The preferred embodiments of the invention will be described in conjunction with the appended drawings provided to illustrate and not to limit the invention, where like designations denote like elements, and in which:
The present invention relates to a system and methods for evaluating the efficacy of drugs, or agents. For purposes of this application, the present invention is discussed in reference to efficacy of appetite-affecting drugs, or agents, but the present invention is applicable to any drug for which the efficacy is sought. It is contemplated that the present invention is applicable to all types of settings, including research settings, without regard to the animals used or the drugs administered to the animals, and advantageously permits a wide scope of research to be conducted.
The system 100 of
The system 100 may include a control unit 180, such as computer 182, which may be configured to communicate with and operate the drug-delivery device 150. The computer 182 may be configured to receive and analyze data received from the plurality of cage scale assemblies 110. Preferably, each cage scale assembly 110 of a group of cage assemblies 110A-P is operatively connected to a switchbox 145. One embodiment of the switchbox 145 allows data to be received from each cage scale assembly 110 by sequentially, or randomly, switching between the plurality of cage scale assemblies 110A-P. The data received by the switchbox 145 is sent to a control unit 180 having a storage medium for managing the data. It is contemplated that the switchbox 145 may communicate with and be controlled by the control unit 180, here computer 182.
Other embodiments may include wireless communication between the pump 160 and control unit 180. The animal 125, such a Sprague-Dawley rat for example, may be connected to the drug source 170 such as through an infusion line 152A that is preferably connected to a catheter implanted in the jugular vein, peritoneal cavity, or under the skin of the animal 125, or any other methods that are well known in the art. A swivel-tether connector 184 between the infusion line 152A allows the animal 125 to move freely about its cage 120. In this embodiment, as shown in
The cage scale assembly 110 includes an animal 125 within a cage 120. A food source 130 is available to the animal 125, through a hole (not shown) in the base of a side-compartment 132 attached to the cage 120. The food source 130 may be placed on a stand 134 that sits in a dish 136, which functions to catch falling food that may become dislodged from the food source 130 as the animal 125 engages in eating. The food source 130 is further associated with a scale 140 for measuring the weight of the food source 130. The scale 140 is preferably electronic and may be in communication with the switchbox 145. The switchbox 160 can wirelessly communicate with the cage scale assembly 110 and further with the control unit 180. A shown in
The embodiment in
As shown in
As explained in greater detail below, data acquisition systems 306, 308, 310 may include a program implemented on a control unit 180, such as the computer 182 shown in
Although the system 100 shown and described with respect to
Determining animal feeding patterns ideally requires the control and monitoring of a number of factors and conditions.
The initial setup segment 410 facilitates the input of the parameters for evaluating the efficacy of drugs. In one preferred embodiment, the initial setup segment 410 includes four main components 412, 414, 416, 418. Each component 412, 414, 416, 418 may include control parameters and/or identification parameters. The initial setup 412 allows for input of control parameters and information parameters regarding overall variables, such as study identification, date, animal environment lights on/off times, and start/stop times. The initial setup 412 may also allow input of control parameters and information parameters pertaining to each animal. The animal treatment setup 414 allows for the input of control parameters and information parameters directed to individual animals, which facilitates tracking of information after completion. Such information may include, for example, an animal's identification number, corresponding scale identification number, and treatment information, such as agent and dose. The pump setup 416 allows for the input of control parameters and information parameters that may include pump identification number corresponding to a particular animal, the syringe diameter, infusion rate, and infusion periods. The scale setup 418 allows for the input of control and information parameters regarding the periodicity of the retrieval of data from the scales associated with the food source of each animal, such as the interval at which data will be collected from each scale, and the control parameters defining the feeding of an animal. Such feeding parameters typically include a change of weight of the food source from one data interval to the next that exceeds a predetermined threshold value. The initial setup segment 410 may be implemented via a graphical user interface on a computer implementing the program 400, such as computer 182 of
Following the initial setup segment 410, the data acquisition phase 302 controls the delivery of agents and monitoring of the food consumption of the animals. At a predetermined time, the program 400 starts at step 451. The next step 452 switches the pump 160 (
The data recording step 456 preferably includes recording information sufficient to identify an animal's feeding patterns. Such information typically includes the animal identification number, the date and time the food weight measurement was taken, the previous food weight, and the current food weight, although it is contemplated that any other information may be included as necessary. Following the data recording step 456, the program 400 performs the step 457 of determining whether the stop time has been reached. If so, then the process is stopped per step 459, and no further data is collected and recorded. Furthermore, agents are no longer delivered to the animals. Similarly, if the change in value in step 455 was less than the predetermined threshold value, the program 400 does not perform step 456 to record data, but instead step 457 is performed to determine whether the stop time has been reached.
If, after performing step 457 and determining that the stop time has not been reached, the program 400 then performs step 458, which switches to the next cage, if any, whereupon the program 400 performs step 454 to poll the next scale weight. The method continues for the second cage just as with the first cage, and the third cage, if any, and so forth. In a preferred embodiment, each cage is polled every twenty seconds, and the program 400 is configured to control the timing of steps 454 to 458 to accomplish regular polling of the cages. When the program 400 has polled each cage, it begins again at step 454 by polling the first cage. This method runs continually until the program 400 has determined that the stop time has been reached in step 457, whereupon the program will stop at step 459.
The initial step 501 of the data analyzing program 500 includes performing the program setup, which may include, for example, data records to analyze, animal identification data to analyze, and the meal criteria. Defining meal criteria may include defining the minimum meal size in terms of change in food weight, and defining the minimum between-meal interval. The minimum between-meal interval is defined as a predetermined time period of no eating that must be met to define the end of one meal and the start of another. So configured, the data analyzing program 500 may evaluate animal feeding patterns from the data collected throughout a specified duration, which in one preferred embodiment includes data collected at twenty second intervals.
Following the initial setup step 501, the data analyzing program 500 performs the start step 502. After starting, the program 500 performs the step 503 of importing data records stored by the data collection segment 450 of the data acquisition program 400. The data records preferably contain information necessary to identify feeding patterns in the animals being studied, such as the time and date the data was collected, the animal identification data, food weight from previous data acquisition, and food weight from current data acquisition. The latter two data points allow the program 500 to determine food intake, if any, across a series of successive food weight acquisitions for a particular animal.
The program 500 then performs the step 504 of sorting the data records. The data records may be sorted by date, animal identification data, and the time that the data was recorded. Other sorting may also be performed according to predefined criteria, such as the user's preferences.
Once the program 500 has sorted the data records, it may determine feeding patterns according to predetermined parameters, as shown with respect to step 505 in
Once one or more feeding patterns have been identified, the program 500 may perform the step of displaying the feeding pattern data on, for example, a graphical user interface using graphics and/or text, per step 507. Displaying the feeding pattern data in graphics and/or text allows researchers to quickly identify data trends. In addition, a graphical display of the feeding pattern data allows an instantaneous visualization of the effects of the agent on an animal's feeding patterns, or on average feeding patterns from a group of identically treated animals.
The above description of illustrated embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed. While specific embodiments of, and examples of, the invention are described in the foregoing for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will realize. Moreover, the various embodiments described above can be combined to provide further embodiments. Accordingly, the invention is not limited by the disclosure, but instead the scope of the invention is to be determined entirely by the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/811,040 filed Jun. 5, 2006.
Number | Date | Country | |
---|---|---|---|
60811040 | Jun 2006 | US |