The present invention generally relates to AMOLED displays, and particularly conserving power consumption on such displays for certain high brightness conditions.
Currently, active matrix organic light emitting device (“AMOLED) displays are being proposed. The advantages of such displays include lower power consumption, manufacturing flexibility and faster refresh rate. In contrast to conventional LCD displays, there is no backlighting in an AMOLED display, and each pixel consists of different OLEDs, emitting light independently. The power consumed in each pixel has a relation with the magnitude of the generated light in that pixel. A typical pixel includes the organic light emitting device and a thin film drive transistor. A programming voltage is applied to the gate of the drive transistor which is roughly proportional to the current flowing through the drive transistor to the light emitting device. However, the use of current makes the performance of the pixel dependent on the drive transistor whose characteristics may change since many such transistors are currently fabricated from amorphous silicon. For example, the threshold voltage of amorphous silicon transistors may shift over long term use resulting in data from the programming voltage being incorrectly applied due to the shift.
While the active matrix organic light emitting diode (AMOLED) display is well-known for its low average power consumption, power consumption may still be higher than an active matrix liquid crystal display (AMLCD) at peak brightness. This makes an AMOLED display less appealing for applications such as emails, web surfing and eBooks due to the largely white (high brightness) background required to display such applications. The power dissipation in the AMOLED display is governed by that associated with the thin film drive transistor and the OLED itself. Although the development of a higher efficiency OLED continues to significantly lower the power consumption of the display, the power consumption of current OLED displays in applications requiring high brightness are greater than a comparable AMLCD. New approaches in TFT operation are therefore needed for further reduction in power. Thus a method to reduce power consumption to compensate for increased power requirements in certain brightness conditions is needed.
Aspects of the present disclosure include a current-biased, voltage-programmed circuit for a pixel of a display. The circuit includes a controllable supply voltage source outputting a supply voltage. An organic light emitting device emitting light has a brightness level as a function of current flow. A drive transistor has a drain coupled to the controllable supply voltage source and a source coupled to the organic light emitting device. The drive transistor has a gate input controlled by a programming voltage input to determine the current flow through the light emitting device. To conserve energy, the system monitors the content of a selected segment of the display, sets the supply voltage to the minimum supply voltage required for the current content of the selected segment of the display, determines whether the number of pixels requiring a supply voltage larger than the set value is greater than a predetermined threshold number, and, when the answer is negative, reduces the supply voltage by a predetermined step amount.
The foregoing and additional aspects and embodiments of the present invention will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments and/or aspects, which is made with reference to the drawings, a brief description of which is provided next.
The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.
While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
In pixel sharing configurations described below, the gate or address driver circuit 108 can also optionally operate on global select lines GSEL[j] and optionally/GSEL[j], which operate on multiple rows of pixels 104 in the pixel array 102, such as every two rows of pixels 104. The source driver circuit 110, under control of the controller 112, operates on voltage data lines Vdata[k], Vdata[k+1], and so forth, one for each column of pixels 104 in the pixel array 102. The voltage data lines carry voltage programming information to each pixel 104 indicative of a brightness of each light emitting device in the pixel 104. A storage element, such as a capacitor, in each pixel 104 stores the voltage programming information until an emission or driving cycle turns on the light emitting device. The supply voltage driver 114, under control of the controller 112, controls the level of voltage on a supply voltage (EL_Vdd) line, one for each row of pixels 104 in the pixel array 102. Alternatively, the voltage driver 114 may individually control the level of supply voltage for each row of pixels 104 in the pixel array 102 or each column of pixels 104 in the pixel array 102. As will be explained, the level of the supply voltage is adjusted to conserve power consumed by the pixel array 102 depending on the brightness required.
As is known, each pixel 104 in the display system 100 needs to be programmed with information indicating the brightness of the organic light emitting device in the pixel 104 for a particular frame. A frame defines the time period that includes a programming cycle or phase during which each and every pixel in the display system 100 is programmed with a programming voltage indicative of a brightness and a driving or emission cycle or phase during which each light emitting device in each pixel is turned on to emit light at a brightness commensurate with the programming voltage stored in a storage element. A frame is thus one of many still images that compose a complete moving picture displayed on the display system 100. There are at least two schemes for programming and driving the pixels: row-by-row, or frame-by-frame. In row-by-row programming, a row of pixels is programmed and then driven before the next row of pixels is programmed and driven. In frame-by-frame programming, all rows of pixels in the display system 100 are programmed first, and all of the pixels are driven row-by-row. Either scheme can employ a brief vertical blanking time at the beginning or end of each frame during which the pixels are neither programmed nor driven.
The components located outside of the pixel array 102 can be disposed in a peripheral area 106 around the pixel array 102 on the same physical substrate on which the pixel array 102 is disposed. These components include the gate driver 108, the source driver 110 and the supply voltage controller 114. Alternatively, some of the components in the peripheral area can be disposed on the same substrate as the pixel array 102 while other components are disposed on a different substrate, or all of the components in the peripheral area can be disposed on a substrate different from the substrate on which the pixel array 102 is disposed. Together, the gate driver 108, the source driver 110, and the supply voltage control 114 make up a display driver circuit. The display driver circuit in some configurations can include the gate driver 108 and the source driver 110 but not the supply voltage controller 114.
The use of the AMOLED display system 100 in
When the pixel 104 is required to have maximum brightness such as in applications such as e-mail or web surfing, the gate of the drive transistor 202 is driven so the transistor 202 is in saturation mode and therefore fully open allowing high current to flow through the organic light emitting device 204 creating maximum brightness. Lower levels of brightness for the light emitting device 204, such as those for lower gray scales, are controlled by controlling the voltage to the gate of the drive transistor 202 in the linear region. When the drive transistor 202 operate in this region, the gate voltage controls the current supplied to the light emitting device 204 linearly and therefore the brightness of the light emitting device. In a power saving mode in this example, the power consumption associated with the drive transistor 202 is reduced because as the drive transistor 202 is driven into saturation mode at a certain threshold voltage, a lower supply voltage above the threshold voltage will still maintain a level of current to the light emitting device 204 that produces roughly the same brightness as a higher supply voltage would.
The level of the supply voltage from the supply voltage input 206 in
Alternatively, the determination may be made during video processing based on the amount of overall brightness required in a particular video frame based on the video data received from the video source 120 in
The drive transistor 202 has a saturation region where current is constant against the voltage applied across the source and the drain such as the supply voltage from the supply voltage input 206 in
Thus, the operating voltage for a pixel should be chosen such that the drive transistor 202 stays in deep saturation to reduce cross talk stemming from voltage drop on the supply voltage input 206 in a power saving mode. The pixel 104 is therefore programmed with a high current to the light emitting device 204 therefore making it become an almost linear function of the voltage across the drive transistor 202. In this case, the high current required for the light emitting device 204 effectively leads to source degeneration, thus reducing the effect of the voltage drop on the drive transistor 202. Also, during the leakage time, the pixel current is brought to normal levels, which further compensates for the voltage drop. As a result the display luminance stays the same. This effect reduces the power of the drive transistor 202 by over 50% and total power consumption by 40% when the pixel 104 is at the highest brightness levels required for applications such as e-mail and web browsing.
However, since the drive transistor 202 is shifted toward the linear region of operation by lower supply voltages in order to maintain the necessary high current for the light emitting device 204, the image quality is affected by ground bouncing and voltage drop. However, since the gray scales are further apart in applications requiring primarily bright pixels such as e-mail, the image quality will not be affected significantly. In order to maintain the same luminance, the programming voltage input to the gate of the drive transistor 202 may be controlled by adjusting gamma curves.
The driver circuit 400 includes a drive transistor 402 having a source coupled to an organic light emitting device 404. A programming voltage input 406 is coupled to the gate of the drive transistor 402 through a select transistor 408. The select transistor 408 has a gate that is coupled to a select input 410. A select signal on the select input 410 allows a programming voltage signal on the program voltage input 406 to adjust the current through the drive transistor 402 to the light emitting device 404. The program voltage input 406 is coupled to the drain of the select transistor 406. The source of the select transistor 408 is coupled to the gate of the drive transistor 402 and the gate of a bias transistor 412 that is wired in series to another bias transistor 414. A source capacitor 416 is charged to the programming voltage when the select transistor 408 is turned on. A control signal input 420 is coupled to the gate of the bias transistor 414. A controlled supply voltage input 422 is coupled to the drain of the drive transistor 402. The input supply voltage 422 is controlled via a voltage controller such as the voltage controller 114 in
As shown in
The display circuit 400 in
The driver circuit 400 in
In most displays, the supply voltage is adjusted to the worst case, which includes the worst voltage drop across the parasitic resistance plus the worst voltage drop across the drive element and load element. The supply voltage may be adjusted based on the content of the display. In this case, the supply voltage is adjusted based on long hysteresis curves to eliminate any sudden change in the display. Therefore, it does not work effectively when displaying dynamic content (e.g., videos).
At step 801 in
In a further embodiment, the drive element is pushed to operate in a linear regime where the drive element is sensitive to the supply voltage variation. This mode can be used for cases where the image content is limited (e.g., only few gray levels). However, the use of this operation can be extended by compensating for the supply voltage variation across the panel. Compensation for other factors of the display, such as non-uniformity or aging, should be considered since they can affect the supply voltage variation significantly. There are different techniques for extracting voltage variation across a display, and two of these techniques will be described in accordance with other compensation factors. These two techniques can be swapped with other techniques.
Step 1005 compensates for the supply voltage variation and other compensation factors (e.g., the second part of the backplane and OLED's). Here, the order of compensation factors can be based on reducing the computation error and reducing the complexity of the calculation. The signal values are adjusted at step 1006, based on the pixel voltage drop. Step 1007 compensates for the last part of the backplane and OLED's), and then the display panel is programmed at step 1008.
While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2687631 | Dec 2009 | CA | national |
This application is a continuation-in-part of, and claims priority to, pending U.S. patent application Ser. No. 12/958,938, filed Dec. 2, 2010, entitled “Systems and Methods for Power Conservation for AMOLED Pixel Drivers,” which in turn claims the benefit of Canadian Patent Application Serial No. 2,687,631, filed Dec. 6, 2009, entitled “Low Power Driving Scheme For Display Applications,” which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3506851 | Polkinghorn et al. | Apr 1970 | A |
3750987 | Gobel | Aug 1973 | A |
3774055 | Bapat et al. | Nov 1973 | A |
4090096 | Nagami | May 1978 | A |
4160934 | Kirsch | Jul 1979 | A |
4354162 | Wright | Oct 1982 | A |
4943956 | Noro | Jul 1990 | A |
4996523 | Bell et al. | Feb 1991 | A |
5134387 | Smith et al. | Jul 1992 | A |
5153420 | Hack et al. | Oct 1992 | A |
5170158 | Shinya | Dec 1992 | A |
5198803 | Shie et al. | Mar 1993 | A |
5204661 | Hack et al. | Apr 1993 | A |
5266515 | Robb et al. | Nov 1993 | A |
5278542 | Smith et al. | Jan 1994 | A |
5408267 | Main | Apr 1995 | A |
5489918 | Mosier | Feb 1996 | A |
5498880 | Lee et al. | Mar 1996 | A |
5572444 | Lentz et al. | Nov 1996 | A |
5589847 | Lewis | Dec 1996 | A |
5619033 | Weisfield | Apr 1997 | A |
5648276 | Hara et al. | Jul 1997 | A |
5670973 | Bassetti et al. | Sep 1997 | A |
5691783 | Numao et al. | Nov 1997 | A |
5701505 | Yamashita et al. | Dec 1997 | A |
5714968 | Ikeda | Feb 1998 | A |
5723950 | Wei et al. | Mar 1998 | A |
5744824 | Kousai et al. | Apr 1998 | A |
5745660 | Kolpatzik et al. | Apr 1998 | A |
5748160 | Shieh et al. | May 1998 | A |
5758129 | Gray et al. | May 1998 | A |
5815303 | Berlin | Sep 1998 | A |
5835376 | Smith et al. | Nov 1998 | A |
5870071 | Kawahata | Feb 1999 | A |
5874803 | Garbuzov et al. | Feb 1999 | A |
5880582 | Sawada | Mar 1999 | A |
5903248 | Irwin | May 1999 | A |
5917280 | Burrows et al. | Jun 1999 | A |
5923794 | McGrath et al. | Jul 1999 | A |
5945972 | Okumura et al. | Aug 1999 | A |
5949398 | Kim | Sep 1999 | A |
5952789 | Stewart et al. | Sep 1999 | A |
5952991 | Akiyama et al. | Sep 1999 | A |
5982104 | Sasaki et al. | Nov 1999 | A |
5990629 | Yamada et al. | Nov 1999 | A |
6023259 | Howard et al. | Feb 2000 | A |
6069365 | Chow et al. | May 2000 | A |
6091203 | Kawashima et al. | Jul 2000 | A |
6097360 | Holloman | Aug 2000 | A |
6100868 | Lee et al. | Aug 2000 | A |
6144222 | Ho | Nov 2000 | A |
6177915 | Beeteson et al. | Jan 2001 | B1 |
6229506 | Dawson et al. | May 2001 | B1 |
6229508 | Kane | May 2001 | B1 |
6246180 | Nishigaki | Jun 2001 | B1 |
6252248 | Sano et al. | Jun 2001 | B1 |
6259424 | Kurogane | Jul 2001 | B1 |
6262589 | Tamukai | Jul 2001 | B1 |
6268841 | Cairns et al. | Jul 2001 | B1 |
6271825 | Greene et al. | Aug 2001 | B1 |
6288696 | Holloman | Sep 2001 | B1 |
6304039 | Appelberg et al. | Oct 2001 | B1 |
6307322 | Dawson et al. | Oct 2001 | B1 |
6310962 | Chung et al. | Oct 2001 | B1 |
6320325 | Cok et al. | Nov 2001 | B1 |
6323631 | Juang | Nov 2001 | B1 |
6333729 | Ha | Dec 2001 | B1 |
6356029 | Hunter | Mar 2002 | B1 |
6373454 | Knapp et al. | Apr 2002 | B1 |
6388653 | Goto et al. | May 2002 | B1 |
6392617 | Gleason | May 2002 | B1 |
6396469 | Miwa et al. | May 2002 | B1 |
6414661 | Shen et al. | Jul 2002 | B1 |
6417825 | Stewart et al. | Jul 2002 | B1 |
6430496 | Smith et al. | Aug 2002 | B1 |
6433488 | Bu | Aug 2002 | B1 |
6437106 | Stoner et al. | Aug 2002 | B1 |
6445369 | Yang et al. | Sep 2002 | B1 |
6473065 | Fan | Oct 2002 | B1 |
6475845 | Kimura | Nov 2002 | B2 |
6501098 | Yamazaki | Dec 2002 | B2 |
6501466 | Yamagishi et al. | Dec 2002 | B1 |
6522315 | Ozawa et al. | Feb 2003 | B2 |
6525683 | Gu | Feb 2003 | B1 |
6531827 | Kawashima | Mar 2003 | B2 |
6535185 | Kim et al. | Mar 2003 | B2 |
6542138 | Shannon et al. | Apr 2003 | B1 |
6580408 | Bae et al. | Jun 2003 | B1 |
6580657 | Sanford et al. | Jun 2003 | B2 |
6583398 | Harkin | Jun 2003 | B2 |
6583775 | Sekiya et al. | Jun 2003 | B1 |
6594606 | Everitt | Jul 2003 | B2 |
6618030 | Kane et al. | Sep 2003 | B2 |
6639244 | Yamazaki et al. | Oct 2003 | B1 |
6668645 | Gilmour et al. | Dec 2003 | B1 |
6677713 | Sung | Jan 2004 | B1 |
6680580 | Sung | Jan 2004 | B1 |
6686699 | Yumoto | Feb 2004 | B2 |
6687266 | Ma et al. | Feb 2004 | B1 |
6690000 | Muramatsu et al. | Feb 2004 | B1 |
6690344 | Takeuchi et al. | Feb 2004 | B1 |
6693388 | Oomura | Feb 2004 | B2 |
6693610 | Shannon et al. | Feb 2004 | B2 |
6694248 | Smith et al. | Feb 2004 | B2 |
6697057 | Koyama et al. | Feb 2004 | B2 |
6720942 | Lee et al. | Apr 2004 | B2 |
6724151 | Yoo | Apr 2004 | B2 |
6734636 | Sanford et al. | May 2004 | B2 |
6738034 | Kaneko et al. | May 2004 | B2 |
6738035 | Fan | May 2004 | B1 |
6753655 | Shih et al. | Jun 2004 | B2 |
6753834 | Mikami et al. | Jun 2004 | B2 |
6756741 | Li | Jun 2004 | B2 |
6756952 | Decaux et al. | Jun 2004 | B1 |
6756958 | Furuhashi et al. | Jun 2004 | B2 |
6771028 | Winters | Aug 2004 | B1 |
6777712 | Sanford et al. | Aug 2004 | B2 |
6777888 | Kondo | Aug 2004 | B2 |
6781567 | Kimura | Aug 2004 | B2 |
6788231 | Hsueh | Sep 2004 | B1 |
6806497 | Jo | Oct 2004 | B2 |
6806638 | Lih et al. | Oct 2004 | B2 |
6806857 | Sempel et al. | Oct 2004 | B2 |
6809706 | Shimoda | Oct 2004 | B2 |
6815975 | Nara et al. | Nov 2004 | B2 |
6828950 | Koyama | Dec 2004 | B2 |
6853371 | Miyajima et al. | Feb 2005 | B2 |
6858991 | Miyazawa | Feb 2005 | B2 |
6859193 | Yumoto | Feb 2005 | B1 |
6873117 | Ishizuka | Mar 2005 | B2 |
6876346 | Anzai et al. | Apr 2005 | B2 |
6885356 | Hashimoto | Apr 2005 | B2 |
6900485 | Lee | May 2005 | B2 |
6903734 | Eu | Jun 2005 | B2 |
6909243 | Inukai | Jun 2005 | B2 |
6909419 | Zavracky et al. | Jun 2005 | B2 |
6911960 | Yokoyama | Jun 2005 | B1 |
6911964 | Lee et al. | Jun 2005 | B2 |
6914448 | Jinno | Jul 2005 | B2 |
6919871 | Kwon | Jul 2005 | B2 |
6924602 | Komiya | Aug 2005 | B2 |
6937215 | Lo | Aug 2005 | B2 |
6937220 | Kitaura et al. | Aug 2005 | B2 |
6940214 | Komiya et al. | Sep 2005 | B1 |
6943500 | LeChevalier | Sep 2005 | B2 |
6947022 | McCartney | Sep 2005 | B2 |
6954194 | Matsumoto et al. | Oct 2005 | B2 |
6956547 | Bae et al. | Oct 2005 | B2 |
6970149 | Chung et al. | Nov 2005 | B2 |
6975142 | Azami et al. | Dec 2005 | B2 |
6975332 | Arnold et al. | Dec 2005 | B2 |
6995510 | Murakami et al. | Feb 2006 | B2 |
6995519 | Arnold et al. | Feb 2006 | B2 |
7023408 | Chen et al. | Apr 2006 | B2 |
7027015 | Booth, Jr. et al. | Apr 2006 | B2 |
7027078 | Reihl | Apr 2006 | B2 |
7034793 | Sekiya et al. | Apr 2006 | B2 |
7038392 | Libsch et al. | May 2006 | B2 |
7057359 | Hung et al. | Jun 2006 | B2 |
7057588 | Asano et al. | Jun 2006 | B2 |
7061451 | Kimura | Jun 2006 | B2 |
7064733 | Cok et al. | Jun 2006 | B2 |
7071932 | Libsch et al. | Jul 2006 | B2 |
7088051 | Cok | Aug 2006 | B1 |
7088052 | Kimura | Aug 2006 | B2 |
7102378 | Kuo et al. | Sep 2006 | B2 |
7106285 | Naugler | Sep 2006 | B2 |
7112820 | Change et al. | Sep 2006 | B2 |
7113864 | Smith et al. | Sep 2006 | B2 |
7116058 | Lo et al. | Oct 2006 | B2 |
7119493 | Fryer et al. | Oct 2006 | B2 |
7122835 | Ikeda et al. | Oct 2006 | B1 |
7127380 | Iverson et al. | Oct 2006 | B1 |
7129914 | Knapp et al. | Oct 2006 | B2 |
7164417 | Cok | Jan 2007 | B2 |
7193589 | Yoshida et al. | Mar 2007 | B2 |
7224332 | Cok | May 2007 | B2 |
7227519 | Kawase et al. | Jun 2007 | B1 |
7245277 | Ishizuka | Jul 2007 | B2 |
7248236 | Nathan et al. | Jul 2007 | B2 |
7259737 | Ono et al. | Aug 2007 | B2 |
7262753 | Tanghe et al. | Aug 2007 | B2 |
7274363 | Ishizuka et al. | Sep 2007 | B2 |
7310092 | Imamura | Dec 2007 | B2 |
7315295 | Kimura | Jan 2008 | B2 |
7317434 | Lan et al. | Jan 2008 | B2 |
7321348 | Cok et al. | Jan 2008 | B2 |
7327357 | Jeong | Feb 2008 | B2 |
7333077 | Koyama et al. | Feb 2008 | B2 |
7339560 | Sun | Mar 2008 | B2 |
7343243 | Smith et al. | Mar 2008 | B2 |
7355574 | Leon et al. | Apr 2008 | B1 |
7358941 | Ono et al. | Apr 2008 | B2 |
7368868 | Sakamoto | May 2008 | B2 |
7411571 | Huh | Aug 2008 | B2 |
7414600 | Nathan et al. | Aug 2008 | B2 |
7423617 | Giraldo et al. | Sep 2008 | B2 |
7466166 | Date et al. | Dec 2008 | B2 |
7474285 | Kimura | Jan 2009 | B2 |
7495501 | Iwabuchi et al. | Feb 2009 | B2 |
7502000 | Yuki et al. | Mar 2009 | B2 |
7515124 | Yaguma et al. | Apr 2009 | B2 |
7528812 | Tsuge et al. | May 2009 | B2 |
7535449 | Miyazawa | May 2009 | B2 |
7554512 | Steer | Jun 2009 | B2 |
7569849 | Nathan et al. | Aug 2009 | B2 |
7576718 | Miyazawa | Aug 2009 | B2 |
7580012 | Kim et al. | Aug 2009 | B2 |
7589707 | Chou | Sep 2009 | B2 |
7595776 | Hashimoto et al. | Sep 2009 | B2 |
7604718 | Zhang et al. | Oct 2009 | B2 |
7609239 | Chang | Oct 2009 | B2 |
7612745 | Yumoto et al. | Nov 2009 | B2 |
7619594 | Hu | Nov 2009 | B2 |
7619597 | Nathan et al. | Nov 2009 | B2 |
7633470 | Kane | Dec 2009 | B2 |
7639211 | Miyazawa | Dec 2009 | B2 |
7656370 | Schneider et al. | Feb 2010 | B2 |
7683899 | Hirakata et al. | Mar 2010 | B2 |
7688289 | Abe et al. | Mar 2010 | B2 |
7760162 | Miyazawa | Jul 2010 | B2 |
7800558 | Routley et al. | Sep 2010 | B2 |
7808008 | Miyake | Oct 2010 | B2 |
7847764 | Cok et al. | Dec 2010 | B2 |
7859492 | Kohno | Dec 2010 | B2 |
7859520 | Kimura | Dec 2010 | B2 |
7868859 | Tomida et al. | Jan 2011 | B2 |
7876294 | Sasaki et al. | Jan 2011 | B2 |
7889159 | Nathan et al. | Feb 2011 | B2 |
7903127 | Kwon | Mar 2011 | B2 |
7920116 | Woo et al. | Apr 2011 | B2 |
7924249 | Nathan et al. | Apr 2011 | B2 |
7932883 | Klompenhouwer et al. | Apr 2011 | B2 |
7944414 | Shirasaki et al. | May 2011 | B2 |
7969390 | Yoshida | Jun 2011 | B2 |
7978170 | Park et al. | Jul 2011 | B2 |
7978187 | Nathan et al. | Jul 2011 | B2 |
7989392 | Crockett et al. | Aug 2011 | B2 |
7994712 | Sung et al. | Aug 2011 | B2 |
7995008 | Miwa | Aug 2011 | B2 |
8026876 | Nathan et al. | Sep 2011 | B2 |
8049420 | Tamura et al. | Nov 2011 | B2 |
8063852 | Kwak et al. | Nov 2011 | B2 |
8077123 | Naugler, Jr. | Dec 2011 | B2 |
8115707 | Nathan et al. | Feb 2012 | B2 |
8144081 | Miyazawa | Mar 2012 | B2 |
8159007 | Bama et al. | Apr 2012 | B2 |
8223177 | Nathan et al. | Jul 2012 | B2 |
8232939 | Nathan et al. | Jul 2012 | B2 |
8242979 | Anzai et al. | Aug 2012 | B2 |
8259044 | Nathan et al. | Sep 2012 | B2 |
8264431 | Bulovic et al. | Sep 2012 | B2 |
8279143 | Nathan et al. | Oct 2012 | B2 |
8319712 | Nathan et al. | Nov 2012 | B2 |
8339386 | Leon et al. | Dec 2012 | B2 |
20010002703 | Koyama | Jun 2001 | A1 |
20010009283 | Arao et al. | Jul 2001 | A1 |
20010024181 | Kubota | Sep 2001 | A1 |
20010024186 | Kane et al. | Sep 2001 | A1 |
20010026257 | Kimura | Oct 2001 | A1 |
20010030323 | Ikeda | Oct 2001 | A1 |
20010040541 | Yoneda et al. | Nov 2001 | A1 |
20010043173 | Troutman | Nov 2001 | A1 |
20010045929 | Prache | Nov 2001 | A1 |
20010052606 | Sempel et al. | Dec 2001 | A1 |
20010052940 | Hagihara et al. | Dec 2001 | A1 |
20020000576 | Inukai | Jan 2002 | A1 |
20020011796 | Koyama | Jan 2002 | A1 |
20020011799 | Kimura | Jan 2002 | A1 |
20020012057 | Kimura | Jan 2002 | A1 |
20020014851 | Tai et al. | Feb 2002 | A1 |
20020018034 | Ohki et al. | Feb 2002 | A1 |
20020030190 | Ohtani et al. | Mar 2002 | A1 |
20020047565 | Nara et al. | Apr 2002 | A1 |
20020052086 | Maeda | May 2002 | A1 |
20020067134 | Kawashima | Jun 2002 | A1 |
20020080108 | Wang | Jun 2002 | A1 |
20020084463 | Sanford et al. | Jul 2002 | A1 |
20020101172 | Bu | Aug 2002 | A1 |
20020105279 | Kimura | Aug 2002 | A1 |
20020117722 | Osada et al. | Aug 2002 | A1 |
20020122308 | Ikeda | Sep 2002 | A1 |
20020140712 | Ouchi et al. | Oct 2002 | A1 |
20020158587 | Komiya | Oct 2002 | A1 |
20020158666 | Azami et al. | Oct 2002 | A1 |
20020158823 | Zavracky et al. | Oct 2002 | A1 |
20020167474 | Everitt | Nov 2002 | A1 |
20020171613 | Goto et al. | Nov 2002 | A1 |
20020180369 | Koyama | Dec 2002 | A1 |
20020180721 | Kimura et al. | Dec 2002 | A1 |
20020186214 | Siwinski | Dec 2002 | A1 |
20020190924 | Asano et al. | Dec 2002 | A1 |
20020190971 | Nakamura et al. | Dec 2002 | A1 |
20020195967 | Kim et al. | Dec 2002 | A1 |
20020195968 | Sanford et al. | Dec 2002 | A1 |
20030001828 | Asano | Jan 2003 | A1 |
20030020413 | Oomura | Jan 2003 | A1 |
20030030603 | Shimoda | Feb 2003 | A1 |
20030043088 | Booth et al. | Mar 2003 | A1 |
20030057895 | Kimura | Mar 2003 | A1 |
20030058226 | Bertram et al. | Mar 2003 | A1 |
20030062524 | Kimura | Apr 2003 | A1 |
20030062844 | Miyazawa | Apr 2003 | A1 |
20030063081 | Kimura et al. | Apr 2003 | A1 |
20030071821 | Sundahl et al. | Apr 2003 | A1 |
20030076048 | Rutherford | Apr 2003 | A1 |
20030090445 | Chen et al. | May 2003 | A1 |
20030090447 | Kimura | May 2003 | A1 |
20030090481 | Kimura | May 2003 | A1 |
20030095087 | Libsch | May 2003 | A1 |
20030098829 | Chen et al. | May 2003 | A1 |
20030107560 | Yumoto et al. | Jun 2003 | A1 |
20030107561 | Uchino et al. | Jun 2003 | A1 |
20030111966 | Mikami et al. | Jun 2003 | A1 |
20030112205 | Yamada | Jun 2003 | A1 |
20030112208 | Okabe et al. | Jun 2003 | A1 |
20030112231 | Kurumisawa | Jun 2003 | A1 |
20030117348 | Knapp et al. | Jun 2003 | A1 |
20030122474 | Lee | Jul 2003 | A1 |
20030122745 | Miyazawa | Jul 2003 | A1 |
20030122747 | Shannon et al. | Jul 2003 | A1 |
20030122813 | Ishizuki et al. | Jul 2003 | A1 |
20030128199 | Kimura | Jul 2003 | A1 |
20030142088 | LeChevalier | Jul 2003 | A1 |
20030151569 | Lee et al. | Aug 2003 | A1 |
20030156101 | Le Chevalier | Aug 2003 | A1 |
20030156104 | Morita | Aug 2003 | A1 |
20030169241 | LeChevalier | Sep 2003 | A1 |
20030169247 | Kawabe et al. | Sep 2003 | A1 |
20030174152 | Noguchi | Sep 2003 | A1 |
20030179626 | Sanford et al. | Sep 2003 | A1 |
20030189535 | Matsumoto et al. | Oct 2003 | A1 |
20030197663 | Lee et al. | Oct 2003 | A1 |
20030210256 | Mori et al. | Nov 2003 | A1 |
20030214465 | Kimura | Nov 2003 | A1 |
20030230141 | Gilmour et al. | Dec 2003 | A1 |
20030230980 | Forrest et al. | Dec 2003 | A1 |
20030231148 | Lin et al. | Dec 2003 | A1 |
20040004589 | Shih | Jan 2004 | A1 |
20040032382 | Cok et al. | Feb 2004 | A1 |
20040041750 | Abe | Mar 2004 | A1 |
20040066357 | Kawasaki | Apr 2004 | A1 |
20040070557 | Asano et al. | Apr 2004 | A1 |
20040070565 | Nayar et al. | Apr 2004 | A1 |
20040090186 | Kanauchi et al. | May 2004 | A1 |
20040090400 | Yoo | May 2004 | A1 |
20040095297 | Libsch et al. | May 2004 | A1 |
20040100427 | Miyazawa | May 2004 | A1 |
20040108518 | Jo | Jun 2004 | A1 |
20040129933 | Nathan et al. | Jul 2004 | A1 |
20040130516 | Nathan et al. | Jul 2004 | A1 |
20040135749 | Kondakov et al. | Jul 2004 | A1 |
20040145547 | Oh | Jul 2004 | A1 |
20040150592 | Mizukoshi et al. | Aug 2004 | A1 |
20040150594 | Koyama et al. | Aug 2004 | A1 |
20040150595 | Kasai | Aug 2004 | A1 |
20040155841 | Kasai | Aug 2004 | A1 |
20040171619 | Barkoczy et al. | Sep 2004 | A1 |
20040174347 | Sun et al. | Sep 2004 | A1 |
20040174349 | Libsch | Sep 2004 | A1 |
20040174354 | Ono et al. | Sep 2004 | A1 |
20040178743 | Miller et al. | Sep 2004 | A1 |
20040183759 | Stevenson et al. | Sep 2004 | A1 |
20040189627 | Shirasaki et al. | Sep 2004 | A1 |
20040196275 | Hattori | Oct 2004 | A1 |
20040207615 | Yumoto | Oct 2004 | A1 |
20040239596 | Ono et al. | Dec 2004 | A1 |
20040239696 | Okabe | Dec 2004 | A1 |
20040251844 | Hashido et al. | Dec 2004 | A1 |
20040252085 | Miyagawa | Dec 2004 | A1 |
20040252089 | Ono et al. | Dec 2004 | A1 |
20040256617 | Yamada et al. | Dec 2004 | A1 |
20040257313 | Kawashima et al. | Dec 2004 | A1 |
20040257353 | Imamura et al. | Dec 2004 | A1 |
20040257355 | Naugler | Dec 2004 | A1 |
20040263437 | Hattori | Dec 2004 | A1 |
20040263444 | Kimura | Dec 2004 | A1 |
20040263445 | Inukai et al. | Dec 2004 | A1 |
20040263541 | Takeuchi et al. | Dec 2004 | A1 |
20050007355 | Miura | Jan 2005 | A1 |
20050007357 | Yamashita et al. | Jan 2005 | A1 |
20050017650 | Fryer et al. | Jan 2005 | A1 |
20050024081 | Kuo et al. | Feb 2005 | A1 |
20050024393 | Kondo et al. | Feb 2005 | A1 |
20050030267 | Tanghe et al. | Feb 2005 | A1 |
20050052379 | Waterman | Mar 2005 | A1 |
20050057459 | Miyazawa | Mar 2005 | A1 |
20050057580 | Yamano et al. | Mar 2005 | A1 |
20050067970 | Libsch et al. | Mar 2005 | A1 |
20050067971 | Kane | Mar 2005 | A1 |
20050068270 | Awakura | Mar 2005 | A1 |
20050068275 | Kane | Mar 2005 | A1 |
20050073264 | Matsumoto | Apr 2005 | A1 |
20050083270 | Miyazawa | Apr 2005 | A1 |
20050083323 | Suzuki et al. | Apr 2005 | A1 |
20050088103 | Kageyama et al. | Apr 2005 | A1 |
20050110420 | Arnold et al. | May 2005 | A1 |
20050110727 | Shin | May 2005 | A1 |
20050110807 | Chang | May 2005 | A1 |
20050123193 | Lamberg et al. | Jun 2005 | A1 |
20050140598 | Kim et al. | Jun 2005 | A1 |
20050140610 | Smith et al. | Jun 2005 | A1 |
20050145891 | Abe | Jul 2005 | A1 |
20050156831 | Yamazaki et al. | Jul 2005 | A1 |
20050168416 | Hashimoto et al. | Aug 2005 | A1 |
20050179626 | Yuki et al. | Aug 2005 | A1 |
20050179628 | Kimura | Aug 2005 | A1 |
20050185200 | Tobol | Aug 2005 | A1 |
20050200575 | Kim et al. | Sep 2005 | A1 |
20050206590 | Sasaki et al. | Sep 2005 | A1 |
20050219184 | Zehner et al. | Oct 2005 | A1 |
20050219188 | Kawabe et al. | Oct 2005 | A1 |
20050243037 | Eom et al. | Nov 2005 | A1 |
20050248515 | Naugler et al. | Nov 2005 | A1 |
20050258867 | Miyazawa | Nov 2005 | A1 |
20050269959 | Uchino et al. | Dec 2005 | A1 |
20050269960 | Ono et al. | Dec 2005 | A1 |
20050280615 | Cok et al. | Dec 2005 | A1 |
20050280766 | Johnson et al. | Dec 2005 | A1 |
20050285822 | Reddy et al. | Dec 2005 | A1 |
20050285825 | Eom et al. | Dec 2005 | A1 |
20060001613 | Routley et al. | Jan 2006 | A1 |
20060007072 | Choi et al. | Jan 2006 | A1 |
20060012310 | Chen et al. | Jan 2006 | A1 |
20060012311 | Ogawa | Jan 2006 | A1 |
20060027807 | Nathan et al. | Feb 2006 | A1 |
20060030084 | Young | Feb 2006 | A1 |
20060038750 | Inoue et al. | Feb 2006 | A1 |
20060038758 | Routley et al. | Feb 2006 | A1 |
20060038762 | Chou | Feb 2006 | A1 |
20060066533 | Sato et al. | Mar 2006 | A1 |
20060077077 | Kwon | Apr 2006 | A1 |
20060077135 | Cok et al. | Apr 2006 | A1 |
20060082523 | Guo et al. | Apr 2006 | A1 |
20060092185 | Jo et al. | May 2006 | A1 |
20060097628 | Suh et al. | May 2006 | A1 |
20060097631 | Lee | May 2006 | A1 |
20060103611 | Choi | May 2006 | A1 |
20060125408 | Nathan et al. | Jun 2006 | A1 |
20060139253 | Choi et al. | Jun 2006 | A1 |
20060145964 | Park et al. | Jul 2006 | A1 |
20060149493 | Sambandan et al. | Jul 2006 | A1 |
20060170623 | Naugler, Jr. et al. | Aug 2006 | A1 |
20060176250 | Nathan et al. | Aug 2006 | A1 |
20060191178 | Sempel et al. | Aug 2006 | A1 |
20060208961 | Nathan et al. | Sep 2006 | A1 |
20060209012 | Hagood, IV | Sep 2006 | A1 |
20060221009 | Miwa | Oct 2006 | A1 |
20060227082 | Ogata et al. | Oct 2006 | A1 |
20060232522 | Roy et al. | Oct 2006 | A1 |
20060244391 | Shishido et al. | Nov 2006 | A1 |
20060244697 | Lee et al. | Nov 2006 | A1 |
20060261841 | Fish | Nov 2006 | A1 |
20060273997 | Nathan et al. | Dec 2006 | A1 |
20060284801 | Yoon et al. | Dec 2006 | A1 |
20060284895 | Marcu et al. | Dec 2006 | A1 |
20060290614 | Nathan et al. | Dec 2006 | A1 |
20060290618 | Goto | Dec 2006 | A1 |
20070001937 | Park et al. | Jan 2007 | A1 |
20070001939 | Hashimoto et al. | Jan 2007 | A1 |
20070001945 | Yoshida et al. | Jan 2007 | A1 |
20070008268 | Park et al. | Jan 2007 | A1 |
20070008297 | Bassetti | Jan 2007 | A1 |
20070035489 | Lee | Feb 2007 | A1 |
20070035707 | Margulis | Feb 2007 | A1 |
20070040773 | Lee et al. | Feb 2007 | A1 |
20070057873 | Uchino et al. | Mar 2007 | A1 |
20070063932 | Nathan et al. | Mar 2007 | A1 |
20070069998 | Naugler et al. | Mar 2007 | A1 |
20070075727 | Nakano et al. | Apr 2007 | A1 |
20070076226 | Klompenhouwer et al. | Apr 2007 | A1 |
20070080905 | Takahara | Apr 2007 | A1 |
20070080906 | Tanabe | Apr 2007 | A1 |
20070080908 | Nathan et al. | Apr 2007 | A1 |
20070085801 | Park et al. | Apr 2007 | A1 |
20070097038 | Yamazaki et al. | May 2007 | A1 |
20070097041 | Park et al. | May 2007 | A1 |
20070103419 | Uchino et al. | May 2007 | A1 |
20070109232 | Yamamoto et al. | May 2007 | A1 |
20070115221 | Buchhauser et al. | May 2007 | A1 |
20070128583 | Miyazawa | Jun 2007 | A1 |
20070164941 | Park et al. | Jul 2007 | A1 |
20070182671 | Nathan et al. | Aug 2007 | A1 |
20070236430 | Fish | Oct 2007 | A1 |
20070236517 | Kimpe | Oct 2007 | A1 |
20070241999 | Lin | Oct 2007 | A1 |
20070242008 | Cummings | Oct 2007 | A1 |
20070273294 | Nagayama | Nov 2007 | A1 |
20070285359 | Ono | Dec 2007 | A1 |
20070290958 | Cok | Dec 2007 | A1 |
20070296672 | Kim et al. | Dec 2007 | A1 |
20080001525 | Chao et al. | Jan 2008 | A1 |
20080001544 | Murakami et al. | Jan 2008 | A1 |
20080036708 | Shirasaki | Feb 2008 | A1 |
20080042942 | Takahashi | Feb 2008 | A1 |
20080042948 | Yamashita et al. | Feb 2008 | A1 |
20080043044 | Woo et al. | Feb 2008 | A1 |
20080048951 | Naugler, Jr. et al. | Feb 2008 | A1 |
20080055134 | Li et al. | Mar 2008 | A1 |
20080055209 | Cok | Mar 2008 | A1 |
20080074360 | Lu et al. | Mar 2008 | A1 |
20080074413 | Ogura | Mar 2008 | A1 |
20080088549 | Nathan et al. | Apr 2008 | A1 |
20080088648 | Nathan et al. | Apr 2008 | A1 |
20080094426 | Kimpe | Apr 2008 | A1 |
20080117144 | Nakano et al. | May 2008 | A1 |
20080122819 | Cho et al. | May 2008 | A1 |
20080150847 | Kim et al. | Jun 2008 | A1 |
20080228562 | Smith et al. | Sep 2008 | A1 |
20080231558 | Naugler | Sep 2008 | A1 |
20080231562 | Kwon | Sep 2008 | A1 |
20080231641 | Miyashita | Sep 2008 | A1 |
20080252571 | Hente et al. | Oct 2008 | A1 |
20080290805 | Yamada et al. | Nov 2008 | A1 |
20080297055 | Miyake et al. | Dec 2008 | A1 |
20090009459 | Miyashita | Jan 2009 | A1 |
20090015532 | Katayama et al. | Jan 2009 | A1 |
20090058772 | Lee | Mar 2009 | A1 |
20090121988 | Amo et al. | May 2009 | A1 |
20090146926 | Sung et al. | Jun 2009 | A1 |
20090153459 | Han et al. | Jun 2009 | A9 |
20090160743 | Tomida et al. | Jun 2009 | A1 |
20090174628 | Wang et al. | Jul 2009 | A1 |
20090184901 | Kwon | Jul 2009 | A1 |
20090195483 | Naugler, Jr. et al. | Aug 2009 | A1 |
20090201281 | Routley et al. | Aug 2009 | A1 |
20090213046 | Nam | Aug 2009 | A1 |
20090251486 | Sakakibara et al. | Oct 2009 | A1 |
20090278777 | Wang et al. | Nov 2009 | A1 |
20100004891 | Ahlers et al. | Jan 2010 | A1 |
20100026725 | Smith | Feb 2010 | A1 |
20100039451 | Jung | Feb 2010 | A1 |
20100039453 | Nathan et al. | Feb 2010 | A1 |
20100060911 | Marcu et al. | Mar 2010 | A1 |
20100165002 | Ahn | Jul 2010 | A1 |
20100194670 | Cok | Aug 2010 | A1 |
20100207920 | Chaji et al. | Aug 2010 | A1 |
20100207960 | Kimpe et al. | Aug 2010 | A1 |
20100225634 | Levey et al. | Sep 2010 | A1 |
20100251295 | Amento et al. | Sep 2010 | A1 |
20100269889 | Reinhold et al. | Oct 2010 | A1 |
20100277400 | Jeong | Nov 2010 | A1 |
20100315319 | Cok et al. | Dec 2010 | A1 |
20110069051 | Nakamura et al. | Mar 2011 | A1 |
20110069089 | Kopf et al. | Mar 2011 | A1 |
20110074750 | Leon et al. | Mar 2011 | A1 |
20110149166 | Botzas et al. | Jun 2011 | A1 |
20110227964 | Chaji et al. | Sep 2011 | A1 |
20110293480 | Mueller | Dec 2011 | A1 |
20120019506 | Hekstra et al. | Jan 2012 | A1 |
20120056558 | Toshiya et al. | Mar 2012 | A1 |
20120062565 | Fuchs et al. | Mar 2012 | A1 |
20120299978 | Chaji | Nov 2012 | A1 |
20130027381 | Nathan et al. | Jan 2013 | A1 |
20130057595 | Nathan et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
729652 | Jun 1997 | AU |
764896 | Dec 2001 | AU |
1 294 034 | Jan 1992 | CA |
2 109 951 | Nov 1992 | CA |
2 249 592 | Jul 1998 | CA |
2 303 302 | Mar 1999 | CA |
2 368 386 | Sep 1999 | CA |
2 242 720 | Jan 2000 | CA |
2 354 018 | Jun 2000 | CA |
2 432 530 | Jul 2002 | CA |
2 436 451 | Aug 2002 | CA |
2 438 577 | Aug 2002 | CA |
2 507 276 | Aug 2002 | CA |
2 463 653 | Jan 2004 | CA |
2 498 136 | Mar 2004 | CA |
2 522 396 | Nov 2004 | CA |
2 438 363 | Feb 2005 | CA |
2 443 206 | Mar 2005 | CA |
2 519 097 | Mar 2005 | CA |
2 472 671 | Dec 2005 | CA |
2 523 841 | Jan 2006 | CA |
2 567 076 | Jan 2006 | CA |
2 526 782 | Apr 2006 | CA |
2 495 726 | Jul 2006 | CA |
2 557 713 | Nov 2006 | CA |
2 651 893 | Nov 2007 | CA |
2 550 102 | Apr 2008 | CA |
2 672 590 | Oct 2009 | CA |
1381032 | Nov 2002 | CN |
1448908 | Oct 2003 | CN |
1760945 | Apr 2006 | CN |
202006007613 | Sep 2006 | DE |
0 158 366 | Oct 1985 | EP |
0 478 186 | Apr 1992 | EP |
1 028 471 | Aug 2000 | EP |
1 111 577 | Jun 2001 | EP |
1 130 565 | Sep 2001 | EP |
1 194 013 | Apr 2002 | EP |
1 321 922 | Jun 2003 | EP |
1 335 430 | Aug 2003 | EP |
1 372 136 | Dec 2003 | EP |
1 381 019 | Jan 2004 | EP |
1 418 566 | May 2004 | EP |
1 429 312 | Jun 2004 | EP |
1 439 520 | Jul 2004 | EP |
1 465 143 | Oct 2004 | EP |
1 469 448 | Oct 2004 | EP |
1 473 689 | Nov 2004 | EP |
1 517 290 | Mar 2005 | EP |
1 521 203 | Apr 2005 | EP |
1 594 347 | Nov 2005 | EP |
1 784 055 | May 2007 | EP |
1 879 169 | Jan 2008 | EP |
1 879 172 | Jan 2008 | EP |
2 389 951 | Dec 2003 | GB |
2 399 935 | Sep 2004 | GB |
2 460 018 | Nov 2009 | GB |
1272298 | Oct 1989 | JP |
4-042619 | Feb 1992 | JP |
6-314977 | Nov 1994 | JP |
8-340243 | Dec 1996 | JP |
09-090405 | Apr 1997 | JP |
10-254410 | Sep 1998 | JP |
11-202295 | Jul 1999 | JP |
11-219146 | Aug 1999 | JP |
11 231805 | Aug 1999 | JP |
11-282419 | Oct 1999 | JP |
2000-056847 | Feb 2000 | JP |
2000-81607 | Mar 2000 | JP |
2001-134217 | May 2001 | JP |
2001-195014 | Jul 2001 | JP |
2002-055654 | Feb 2002 | JP |
2002-91376 | Mar 2002 | JP |
2002-514320 | May 2002 | JP |
2002-278513 | Sep 2002 | JP |
2002-333862 | Nov 2002 | JP |
2003-076331 | Mar 2003 | JP |
2003-124519 | Apr 2003 | JP |
2003-177709 | Jun 2003 | JP |
2003-271095 | Sep 2003 | JP |
2003-308046 | Oct 2003 | JP |
2003-317944 | Nov 2003 | JP |
2004-054188 | Feb 2004 | JP |
2004-145197 | May 2004 | JP |
2004-287345 | Oct 2004 | JP |
2005-057217 | Mar 2005 | JP |
2005-099715 | Apr 2005 | JP |
2005-338819 | Dec 2005 | JP |
2007316356 | Dec 2007 | JP |
2008083085 | Apr 2008 | JP |
4-158570 | Oct 2008 | JP |
2009522621 | Jun 2009 | JP |
2004-0100887 | Dec 2004 | KR |
342486 | Oct 1998 | TW |
473622 | Jan 2002 | TW |
485337 | May 2002 | TW |
502233 | Sep 2002 | TW |
538650 | Jun 2003 | TW |
569173 | Jan 2004 | TW |
1221268 | Sep 2004 | TW |
1223092 | Nov 2004 | TW |
200526065 | Aug 2005 | TW |
1239501 | Sep 2005 | TW |
200727247 | Jul 2007 | TW |
WO 9811554 | Mar 1998 | WO |
WO 9848403 | Oct 1998 | WO |
WO 9948079 | Sep 1999 | WO |
WO 0106484 | Jan 2001 | WO |
WO 0127910 | Apr 2001 | WO |
WO 0163587 | Aug 2001 | WO |
WO 02067327 | Aug 2002 | WO |
WO 03001496 | Jan 2003 | WO |
WO 03034389 | Apr 2003 | WO |
WO 03058594 | Jul 2003 | WO |
WO 03063124 | Jul 2003 | WO |
WO 03075256 | Sep 2003 | WO |
WO 03077231 | Sep 2003 | WO |
WO 2004003877 | Jan 2004 | WO |
WO 2004015668 | Feb 2004 | WO |
WO 2004025615 | Mar 2004 | WO |
WO 2004034364 | Apr 2004 | WO |
WO 2004047058 | Jun 2004 | WO |
WO 2004104975 | Dec 2004 | WO |
WO 2005022498 | Mar 2005 | WO |
WO 2005022500 | Mar 2005 | WO |
WO 2005029455 | Mar 2005 | WO |
WO 2005029456 | Mar 2005 | WO |
WO 2005055185 | Jun 2005 | WO |
WO 2005055186 | Jun 2005 | WO |
WO 2005069267 | Jul 2005 | WO |
WO 2005122121 | Dec 2005 | WO |
WO 2006000101 | Jan 2006 | WO |
WO 2006053424 | May 2006 | WO |
WO 2006063448 | Jun 2006 | WO |
WO 2006084360 | Aug 2006 | WO |
WO 2006128069 | Nov 2006 | WO |
WO 2007003877 | Jan 2007 | WO |
WO 2007079572 | Jul 2007 | WO |
WO 2007120849 | Oct 2007 | WO |
WO 2009055920 | May 2009 | WO |
WO 2009059028 | May 2009 | WO |
WO 2009127065 | Oct 2009 | WO |
WO 2010023270 | Mar 2010 | WO |
WO 2010066030 | Jun 2010 | WO |
WO 2010120733 | Oct 2010 | WO |
WO 2011041224 | Apr 2011 | WO |
Entry |
---|
Extended European Search Report mailed Apr. 27, 2011 issued during prosecution of European patent application No. EP 09733076.5 (13 pages). |
Extended European Search Report mailed Aug. 6, 2013, issued in European Patent Application No. 11739485.8 (14 pages). |
Extended European Search Report mailed Jul. 11, 2012 which issued in corresponding European Patent Application No. EP 11191641.7 (14 pages). |
Extended European Search Report mailed Nov. 29, 2012, issued in European Patent Application No. EP 11168677.0 (13 page). |
Extended European Search Report mailed Nov. 8, 2011 issued in European Patent Application No. 11175223.4 (8 pages). |
Extended European Search Report, Application No. 06752777.0, dated Dec. 6, 2010 (21 pages). |
Extended European Search Report, Application No. 09732338.0, dated May 24, 2011 (8 pages). |
Fan et al. “LTPS—TFT Pixel Circuit Compensation for TFT Threshold Voltage Shift and IR-Drop on the Power Line for Amolded Displays” 5 pages copyright 2012. |
Fossum, Eric R.. “Active Pixel Sensors: Are CCD's Dinosaurs?” SPIE: Symposium on Electronic Imaging. Feb. 1, 1993 (13 pages). |
Goh et al., “A New a-Si:H Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes”, IEEE Electron Device Letters, Vol, 24, No. 9, Sep. 2003, pp. 583-585. |
International Preliminary Report on Patentability for International Application No. PCT/CA2005/001007 dated Oct. 16, 2006, 4 pages. |
International Search Report corresponding to co-pending International Patent Application Serial No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (4 pages). |
International Search Report corresponding to International Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (6 pages). |
International Search Report corresponding to International Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (2 pages). |
International Search Report corresponding to International Application No. PCT/IB2010/055541 filed Dec. 1, 2010, dated May 26, 2011; 5 pages. |
International Search Report corresponding to International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages). |
Lee, Wonbok: “Thermal Management in Microprocessor Chips and Dynamic Backlight Control in Liquid Crystal Displays”, Ph.D. Dissertation, University of Southern California (124 pages). |
Ma e y et al: “Organic Light-Emitting Diode/Thin Film Transistor Integration for foldable Displays” Conference record of the 1997 International display research conference and international workshops on LCD technology and emissive technology. Toronto, Sep. 15-19, 1997 (6 pages). |
Matsueda y et al.: “35.1: 2.5-in. AMOLED with Integrated 6-bit Gamma Compensated Digital Data Driver”; dated May 2004 (4 pages). |
Mendes E., et al. “A High Resolution Switch-Current Memory Base Cell.” IEEE: Circuits and Systems. vol. 2, Aug. 1999 (pp. 718-721). |
Nathan A. et al., “Thin Film imaging technology on glass and plastic” ICM 2000, proceedings of the 12 international conference on microelectronics, dated Oct. 31, 2001 (4 pages). |
Nathan et al., “Amorphous Silicon Thin Film Transistor Circuit Integration for Organic LED Displays on Glass and Plastic”, IEEE Journal of Solid-State Circuits, vol. 39, No. 9, Sep. 2004, pp. 1477-1486. |
Nathan et al.: “Backplane Requirements for active Matrix Organic Light Emitting Diode Displays,”; dated 2006 (16 pages). |
Nathan et al.: “Call for papers second international workshop on compact thin-film transistor (TFT) modeling for circuit simulation”; dated Sep. 2009 (1 page). |
Nathan et al.: “Driving schemes for a-Si and LTPS AMOLED displays”; dated Dec. 2005 (11 pages). |
Nathan et al.: “Invited Paper: a -Si for AMOLED—Meeting the Performance and Cost Demands of Display Applications (Cell Phone to HDTV)”; dated Jun. 2006 (4 pages). |
Office Action in Japanese patent application No. JP2006-527247 dated Mar. 15, 2010. (8 pages). |
Office Action in Japanese patent application No. JP2007-545796 dated Sep. 5, 2011. (8 pages). |
Ono et al., “Shared Pixel Compensation Circuit for AM-OLED Displays,” Proceedings of the 9th Asian Symposium on Information Display (ASID), pp. 462-465, New Delhi, dated Oct. 8-12, 2006 (4 pages). |
Partial European Search Report mailed Mar. 20, 2012 which issued in corresponding European Patent Application No. EP 11191641.7 (8 pages). |
Partial European Search Report mailed Sep. 22, 2011 corresponding to European Patent Application No. EP 11168677.0 (5 pages). |
Philipp: “Charge transfer sensing” Sensor Review, vol. 19, No. 2, Dec. 31, 1999, 10 pages. |
Office Action in Japanese Patent Application No. JP2012-542651, dated Jul. 30, 2015 (6 pages). |
Ahnood et al.: “Effect of threshold voltage instability on field effect mobility in thin film transistors deduced from constant current measurements”; dated Aug. 2009. |
Alexander et al.: “Pixel circuits and drive schemes for glass and elastic AMOLED displays”; dated Jul. 2005 (9 pages). |
Alexander et al.: “Unique Electrical Measurement Technology for Compensation, Inspection, and Process Diagnostics of AMOLED HDTV”; dated May 2010 (4 pages). |
Ashtiani et al.: “AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation”; dated Mar. 2007 (4 pages). |
Chaji et al.: “A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays”; dated Jul. 2008 (5 pages). |
Chaji et al.: “A fast settling current driver based on the CCII for AMOLED displays”; dated Dec. 2009 (6 pages). |
Chaji et al.: “A Low-Cost Stable Amorphous Silicon AMOLED Display with Full V˜T- and V˜O˜L˜E˜D Shift Compensation”; dated May 2007 (4 pages). |
Chaji et al.: “A low-power driving scheme for a-Si:H active-matrix organic light-emitting diode displays”; dated Jun. 2005 (4 pages). |
Chaji et al.: “A low-power high-performance digital circuit for deep submicron technologies”; dated Jun. 2005 (4 pages). |
Chaji et al.: “A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs”; dated Oct. 2005 (3 pages). |
Chaji et al.: “A Novel Driving Scheme and Pixel Circuit for AMOLED Displays”; dated Jun. 2006 (4 pages). |
Chaji et al.: “A Novel Driving Scheme for High Resolution Large-area a-Si:H AMOLED displays”; dated Aug. 2005 (3 pages). |
Chaji et al.: “A Stable Voltage-Programmed Pixel Circuit for a-Si:H AMOLED Displays”; dated Dec. 2006 (12 pages). |
Chaji et al.: “A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays”; dated Sep. 2007. |
Chaji et al.: “An Enhanced and Simplified Optical Feedback Pixel Circuit for AMOLED Displays”; dated Oct. 2006. |
Chaji et al.: “Compensation technique for DC and transient instability of thin film transistor circuits for large-area devices”; dated Aug. 2008. |
Chaji et al.: “Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel”; dated Apr. 2005 (2 pages). |
Chaji et al.: “Dynamic-effect compensating technique for stable a-Si:H AMOLED displays”; dated Aug. 2005 (4 pages). |
Chaji et al.: “Electrical Compensation of OLED Luminance Degradation”; dated Dec. 2007 (3 pages). |
Chaji et al.: “eUTDSP: a design study of a new VLIW-based DSP architecture”; dated May 2003 (4 pages). |
Chaji et al.: “Fast and Offset-Leakage Insensitive Current-Mode Line Driver for Active Matrix Displays and Sensors”; dated Feb. 2009 (8 pages). |
Chaji et al.: “High Speed Low Power Adder Design With a New Logic Style: Pseudo Dynamic Logic (SDL)”; dated Oct. 2001 (4 pages). |
Chaji et al.: “High-precision, fast current source for large-area current-programmed a-Si flat panels”; dated Sep. 2006 (4 pages). |
Chaji et al.: “Low-Cost AMOLED Television with IGNIS Compensating Technology”; dated May 2008 (4 pages). |
Chaji et al.: “Low-Cost Stable a-Si:H AMOLED Display for Portable Applications”; dated Jun. 2006 (4 pages). |
Chaji et al.: “Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display”; dated Jun. 2008 (5 pages). |
Chaji et al.: “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging”; dated Nov. 2008 (3 pages). |
Chaji et al.: “Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays”; dated May 2007 (6 pages). |
Chaji et al.: “Pseudo dynamic logic (SDL): a high-speed and low-power dynamic logic family”; dated 2002 (4 pages). |
Chaji et al.: “Stable a-Si:H circuits based on short-term stress stability of amorphous silicon thin film transistors”; dated May 2006 (4 pages). |
Chaji et al.: “Stable Pixel Circuit for Small-Area High-Resolution a-Si:H AMOLED Displays”; dated Oct. 2008 (6 pages). |
Chaji et al.: “Stable RGBW AMOLED display with OLED degradation compensation using electrical feedback”; dated Feb. 2010 (2 pages). |
Chaji et al.: “Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays”; dated 2008 (177 pages). |
Chapter 3: Color Spaces“Keith Jack: “Video Demystified:”A Handbook for the Digital Engineer” 2001, Referex ORD-0000-00-00, USA EP040425529, ISBN: 1-878707-56-6, pp. 32-33. |
Chapter 8: Alternative Flat Panel Display 1-25 Technologies; Willem den Boer: “Active Matrix Liquid Crystal Display: Fundamentals and Applications” 2005, Referex ORD-0000-00-00 U.K.; XP040426102 ISBN: 0-7506-7813-5, pp. 206-209, p. 208. |
European Partial Search Report corresponding to European Patent Application Serial No. 12156251.6, European Patent Office, dated May 30, 2012 (7 pages). |
European Patent Office Communication in European Application No. 05821114 dated Jan. 11, 2013 (9 pages). |
European Patent Office Communication with Supplemental European Search Report for EP Application No. 07701644.2, dated Aug. 18, 2009 (12 pages). |
Extended European Search Report corresponding to Application EP 10175764, dated Oct. 18, 2010 (2 pages). |
European Search Report corresponding to European Patent Application Serial No. 12156251.6, European Patent Office, dated Oct. 12, 2012 (18 pages). |
European Search Report corresponding to European Patent Application No. 10829593.2, European Patent Office, dated May 17, 2013 (7 pages). |
European Search Report for Application No. 11175225.9 dated Nov. 4, 2011 (9 pages). |
European Search Report for EP Application No. EP 10166143, dated Sep. 3, 2010 (2 pages). |
European Search Report for European Application No. EP 011122313 dated Sep. 14, 2005 (4 pages). |
European Search Report for European Application No. EP 04786661 dated Mar. 9, 2009. |
European Search Report for European Application No. EP 05 80 7905 dated Apr. 2, 2009 (5 pages). |
European Search Report for European Application No. EP 05 82 1114 dated Mar. 27, 2009 (2 pages). |
European Search Report for European Application No. EP 05759141 dated Oct. 30, 2009 (2 pages). |
European Search Report for European Application No. EP 05819617 dated Jan. 30, 2009. |
European Search Report for European Application No. EP 06 70 5133 dated Jul. 18, 2008. |
European Search Report for European Application No. EP 06721798 dated Nov. 12, 2009 (2 pages). |
Extended European Search Report for European Application No. EP 07 70 1644 dated Aug. 5, 2009. |
European Search Report for European Application No. EP 07710608.6 dated Mar. 19, 2010 (7 pages). |
European Search Report for European Application No. EP 07719579 dated May 20, 2009. |
European Search Report for European Application No. EP 07815784 dated Jul. 20, 2010 (2 pages). |
European Search Report for European Application No. EP 11739485.8-1904 dated Aug. 6, 2013, (14 pages). |
European Search Report for European Application No. PCT/CA2006/000177 dated Jun. 2, 2006. |
European Search Report, Application No. 10834294.0-1903, dated Apr. 8, 2013 (9 pages). |
European Supplementary Search Report corresponding to European Application No. EP 04786662 dated Jan. 19, 2007 (2 pages). |
European Supplementary Search Report for EP 09 80 2309, dated May 8, 2011 (14 pages). |
European Supplementary Search Report for European Application No. 09831339.8 dated Mar. 26, 2012 (11 pages). |
Extended European Search Report corresponding to European Patent Application No. 12174465.0, European Patent Office, dated Sep. 7, 2012 (9 pages). |
International Search Report corresponding to International Patent Application No. PCT/IB2010/002898 Canadian Intellectual Property Office, dated Jul. 28, 2009 (5 pages). |
International Search Report for Application No. PCT/IB2010/055486, Dated Apr. 19, 2011, 5 pages. |
International Search Report for International Application No. PCT/CA2005/001007 dated Oct. 18, 2005. |
International Search Report for International Application No. PCT/CA2007/000652 dated Jul. 25, 2007. |
International Search Report for International Application No. PCT/CA2004/001741 dated Feb. 21, 2005. |
International Search Report for International Application No. PCT/CA2005/001844 dated Mar. 28, 2006 (2 pages). |
International Search Report for International Application No. PCT/CA2007/000013 dated May 7, 2007. |
International Search Report for International Application No. PCT/CA2006/000941 dated Oct. 3, 2006 (2 pages). |
International Search Report for International Application No. PCT/CA2009/001769 dated Apr. 8, 2010. |
International Search Report issued in International Application No. PCT/CA2009/001049, mailed Dec. 7, 2009 (4 pages). |
International Search Report mailed Dec. 3, 2002, issued in International Patent Application No. PCT/JP02/09668 (4 pages). |
International Search Report mailed Jul. 30, 2009 for International Application No. PCT/CA2009/000501 (4 pages). |
International Search Report mailed Mar. 21, 2006 issued in International Patent Application No. PCT/CA2005/001897 (2 pages). |
International Search Report, International Application PCT/IB2012/052651, 5 pages, dated Sep. 11, 2012. |
International Search Report, PCT/IB2011/051103, dated Jul. 8, 2011, 3 pages. |
International Search Report, PCT/IB2012/052372, mailed Sep. 12, 2012 (3 pages). |
International Searching Authority Search Report, PCT/IB2010/055481, dated Apr. 7, 2011 (3 pages). |
International Searching Authority Written Opinion, PCT/IB2010/055481, dated Apr. 7, 2011 (6 pages). |
International Written Opinion corresponding to co-pending International Patent Application Serial No. PCT/IB2013/054251, Canadian Intellectual Property Office, dated Sep. 11, 2013; (5 pages). |
International Written Opinion corresponding to International Application No. PCT/CA2004/001742, Canadian Patent Office, dated Feb. 21, 2005 (5 pages). |
International Written Opinion corresponding to International Application No. PCT/IB2011/055135, Canadian Patent Office, dated Apr. 16, 2012 (5 pages). |
International Written Opinion for Application No. PCT/IB2010/055486, Dated Apr. 19, 2011, 8 pages. |
International Written Opinion for International Application No. PCT/CA2009/000501 mailed Jul. 30, 2009 (6 pages). |
International Written Opinion mailed Mar. 21, 2006 corresponding to International Patent Application No. PCT/CA2005/001897 (4 pages). |
International Written Opinion of the International Searching Authority corresponding to International Application No. PCT/IB2011/050502, dated Jun. 27, 2011 (7 pages). |
International Written Opinion of the International Searching Authority corresponding to International Application No. PCT/IB2010/055541, dated May 26, 2011; 6 pages. |
International Written Opinion, International Application PCT/IB2012/052651, 6 pages, dated Sep. 11, 2012. |
International Written Opinion, PCT/IB2011/051103, dated Jul. 8, 2011, 6 pages. |
International Written Opinion, PCT/IB2012/052372, mailed Sep. 12, 2012 (6 pages). |
Jafarabadiashtiani et al.: “A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback”; dated 2005 (4 pages). |
Kanicki, J., et al. “Amorphous Silicon Thin-Film Transistors Based Active-Matrix Organic Light-Emitting Displays.” Asia Display: International Display Workshops, Sep. 2001 (pp. 315-318). |
Karim, K. S., et al. “Amorphous Silicon Active Pixel Sensor Readout Circuit for Digital Imaging.” IEEE: Transactions on Electron Devices. vol. 50, No. 1, Jan. 2003 (pp. 200-208). |
Lee et al.: “Ambipolar Thin-Film Transistors Fabricated by PECVD Nanocrystalline Silicon”; dated May 2006 (6 pages). |
Rafati et al.: “Comparison of a 17 b multiplier in Dual-rail domino and in Dual-rail D L (D L) logic styles”; dated 2002 (4 pages). |
Safavian et al.: “3-TFT active pixel sensor with correlated double sampling readout circuit for real-time medical x-ray imaging”; dated Jun. 2006 (4 pages). |
Safavian et al.: “A novel current scaling active pixel sensor with correlated double sampling readout circuit for real time medical x-ray imaging”; dated May 2007 (7 pages). |
Safavian et al.: “A novel hybrid active-passive pixel with correlated double sampling CMOS readout circuit for medical x-ray imaging”; dated May 2008 (4 pages). |
Safavian et al.: “Self-compensated a-Si:H detector with current-mode readout circuit for digital X-ray fluoroscopy”; dated Aug. 2005 (4 pages). |
Safavian et al.: “TFT active image sensor with current-mode readout circuit for digital x-ray fluoroscopy [5969D-82]”; dated Sep. 2005 (9 pages). |
Safavian et al.: “Three-TFT image sensor for real-time digital X-ray imaging”; dated Feb. 2, 2006 (2 pages). |
Search Report for Taiwan Invention Patent Application No. 093128894 dated May 1, 2012. (1 page). |
Search Report for Taiwan Invention Patent Application No. 94144535 dated Nov. 1, 2012. (1 page). |
Spindler et al., System Considerations for RGBW OLED Displays, Journal of the SID 14/1, 2006, pp. 37-48. |
Stewart M. et al., “Polysilicon TFT technology for active matrix OLED displays” IEEE transactions on electron devices, vol. 48, No. 5 May 2001 (7 pages). |
Vygranenko et al.: “Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition”; dated 2009. |
Wang et al.: “Indium oxides by reactive ion beam assisted evaporation: From material study to device application”; dated Mar. 2009 (6 pages). |
Written Opinion corresponding to International Patent Application No. PCT/IB2010/002898, Canadian Intellectual Property Office, dated Mar. 30, 2011 (8 pages). |
Written Opinion for International Application No. PCT/CA2009/001769 dated Apr. 8, 2010 (8 pages). |
Yi He et al., “Current-Source a-Si:H Thin Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays”, IEEE Electron Device Letters, vol. 21, No. 12, Dec. 2000, pp. 590-592. |
Yu, Jennifer: “Improve OLED Technology for Display”, Ph.D. Dissertation, Massachusetts Institute of Technology, Sep. 2008 (151 pages). |
Number | Date | Country | |
---|---|---|---|
20140043316 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12958938 | Dec 2010 | US |
Child | 14058623 | US |