2008 A1
20080074413 Ogura Mar 2008 A1
20080088549 Nathan et al. Apr 2008 A1
20080088648 Nathan et al. Apr 2008 A1
20080117144 Nakano et al. May 2008 A1
20080150845 Ishii et al. Jun 2008 A1
20080150847 Kim et al. Jun 2008 A1
20080158115 Cordes et al. Jul 2008 A1
20080231558 Naugler Sep 2008 A1
20080231562 Kwon Sep 2008 A1
20080252223 Toyoda et al. Oct 2008 A1
20080252571 Hente et al. Oct 2008 A1
20080290805 Yamada et al. Nov 2008 A1
20080297055 Miyake et al. Dec 2008 A1
20090058772 Lee Mar 2009 A1
20090109142 Takahara Apr 2009 A1
20090160743 Tomida et al. Jun 2009 A1
20090174628 Wang et al. Jul 2009 A1
20090184901 Kwon Jul 2009 A1
20090195483 Naugler, Jr. et al. Aug 2009 A1
20090201281 Routley et al. Aug 2009 A1
20090213046 Nam Aug 2009 A1
20100004891 Ahlers et al. Jan 2010 A1
20100026725 Smith Feb 2010 A1
20100039422 Seto Feb 2010 A1
20100060911 Marcu et al. Mar 2010 A1
20100165002 Ahn Jul 2010 A1
20100194670 Cok Aug 2010 A1
20100207960 Kimpe et al. Aug 2010 A1
20100277400 Jeong Nov 2010 A1
20100315319 Cok et al. Dec 2010 A1
20110069051 Nakamura et al. Mar 2011 A1
20110069089 Kopf et al. Mar 2011 A1
20110074750 Leon et al. Mar 2011 A1
20110149166 Botzas et al. Jun 2011 A1
20110227964 Chaji et al. Sep 2011 A1
20110273399 Lee Nov 2011 A1
20110293480 Mueller Dec 2011 A1
20120056558 Toshiya et al. Mar 2012 A1
20120062565 Fuchs et al. Mar 2012 A1
20120299978 Chaji Nov 2012 A1
20130027381 Nathan et al. Jan 2013 A1
20130057595 Nathan et al. Mar 2013 A1
Foreign Referenced Citations (116)
Number Date Country
1 294 034 Jan 1992 CA
2 109 951 Nov 1992 CA
2 249 592 Jul 1998 CA
2 368 386 Sep 1999 CA
2 242 720 Jan 2000 CA
2 354 018 Jun 2000 CA
2 432 530 Jul 2002 CA
2 436 451 Aug 2002 CA
2 438 577 Aug 2002 CA
2 463 653 Jan 2004 CA
2 498 136 Mar 2004 CA
2 522 396 Nov 2004 CA
2 443 206 Mar 2005 CA
2 472 671 Dec 2005 CA
2 567 076 Jan 2006 CA
2 526 782 Apr 2006 CA
2 550 102 Apr 2008 CA
1381032 Nov 2002 CN
1448908 Oct 2003 CN
1760945 Apr 2006 CN
101261803 Sep 2008 CN
0 158 366 Oct 1985 EP
1 028 471 Aug 2000 EP
1 111 577 Jun 2001 EP
1 130 565 Sep 2001 EP
1 194 013 Apr 2002 EP
1 335 430 Aug 2003 EP
1 372 136 Dec 2003 EP
1 381 019 Jan 2004 EP
1 418 566 May 2004 EP
1 429 312 Jun 2004 EP
1 465 143 Oct 2004 EP
1 469 448 Oct 2004 EP
1 521 203 Apr 2005 EP
1 594 347 Nov 2005 EP
1 784 055 May 2007 EP
1854338 Nov 2007 EP
1 879 169 Jan 2008 EP
1 879 172 Jan 2008 EP
2 389 951 Dec 2003 GB
1272298 Oct 1989 JP
4-042619 Feb 1992 JP
6-314977 Nov 1994 JP
8-340243 Dec 1996 JP
09-090405 Apr 1997 JP
10-254410 Sep 1998 JP
11-202295 Jul 1999 JP
11 231805 Aug 1999 JP
11-282419 Oct 1999 JP
2000-056847 Feb 2000 JP
2000-81607 Mar 2000 JP
2001-134217 May 2001 JP
2001-195014 Jul 2001 JP
2002-055654 Feb 2002 JP
2002-91376 Mar 2002 JP
2002-514320 May 2002 JP
2002-278513 Sep 2002 JP
2002-333862 Nov 2002 JP
2003-076331 Mar 2003 JP
2003-124519 Apr 2003 JP
2003-177709 Jun 2003 JP
2003-271095 Sep 2003 JP
2003-308046 Oct 2003 JP
2003-317944 Nov 2003 JP
2004-145197 May 2004 JP
2004-287345 Oct 2004 JP
2005-057217 Mar 2005 JP
2007065015 Mar 2007 JP
2008064806 Mar 2008 JP
2008102404 May 2008 JP
2008102335 May 2008 JP
4-158570 Oct 2008 JP
2008262176 Oct 2008 JP
2009193037 Aug 2009 JP
11-219146 Nov 2011 JP
2004-0100887 Dec 2004 KR
342486 Oct 1998 TW
473622 Jan 2002 TW
485337 May 2002 TW
502233 Sep 2002 TW
538650 Jun 2003 TW
1221268 Sep 2004 TW
1223092 Nov 2004 TW
200727247 Jul 2007 TW
WO 9848403 Oct 1998 WO
WO 9948079 Sep 1999 WO
WO 0106484 Jan 2001 WO
WO 0127910 Apr 2001 WO
WO 0163587 Aug 2001 WO
WO 02067327 Aug 2002 WO
WO 03001496 Jan 2003 WO
WO 03034389 Apr 2003 WO
WO 03058594 Jul 2003 WO
WO 03-063124 Jul 2003 WO
WO 03077231 Sep 2003 WO
WO 2004003877 Jan 2004 WO
WO 2004025615 Mar 2004 WO
WO 2004034364 Apr 2004 WO
WO 2004047058 Jun 2004 WO
WO 2004104975 Dec 2004 WO
WO 2005022498 Mar 2005 WO
WO 2005022500 Mar 2005 WO
WO 2005029455 Mar 2005 WO
WO 2005029456 Mar 2005 WO
WO 2005055185 Jun 2005 WO
WO 2006000101 Jan 2006 WO
WO 2006053424 May 2006 WO
WO 2006063448 Jun 2006 WO
WO 2006084360 Aug 2006 WO
WO 2007003877 Jan 2007 WO
WO 2007079572 Jul 2007 WO
WO 2007120849 Oct 2007 WO
WO 2009055920 May 2009 WO
WO 2010023270 Mar 2010 WO
WO 2011041224 Apr 2011 WO
WO 2011064761 Jun 2011 WO
Non-Patent Literature Citations (119)
Entry
European Search Report for EP Application No. EP 10166143, dated Sep. 3, 2010 (2 pages).
European Search Report for European Application No. EP 11739485.8-1904 dated Aug. 6, 2013, (14 pages).
European Search Report for European Application No. EP 011122313 dated Sep. 14, 2005 (4 pages).
European Search Report for European Application No. EP 04786661 dated Mar. 9, 2009.
European Search Report for European Application No. EP 05759141 dated Oct. 30, 2009 (2 pages).
European Search Report for European Application No. EP 05819617 dated Jan. 30, 2009.
European Search Report for European Application No. EP 06 70 5133 dated Jul. 18, 2008.
European Search Report for European Application No. EP 07719579 dated May 20, 2009.
European Search Report for European Application No. EP 07815784 dated Jul. 20, 2010 (2 pages).
European Search Report for European Application No. EP 07710608.6 dated Mar. 19, 2010 (7 pages).
European Search Report, Application No. EP 10834294.0/1903, dated Apr. 8, 2013, (9 pages).
European Supplementary Search Report corresponding to European Application No. EP 04786662 dated Jan. 19, 2007 (2 pages).
Extended European Search Report mailed Apr. 27, 2011 issued during prosecution of European patent application No. EP 09733076.5 (13 pages).
Extended European Search Report mailed Jul. 11, 2012 which issued in corresponding European Patent Application No. EP 11191641.7 (14 pages).
Extended European Search Report mailed Nov. 29, 2012, issued in European Patent Application No. EP 11168677.0 (13 page).
Fossum, Eric R.. “Active Pixel Sensors: Are CCD's Dinosaurs?” SPIE: Symposium on Electronic Imaging. Feb. 1, 1993 (13 pages).
International Preliminary Report on Patentability for International Application No. PCT/CA2005/001007 dated Oct. 16, 2006, 4 pages.
International Search Report corresponding to International Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (6 pages).
International Search Report corresponding to International Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (2 pages).
International Search Report corresponding to International Application No. PCT/IB2010/055541 filed Dec. 1, 2010, dated May 26, 2011; 5 pages.
International Search Report corresponding to International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).
International Search Report for International Application No. PCT/CA2005/001007 dated Oct. 18, 2005.
International Search Report for International Application No. PCT/CA2007/000652 dated Jul. 25, 2007.
European Search Report for European Application No. PCT/CA2006/000177 dated Jun. 2, 2006.
International Search Report for International Application No. PCT/CA2004/001741 dated Feb. 21, 2005.
International Search Report for PCT Application No. PCT/CA2009/001769, dated Apr. 8, 2010 (3 pages).
International Search Report mailed Dec. 3, 2002, issued in International Patent Application No. PCT/JP02/09668 (4 pages).
International Search Report mailed Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (4 pages).
International Search Report mailed Mar. 21, 2006 issued in International Patent Application No. PCT/CA2005/001897 (2 pages).
International Search Report, PCT/IB2012/052372, mailed Sep. 12, 2012 (3 pages).
International Searching Authority Search Report, PCT/IB2010/055481, dated Apr. 7, 2011, 3 pages.
International Searching Authority Search Report, PCT/IB2011/051103, dated Jul. 8, 2011, 3 pages.
International Searching Authority Written Opinion, PCT/IB2010/055481, dated Apr. 7, 2011, 6 pages.
International Searching Authority Written Opinion, PCT/IB2011/051103, dated Jul. 8, 2011, 6 pages.
International Written Opinion corresponding to International Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (5 pages).
International Written Opinion corresponding to International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages).
International Written Opinion for International Application No. PCT/CA2009/000501 mailed Jul. 30, 2009 (6 pages).
International Written Opinion mailed Mar. 21, 2006 corresponding to International Patent Application No. PCT/CA2005/001897 (4 pages).
International Written Opinion of the International Searching Authority corresponding to International Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (7 pages).
International Written Opinion of the International Searching Authority corresponding to International Application No. PCT/IB2010/055541, dated May 26, 2011; 6 pages.
International Written Opinion, PCT/IB2012/052372, mailed Sep. 12, 2012 (6 pages).
Kanicki, J., et al. “Amorphous Silicon Thin-Film Transistors Based Active-Matrix Organic Light-Emitting Displays.” Asia Display: International Display Workshops, Sep. 2001 (pp. 315-318).
Karim, K. S., et al. “Amorphous Silicon Active Pixel Sensor Readout Circuit for Digital Imaging.” IEEE: Transactions on Electron Devices. vol. 50, No. 1, Jan. 2003 (pp. 200-208).
Lee, Wonbok: “Thermal Management in Microprocessor Chips and Dynamic Backlight Control in Liquid Crystal Displays”, Ph.D. Dissertation, University of Southern California (124 pages).
Mendes E., et al. “A High Resolution Switch-Current Memory Base Cell.” IEEE: Circuits and Systems. vol. 2, Aug. 1999 (pp. 718-721).
Nathan A. et al., “Thin Film imaging technology on glass and plastic” ICM 2000, proceedings of the 12 international conference on microelectronics, dated Oct. 31, 2001 (4 pages).
Office Action in Japanese patent application No. JP2006-527247 dated Mar. 15, 2010. (8 pages).
Office Action in Japanese patent application No. JP2007-545796 dated Sep. 5, 2011. (8 pages).
Partial European Search Report mailed Mar. 20, 2012 which issued in corresponding European Patent Application No. EP 11191641.7 (8 pages).
Partial European Search Report mailed Sep. 22, 2011 corresponding to European Patent Application No. EP 11168677.0 (5 pages).
Search Report for Taiwan Invention Patent Application No. 093128894 dated May 1, 2012. (1 page).
Search Report for Taiwan Invention Patent Application No. 94144535 dated Nov. 1, 2012. (1 page).
Spindler et al., System Considerations for RGBW OLED Displays, Journal of the SID 14/1, 2006, pp. 37-48.
Yu, Jennifer: “Improve OLED Technology for Display”, Ph.D. Dissertation, Massachusetts Institute of Technology, Sep. 2008 (151 pages).
Extended European Search Report mailed Aug. 6, 2013, issued in European Patent Application No. 11739485.8 (14 pages).
International Search Report corresponding to co-pending International Patent Application Serial No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (4 pages).
International Written Opinion corresponding to co-pending International Patent Application Serial No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (5 pages).
Singh, et al., “Current Conveyor: Novel Universal Active Block”, Samriddhi, S-JPSET vol. I, Issue 1, 2010, pp. 41-48.
Ahnood et al.: “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009.
Alexander et al.: “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages).
Alexander et al.: “Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages).
Arokia Nathan et al., “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486.
Ashtiani et al.: “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages).
Chaji et al.: “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages).
Chaji et al.: “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages).
Chaji et al.: “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜O˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages).
Chaji et al.: “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages).
Chaji et al.: “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages).
Chaji et al.: “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages).
Chaji et al.: “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages).
Chaji et al.: “A novel driving scheme for high-resolution large-area a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji et al.: “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages).
Chaji et al.: “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007.
Chaji et al.: “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006.
Chaji et al.: “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008.
Chaji et al.: “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages).
Chaji et al.: “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages).
Chaji et al.: “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages).
Chaji et al.: “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated May 2003 (4 pages).
Chaji et al.: “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages).
Chaji et al.: “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages).
Chaji et al.: “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages).
Chaji et al.: “Low-Cost AMOLED Television with IGNIS Compensating Technology”; dated May 2008 (4 pages).
Chaji et al.: “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages).
Chaji et al.: “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages).
Chaji et al.: “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages).
Chaji et al.: “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages).
Chaji et al.: “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages).
Chaji et al.: “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages).
Chaji et al.: “Stable Pixel Circuit for Small-Area High-Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages).
Chaji et al.: “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages).
Chaji et al.: “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages).
European Search Report for European Application No. EP 06 72 1798 dated Nov. 12, 2009 (2 pages).
International Search Authority Search Report, Application No. PCT/IB2010/055486, Dated Apr. 19, 2011, 5 pages.
International Search Authority Written Opinion, Application No. PCT/IB2010/055486, Dated Apr. 19, 2011, 8 pages.
Jafarabadiashtiani et al.: “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages).
Joon-Chul Goh et al., “A New a-Si:H Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes”, IEEE Electron Device Letters, vol. 24, No. 9, Sep. 2003, pp. 583-585.
Lee et al.: “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated 2006 (6 pages).
Ma E Y et al.: “organic light emitting diode/thin film transistor integration for foldable displays” dated Sep. 15, 1997(4 pages).
Matsueda y et al.: “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004.
Nathan et al.: “Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays”; dated 2006 (16 pages).
Nathan et al.: “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page).
Nathan et al.: “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages).
Nathan et al.: “Invited Paper: a-Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated 2006 (4 pages).
Philipp: “Charge transfer sensing” Sensor Review, vol. 19, No. 2, Dec. 31, 1999, 10 pages.
Rafati et al.: “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages).
Safavaian et al.: “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages).
Safavian et al.: “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages).
Safavian et al.: “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages).
Safavian et al.: “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages).
Safavian et al.: “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages).
Safavian et al.: “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages).
Stewart M. et al., “polysilicon TFT technology for active matrix oled displays” IEEE transactions on electron devices, vol. 48, No. 5, dated May 2001 (7 pages).
Vygranenko et al.: “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated 2009.
Wang et al.: “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages).
Yi He et al., “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592.
English translation of Office Action issued on Jul. 15, 2014, in corresponding Japanese Patent Application No. 2012-541612 (5 pages).
International Search Report and Written Opinion of the ISA mailed Aug. 28, 2014, in corresponding International Patent Application No. PCT/IB2014/060959 (13 pages).
A current mode comparator for digital calibiration of amorphous silicon amolded displays. IEEE Transactions on circuits and systems: Express briefs Cols. 55 No. 7, Chaji G. Reza et al., Jul. 2008, 6 pages.
Related Publications (1)
Number Date Country
20130235023 A1 Sep 2013 US
Continuation in Parts (1)
Number Date Country
Parent 12956842 Nov 2010 US
Child 13869399 US