The present disclosure relates generally to grinding processes for material removal, and more particularly to a system and methods for electrochemical grinding with a screen element.
Grinding processes are employed to remove material from components for manufacture and finishing. Conventional methods of finishing and shaping aerospace components have employed grinding for high strength materials. One processing limitation of traditional grinding tools is the time required for grinding. Traditional grinding methods may be less effective with hardened or temperature resistant materials. While there have been improvements to grinding techniques, tool life and surface quality continues to be a concern. By way of example, traditional grinding may result in stresses or defects in components.
Disclosed and claimed herein are a system and methods for electrochemical grinding. One embodiment is directed to an electrochemical grinding tool. The electrochemical grinding tool includes a grinding element having a grinding surface, wherein the grinding element is configured to be electrically coupled to a cathode of a voltage source. The grinding tool also includes a screen coupled to the grinding element, wherein the screen is configured to be electrically coupled to the cathode of the voltage source, and wherein the screen is configured to recover material by electroplating removed by the grinding element during electrochemical grinding.
Another embodiment is directed to an electrochemical grinding system. The grinding system includes a grinding tool including a grinding element having a grinding surface, wherein the grinding element is configured to be electrically coupled to a cathode of the voltage source. The grinding system also includes a screen coupled to the grinding element, wherein the screen is configured to be electrically coupled to the cathode of the voltage source, and wherein the screen is configured to recover material by electroplating removed by the grinding element during electrochemical grinding. The system also includes a controller configured to control the grinding tool for electrochemical grinding of a workpiece.
In one embodiment, a method is provided for electrochemical grinding. The method includes controlling a potential of a voltage source applied to a grinding tool, wherein the grinding tool includes a screen coupled to a grinding element and wherein the screen is electrically coupled to the cathode of the voltage source. The method also includes controlling a potential of the voltage source applied to a workpiece and controlling electrochemical grinding of the workpiece by the grinding tool, wherein the screen is configured to recover material by electroplating removed by the grinding element during electrochemical grinding.
Other aspects, features, and techniques will be apparent to one skilled in the relevant art in view of the following detailed description of the embodiments.
The features, objects, and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:
Overview and Terminology
One aspect of the disclosure relates to systems and methods for grinding. In particular, systems and methods are provided for electrochemical grinding. In one embodiment, an electrochemical grinding tool is provided including a grinding element and a screen coupled to the grinding element. According to other embodiments, a system is provided for electrochemical grinding employing a grinding tool with a screen. In other embodiments, methods are provided for electrochemical grinding with a screen.
As used herein, the terms “a” or “an” shall mean one or more than one. The term “plurality” shall mean two or more than two. The term “another” is defined as a second or more. The terms “including” and/or “having” are open ended (e.g., comprising). The term “or” as used herein is to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” means “any of the following: A; B; C; A and B; A and C; B and C; A, B and C”. An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
Reference throughout this document to “one embodiment,” “certain embodiments,” “an embodiment,” or similar term means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of such phrases in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner on one or more embodiments without limitation.
Referring now to the figures,
Grinding tool 100 may be configured to remove material from one or more elements, such as workpiece 120. By way of example, workpiece 120 may relate to one or more components, including but not limited to blades, bearings, vanes, housings, and jet engine components in general.
According to one embodiment, grinding tool 100 may be coupled to a voltage source during electrochemical grinding. By way of example, grinding tool 100 may be coupled to the cathode of a voltage source and workpiece 120 may be coupled to an anode of the voltage source. As shown in
According to one embodiment, screen 110 may be configured to recover material removed by grinding element 105 during electrochemical grinding. Screen 110 may be removeably coupled to grinding element 105.
Referring now to
According to one embodiment, abrasive 216 includes at least one of a nonconductive material, diamond and aluminum oxide material. Abrasive 216 may be bonded to grinding element 205 by bonding material 220. In certain embodiments, grinding element 205 includes nonconductive material, diamond and aluminum oxide material, bonded together by a bonding material such as nickel. According to another embodiment, screen 210 includes a plurality of openings to allow abrasive material 216 of grinding element 205 engage with a workpiece (e.g., workpiece 120).
It should be appreciated that grinding tools 200 and 201 of
According to one embodiment, grinding tool 305 includes grinding element 310, such as a grinding wheel, having a grinding surface. The grinding surface of grinding element 310 may include an abrasive material. In certain embodiments, grinding element 310 includes nonconductive material, diamond and aluminum oxide material, bonded together by a bonding material such as nickel. In another embodiment, grinding tool 305 includes screen 315 coupled to grinding element 310. Screen 315 is configured to recover material by the electroplating removed by the grinding element 310 during electrochemical grinding.
Controller 330 may be configured to control grinding tool 305 for electrochemical grinding of workpiece 360 including potential applied and control of grinding tool 305. In one embodiment, grinding tool 305 may be rotated by drive unit 320 via shaft 321. Controller 330 may be configured to control drive unit 320 for control of rotational speed for grinding tool 305. Controller 330 may be configured to control drive unit 320 in order to rotate one or more grinding tools. Grinding element 310 is configured to be electrically coupled to a cathode of the voltage source 340, as shown by connection 335a. Screen 315 is configured to be electrically coupled to a cathode of voltage source 340, as shown by connection 335b. Workpiece 360 is configured to be electrically coupled to an anode of voltage source 340, as shown by connection 345. According to one embodiment, screen 315 may have a different electric potential than the grinding element 310. In certain embodiments, screen 315 is insulated from grinding element 310 if there are different potentials.
During electrochemical grinding, an electric current generated by voltage source 340 is passed through electrolyte 355, which may be a small gap (e.g., a 0.001″ gap) between workpiece 360 and grinding tool 305. According to one embodiment, voltage source 340 can be a DC power supply of 4-14 volts, DC current can be 50-3000 A with current density 500-1500 A/in2.
System 300 may include nozzle 350 configured to apply the electrolyte 355 in the gap between workpiece 360 and grinding tool 305. Controller 330 may be configured to control electrochemical grinding by applying an electrolyte in between workpiece 360 and grinding tool 305. In other embodiments, system 300 may include placing workpiece 360 and grinding tool 305 in a reservoir (not shown) filled with a selected electrolyte and medium.
At block 410, potential of the voltage source applied to a workpiece is controlled.
At block 415, electrochemical grinding of the workpiece by the grinding tool is controlled. During electrochemical grinding, the screen is configured to recover material removed by the grinding element during electrochemical grinding. Controlling electrochemical grinding at block 415 can include controlling potential applied to the screen.
Controlling electrochemical grinding at block 415 can include applying electrolyte in between a grinding tool and workpiece. In one of embodiment, the electrolyte may be sprayed by a nozzle. In another embodiment, the electrolyte may be applied by placing the workpiece and the grinding tool in a reservoir filled with a selected electrolyte, for example, sodium chloride, sodium nitride and rust inhibitor. A selected electrolyte may depend on material to be ground. Controlling at block 415 may include selecting an appropriate electrolyte and its medium to allow metal ions generated from the workpiece (anode) in the electrochemical grinding process not to form metal hydroxide/metal oxide rather to exist in ions forms or coordinated with other ion groups in the electrolyte medium so the metal ions travel to the cathode side and electroplated on the cathode as the metal.
Controlling electrochemical grinding at block 415 can include adjusting one or more of the grinding speed, angle and position of the grinding tool. Positioning the grinding tool and the workpiece may also include leave a gap between the grinding tool and the workpiece, such as a distance is 0.001″ so that the electrolyte can be applied during grinding.
Process 400 may optionally determine a condition requiring screen replacement at block 420. During grinding, metals may accumulate on the screen. During electrochemical grinding process 400, when excessive metal is plated on the screen, the screen is replaced and the metal may be recycled.
While this disclosure has been particularly shown and described with references to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the claimed embodiments.
This application claims priority to U.S. Provisional Application No. 61/991,877 filed on May 12, 2014 and titled System and Methods for Electrochemical Grinding with a Screen, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3377150 | Corley | Apr 1968 | A |
4127459 | Jumer | Nov 1978 | A |
4202739 | Csakvary | May 1980 | A |
4405421 | Inoue | Sep 1983 | A |
6113464 | Ohmori | Sep 2000 | A |
20080242202 | Wang | Oct 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20150322584 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
61991877 | May 2014 | US |