SYSTEM AND PROCESS FOR DOUBLE-BLOW MOLDING A HEAT RESISTANT AND BIAXIALLY STRETCHED PLASTIC CONTAINER

Abstract
A primary blow mold for biaxially stretch blow molding a primary container in a double-blow molding process includes a mold cavity with a cylindrical upper molding portion and a bottom molding portion. The bottom molding portion has a sidewall; a concave transition wall where the transverse cross section of the mold cavity is the largest; and a bottom wall transvers to a central axis. In embodiments, the sidewall is not cylindrical and is an extension of the cylindrical upper molding portion, that forms a molding surface centered on the central axis; and the transverse cross section of the sidewall, measured in a plan perpendicular to the central axis, is the largest at the transition with the concave transition wall. The bottom molding portion defines an offset distance. In embodiments, an offset distance is at least 2 mm, and a slope angle of the sidewall is not less than 3°.
Description
TECHNICAL FIELD

The present invention relates to the technical field of double-blow molding a heat resistant and biaxially stretched plastic container, and in particular a heat resistant and biaxially stretched PET container. The invention more particularly relates to a double-blow molding technique, including the use of a novel primary blow mold design, for manufacturing a heat resistant and biaxially stretched plastic container, and more particularly a heat resistant and biaxially stretched plastic container having a base that is movable to absorb vacuum pressures inside the container, without unwanted deformation of other portions of the container. The heat resistant container can be used for example in hot fill applications, or can be sterilized, notably by carrying out a pasteurization process or a retort process.


PRIOR ART

Plastic containers and in particular PET (Polyethylene Terephtalate) containers are now widely used for storing various commodities, and in particular food products, liquids, etc . . . In particular, manufacturers and fillers, as well as consumers, have recognized that PET containers are lightweight, not expensive, can be manufactured in large quantities and can be recycled.


Biaxially stretched plastic containers, and in particular PET containers, manufactured by conventional ISBM techniques (Injection Stretch Blow Molding) using cold blowing molds, i.e. blowing molds at ambient temperature or less, are not heat resistant, and can be easily deformed by the heat. For example biaxially stretched containers are easily deformed at high temperature above the Tg (temperature of glass transition) of their plastic material, i.e. above 70° C. for PET.


There are however many applications wherein heat resistant plastic containers are needed, like for example hot fill applications, or containers submitted to sterilization process, and in particular to a pasteurization process or a retort process.


In a hot filling process, the plastic container is filled with a commodity such as for example a liquid, while the commodity is at an elevated temperature. For example for liquids, such as juices, the temperature is typically between 68° C. and 96° C., and is usually around 85° C. When packaged in this manner, the high temperature of the commodity also sterilizes the container at the time of filling. The bottling industry refers to this process as hot filling, and containers designed to withstand the process are commonly referred as hot-fill containers.


In a hot filling process, after being hot-filled, the container is capped and allowed to reside at generally the filling temperature for a few minutes and is then actively cooled prior to transferring to labeling, packaging, and shipping operations.


When the product in the container is liquid or semi-liquid, this cooling reduces the volume of the product inside the container. This product shrinkage phenomenon results in the creation of a vacuum within the container. If not controlled or otherwise accommodated, these vacuum pressures can result in unwanted deformations of the container, which leads to either an aesthetically unacceptable container or one that is unstable.


Typically, container manufacturers accommodate vacuum pressures by incorporating deformable structures.


Plastic hot-fill containers incorporating such deformable structures are for example described in the following publications: U.S. Pat. Nos. 5,005,716; 5,503,283; 6,595,380; 6,896,147; 6,942,116; and 7,017,763, and PCT application WO 2001/014759. In these publications, a deformable structure to at least partially compensating the volume reduction that occurs after capping and during cooling of a hot-filled product, is located in the base of the container. More particularly, in PCT application WO 2011/014759, the movable container base includes a central push-up portion and is designed to move up to accommodate internal vacuum pressures.


Plastic hot-fill containers are also described for example in the following publications: European patent application EP 1 947 016 and U.S. Pat. Nos. 5,222,615; 5,762,221; 6,044,996; 6,662,961; 6,830,158. In these publications, a deformable portion, to at least partially compensating the volume reduction that occurs after capping and during cooling of a hot-filled product, is located in the shoulder part of the container.


Plastic hot-fill containers are also described for example in the following publications: U.S. Pat. Nos. 5,092,475; 5,141,121; 5,178,289; 5,303,834; 5,704,504; 6,585,125; 6,698,606; 5,392,937; 5,407,086; 5,598,941; 5,971,184; 6,554,146; 6,796,450. In these publications, the deformable portions, to at least partially compensating the volume reduction that occurs after capping and during cooling of a hot-filled product, are located in the sidewall of the main body of the container, and are commonly referred as vacuum panels. In this case, the volume compensation can be advantageously increased.


The hot filling process is acceptable for commodities having a high acid content, but is not generally acceptable for non-high acid content commodities. For non-high acid commodities, pasteurization and retort are generally the preferred sterilization processes.


Pasteurization and retort are both processes for cooking or sterilizing the contents of a container after filling. Both processes include the heating of the contents of the container to a specified temperature, usually above approximately 70° C. for a specified length of time (for example 20-60 minutes). Retort differs from pasteurization in that retort uses higher temperatures to sterilize the container and cook its contents. Retort also generally applies elevated air pressure externally to the container to counteract pressure inside the container.


Containers manufacturers have developed different thermal processes for imparting heat resistance to biaxially stretched plastic containers, and in particular to biaxially stretched PET containers.


A first method commonly referred as “heat setting”, includes blow molding a plastic preform, and for example a PET preform, against a mold heated to a temperature higher than Tg, and more particularly higher than the target heat resistance temperature value, to obtain a biaxially stretched container of higher crystallinity, and holding the biaxially stretched container against the heated mold for a certain length of time to remove residual strain produced by the biaxial stretching. For example, for a PET container, the blow mold temperature is approximately between 120° C. and 130° C., and the heat set holding time of the container is typically a few seconds


Conventional heat set PET containers have typically a heat resistant up to a maximum of approximately 100° C., and cannot be used for containing a content which is heat treated at temperatures much higher than 100° C.


Another thermal process to impart heat resistance to a biaxially stretched plastic container is commonly referred in the industry as the “double-blow process” or “double-blow heat set” process. When molding a plastic container with this process, an injection molded preform is conveyed through a preheating oven to produce a desired temperature profile within the preform. When at the proper temperature, the preform exits the oven and is transferred to a primary heated blow mold, wherein the preform is blown to form a primary biaxially stretched container. The volume of this primary biaxially stretched container is typically larger than the volume of the final container, and is for example sized to be 15%-25% larger than the final container volume.


In a first variant, the primary biaxially stretched container is transferred to a heat treating oven. In this oven, the applied heat causes the primary biaxially stretched container to undergo a significant degree of shrinkage, which significantly releases orientation stresses in the container, and will allow the container to be re-blown.


In a second variant, this shrinking step is performed inside the primary blow mold by holding the primary biaxially stretched container inside the heated primary blow mold for a sufficient length of time to obtain the required shrinkage.


For both variants, after this shrinking step performed by heat treatment, a secondary shrunk container of smaller volume is obtained. The volume of this secondary shrunk container is slightly smaller than the volume of the final container.


The secondary shrunk container is transferred inside a secondary heated blow mold and is re-blown inside said secondary heated blow mold, in order to form a final biaxially stretched and heat resistant plastic container. This biaxially stretched and heat resistant plastic container is then removed from the secondary heated blow mold.


The biaxially stretched containers issued from a double-blow process are generally heat resistant to higher temperatures than the aforesaid conventional single blow heat setting process.


One drawback of the aforesaid known double-blow process is that with the conventional designs of known primary blow molds, the shrinking of the primary biaxially stretched container leads to a shrinking of the container base that typically reduces too much the transverse size of the base, which in turn leads to a significant stretching of the base of the shrunk secondary container during the second blow molding step. This stretching of the base during the second blowing blow molding step induces significant residual stresses in the final container base, which therefore can still provoke a detrimental residual shrinking of the base of the final container when hot filled.


More particularly, when the container has a movable base to accommodate internal vacuum pressures, like for example the deformable container base described in aforesaid PCT application WO 2011/014759, this residual shrinking of the base of the final container when hot filled detrimentally deforms said movable base, in such a way that said base is moved up to an extent that deteriorates the mobility of the base and can render this base not operative and useless for accommodating internal vacuum pressures.


OBJECTIVE OF THE INVENTION

A main objective of the invention is to improve the so-called double-blow process for making a heat resistant and biaxially stretched plastic container.


A more particular objective of the invention is to solve the aforesaid drawback of residual shrinking of the base of a heat resistant and biaxially stretched plastic container that is manufactured by carrying out a double-blow process.


A more particular objective of the invention is to solve the aforesaid drawback of residual shrinking of the base of a heat resistant and biaxially stretched plastic container, that is manufactured by carrying out a double-blow process, and that includes a deformable base to accommodate internal vacuum pressures.


SUMMARY OF THE INVENTION

To achieve all or part of these objectives, the invention firstly relates to a primary blow mold as defined in claim 1 and adapted to be used as first blow mold in a double-blow molding process for blow molding a primary biaxially stretched plastic container.


Pursuant to the invention, the novel profile of the bottom molding portion of the mold cavity of said primary blow mold significantly improves the deformation, induced by shrinking, of the base of a primary biaxially stretched plastic container blow molded in said primary blow mold. More particularly thanks to this novel profile of the bottom molding portion of the mold cavity, the deformation, induced by shrinking, of the base of a primary biaxially stretched plastic container blow molded in said primary blow mold leads to the formation of an improved shrunk base, whose dimension and geometry can be very close to the dimension and geometry of the mold cavity of a secondary blow mold of the double-blow process, and can thus significantly reduces the stretching of this shrunk base inside the secondary mold. The base of the final container is thus less subjected to a shrinking phenomenon when hot filled and is more stable.


The invention also relates to a primary blow mold as defined in claim 15 and adapted to be used as first blow mold in a double-blow molding process for blow molding a primary biaxially stretched plastic container.


Another object of the invention is a system for double-blow molding heat resistant containers as defined in claim 15.


Another object of the invention is a method for double-blow molding a heat resistant container, as defined in claim 16.





BRIEF DESCRIPTION OF THE DRAWINGS

The technical characteristics and advantages of the invention will appear more clearly on reading the following detailed description of several embodiments of the invention, which detailed description is made by way of non-exhaustive and non-limiting examples, and with reference to the appended drawings, as follows:



FIG. 1 shows an example of a biaxially stretch blow molded and heat resistant container obtained by double-blow molding the preform of FIG. 2.



FIG. 2 is a longitudinal cross section view of a wide-mouth preform.



FIG. 3 is a longitudinal cross section view of a first variant of a primary blow mold of the invention.



FIG. 4 is a longitudinal cross section view of the preform of FIG. 2 positioned in the primary blow mold of FIG. 3.



FIG. 5 shows an example of primary container that has been obtained by biaxially stretch blow molding the preform of FIG. 2 in the primary blow mold of FIG. 3.



FIG. 6 shows an example of secondary shrunk container that is obtained after shrinkage of the primary biaxially stretch blow molded container of FIG. 5.



FIGS. 7 to 9 are longitudinal cross section views of a secondary blow mold showing the successive molding steps.



FIG. 10 is a longitudinal cross section view shows of the final container of FIG. 1 showing the mobility of the movable base thereof.



FIG. 11 is a longitudinal cross section view of a second variant of a primary blow mold of the invention.



FIG. 12 shows an example of secondary shrunk container that is obtained after shrinkage of a primary container, which primary container has been obtained by biaxially stretch blow molding the preform of FIG. 2 in the primary blow mold of FIG. 11.



FIG. 13 is a longitudinal cross section view of a third variant of a primary blow mold of the invention.



FIG. 14 shows an example of secondary shrunk container that is obtained after shrinkage of a primary container, which primary container has been obtained by biaxially stretch blow molding the preform of FIG. 2 in the primary blow mold of FIG. 13.





DETAILED DESCRIPTION

Some preferred embodiments of the invention are discussed in detail below. While specific exemplary embodiments are discussed, it should be understood that this is done for illustration purpose only. A person skilled in the art will recognize that other container designs or container dimensions can be used without parting from the spirit and scope of the invention.


Referring now to the drawings, FIG. 1 illustrates an example of a wide-mouth heat resistant biaxially stretched plastic container 1, which has been obtained by double-blow molding the wide-mouth preform P of FIG. 2.


The preform P of FIG. 2 can be manufactured by the well-known technique of injection molding.


The container 1 of FIG. 1 has a biaxially stretched blow-molded hollow body 10 defining a central vertical axis A, and a cylindrical neck finish 11 comprising a top pouring opening 11a and a neck support ring 11b. The biaxially stretched blow-molded hollow body 10 comprises a vertical sidewall 100 extended by a transverse bottom wall 101 forming the base of the container.


The sidewall 100 comprises annular reinforcing ribs 100a.


The bottom wall 101 is designed to be movable inwardly to absorb vacuum pressures inside the container 1 when hot filled.


Within the scope of the invention, the plastic container 1 and preform P can be made of any thermoplastic material that can be processed by using injection stretched blow molded techniques. Preferred thermoplastic materials useful for the invention are polyesters, and in particular polyethylene terephtalate (PET), homo or copolymers thereof, and blend thereof. Other materials suitable for use in the present invention are polypropylene (PP), polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC) and polylactic acid (PLA), polyethylene-furanoate (PEF), homo or copolymers thereof, and blend thereof.


Although the preform P and container 1 shown in the appended drawings are monolayer, the invention is however not limited to monolayer preforms and monolayer containers, but encompasses also multilayer preforms and multilayer containers.


Within the scope of the invention, the biaxially stretched blow-molded hollow body 10 of the container 1 can have any shape and any size. The hollow body 10 can be cylindrical, or can have other shape in transverse cross section (i.e. in a plan perpendicular to central vertical axis A), including notably oval shape and any polygonal shape, including notably square shape, rectangular shape, hexagonal shape, octagonal shape. The hollow body 10 of the container does not necessarily comprise ribs 100a.


The invention is also not limited to the manufacture of heat resistant plastic containers having a wide-mouth, but encompasses also the manufacture of a heat resistant plastic container having a smaller mouth.


In the particular example of FIG. 1, the central axis A of the container body 10 is also the central axis of the cylindrical neck finish 11. In other variants within the scope of the invention, the central axis of the cylindrical neck finish 11 is not necessarily the same than the vertical central axis A of the stretched blow-molded hollow body 10, but can be offset from said vertical central axis A. The central axis of the cylindrical neck finish 11 is also not necessarily parallel to the vertical central axis A of the stretched blow-molded hollow body 10, and the neck finish is not necessarily cylindrical.


Referring now to FIG. 3, the primary blow mold M1 used as first blow mold in the double-blow molding process comprises a mold cavity MC1 having a vertical central axis A′, and defined by the inner molding surfaces of a pair of mold halves 2A and 2B and by a protruding centering portion 30 of a base mold 3.


Mold halves 2A and 2B are knowingly provided with heating means (not shown), for example electric heating means, in order to heat up their inner molding surfaces to a set up and controlled temperature. The base mold 30 is also knowingly provided with heating means (not shown), for example heating means using a heating fluid like oil, in order to heat up the protruding centering portion 30 to a set up and controlled temperature that can be different than or equal to the temperature of the mold halves 2A, 2B.


The mold cavity MC1 of the primary blow mold M1 comprises an upper cylindrical molding portion 21 and a bottom molding portion 20, that is used for molding the bottom portion of a primary biaxially stretched container C1 shown on FIG. 5, including the base of said container C1.


Said bottom molding portion 20 of the mold cavity is formed of a non cylindrical sidewall 200, a concave transition wall 201 of radius R where the transverse cross section of the mold cavity MC1, measured in a plan perpendicular to the central axis A′, is the largest, and a bottom wall 202 transverse to the central axis A′. This bottom wall is formed by a bottom part of each mold half 2A, 2B.


The non cylindrical sidewall 200 is an extension of the cylindrical upper molding portion 21 and is forming a lateral molding surface centered on central axis A′.


The value of the radius R of the concave transition wall 201 is not limiting the invention. Preferably however, but not necessarily, this concave radius R can be at least 4 mm, and more particularly at least 7 mm.


In the particular example of FIG. 3, the bottom wall 202 is a flat wall perpendicular to the axis A′, but within the scope of the invention bottom wall 202 could have any other profile, and is not necessarily flat.


The sidewall 200 is transitioning on its whole periphery to the bottom wall 202 along said concave transition wall 201 of radius R.


The transverse cross section of the non-cylindrical sidewall 200, measured in a plan perpendicular to the central axis A′, is the largest at the transition point 200b/201a with the concave transition wall 201.


More particularly the non-cylindrical sidewall 200 does not comprise any cylindrical portion.


More particularly, in this example, the transverse cross section of the sidewall 200, in a plan perpendicular to central axis A′, is increasing continuously from its upper end 200a towards its lower end 200b at the transition with said concave transition wall 201.


More particularly, in the particular example of FIG. 3, the non cylindrical sidewall is constituted by a lower main portion 200c and a small upper transitional portion 200d that is slightly convex. The lower main portion 200c is transitioning to the cylindrical upper molding portion 21 along said upper convex transitional portion 200d.


The profile in longitudinal cross section of the lower main portion 200c of the sidewall 200, in a plan parallel to the central axis A′, is substantially flat.


In this example, the lower main portion 200c of the sidewall 200 can form a molding surface of revolution centered on the central axis A′, and in particular a frustroconical molding surface having its apex oriented upwardly. The lower main portion 200c of the sidewall 200 can also form a pyramidal molding surface of any polygonal transverse cross section, including notably square shape, rectangular shape, hexagonal shape and octagonal shape.


More particularly, the non-cylindrical sidewall 200 is smoothly transitioning to the concave transition wall 201 without any convex radius at the transition between the sidewall portion 200 and the concave transition wall 201.


In the particular example of FIG. 3, but not necessarily, the concave transition wall 201 is smoothly transitioning to the bottom wall 202 without any convex radius at the transition between the concave transition wall 201 and the bottom wall 202.


In reference to FIG. 3, the offset distance doffset is the distance measured, in a plan perpendicular to the central axis A′, between:

    • the upper end 200a of the non-cylindrical sidewall 200 at the transition with the upper cylindrical molding portion 21, and
    • an outermost point of the concave transition wall 201 where the transverse cross section (dmax) of the bottom molding portion 20, measured in a plan perpendicular to the central axis A′, is the largest.


Pursuant to the invention, the offset distance doffset, is at least 2 mm, preferably at least 3 mm and more preferably at least 4 mm.


The offset distance doffset depends notably on the volume of the final container 1. The larger the final container is, the larger the offset distance doffset offset will be. By way of examples only:

    • for a 370 ml container 1, the offset distance doffset offset can be 2 mm;
    • for a 720 ml container 1, the offset distance doffset can be 4 mm.


The slope angle of the non-cylindrical sidewall 200 is defined as the angle α measured, in a longitudinal cross section plan parallel to the central axis A′, between the central axis A′ and a straight line L including the upper end 200a and the lower end 200b of the non-cylindrical sidewall 200.


In the particular example of FIGS. 3 and 4, the angle α is also substantially equal to the conical angle of the lower main portion 200c of the sidewall 200.


Pursuant to the invention, this slope angle α is not less than 3°, and preferably not less than 5°.


The slope angle α is depending on the volume of final container 1. By way of examples only:

    • for a 370 ml container 1, the slope angle α can be 18°;
    • for a 720 ml container 1, the slope angle α can be 5°.


The height H of the non-cylindrical sidewall 200 is depending notably on the volume of final container 1, and is in most cases at least 10 mm, and more preferably at least 25 mm.


The protruding centering portion 30 of the mold base 30 protrudes through the bottom wall 202 inside the mold cavity MC1 and forms a dome inside the mold cavity MC1. The apex 300 of this dome shape protruding centering portion 30 is the top part thereof.


The maximum diameter D of this protruding centering portion 30 is preferably not more than 27 mm, preferably not more than 25 mm, and even more preferably not more than 20 mm.


More particularly, the protruding centering portion 30 protrudes inside the mold cavity MC1 through said bottom wall 202, in such way that the protruding centering portion 30 and the bottom parts of said mold halves 2A, 2B form a bottom molding surface of the mold cavity MC1 for molding the base of a primary container.


The heat resistant biaxially stretched plastic container 1 of FIG. 1 can be manufactured by double-blow molding the preform P of FIG. 2 as follows.


The preform P is conveyed through a preheating oven to knowingly produce a desired temperature profile within the preform. For a PET preform P, the pre-heating of the preform P can be for example between 90° C. and 120° C.


When at the proper temperature, the preform P is transferred to the primary blow mold M1 whose mold cavity MC1 is being heated above the Tg of the preform.


By way of example only, for a PET preform P, the two mold halves 2A, 2B of the primary blow mold M1 can be heated up to a temperature of at least about 140° C., and preferably around 180° C.; the base mold 3 of the primary blow mold M1 can be heated up to a temperature around 120° C.-130° C. to avoid sticking problem when removing the container from the mold cavity.


In reference to FIG. 4, the preform P is positioned in the blow mold M1 in such a way that it is supported and retained in the blow mold M1 by its neck support ring 11b and that the body 10A (below the neck support ring 11b) of the preform P is inside the mold cavity MC1.


Once positioned in the heated primary blow mold M1, the body 10A of the preform P is knowingly biaxially stretch blow-molded (in axial direction and in a radial direction) inside the cavity mold MC1 in order to form a primary biaxially stretched container C1 shown on FIG. 5, and having a body 10B of higher volume and shaped by the inner heated molding surface of the mold cavity MC1. The neck finish 11 is used for maintaining the preform in the blow mold M, and is thus not stretched. This biaxially stretch blow-molding can be knowingly achieved by means of a stretch rod and air introduced under pressure inside the preform P.


As the heating temperature (120° C.-130° C.) of the base mold 3 is lower than the heating temperature (around 180° C.) of the pair of mold halves 2A, 2B, the portion of the container base molded by the protruding centering portion 30 of the base mold 3 has a lower crystallinity than the remaining portion of the container base molded by the bottom parts of the pair of mold halves 2A, 2B forming the bottom wall 202 of the mold cavity MC1. By using a protruding centering portion 30 having a small transverse dimension (D) of not more than 27 mm, the portion of the base having the lowest crystallinity is advantageously reduced, which reduces the stretching of the base of the final container 1, and improves the resistance to shrinkage of the base of the final container 1 when hot filled


Once the primary biaxially stretched container C1 is formed, it is subsequently submitted to a shrinking step.


This shrinking step is performed inside the primary blow mold M1, by releasing the air pressure inside the container C1, and by holding the primary biaxially stretched container C1 inside the heated primary blow mold M1, for a sufficient length of time (for example not more than 1 s) to obtain the required shrinkage.


A secondary shrunk container C2 of slightly smaller volume (shown on FIG. 6) is thus obtained. The shrinkage releases orientation stresses in the container C2. Then the shrunk container C2 is transferred, without being reheated to secondary blow mold M2 (FIG. 7) for being re-blown.


In another variant, the shrinking step can be performed outside the primary blow mold M1. In such a case the primary biaxially stretched container C1 is transferred to a heat treating oven. In this oven, the applied heat causes the primary biaxially stretched container C1 to undergo a significant degree of shrinkage, and form the secondary shrunk container C2.


The volume of this secondary shrunk container is slightly smaller than the volume of the final container, and the secondary shrunk container C2 is knowingly re-blown in the secondary blow mold M2, in order to form the heat resistant biaxially stretched container 1 of slightly larger volume that is shown on FIG. 1.


Referring to FIG. 7, the secondary blow mold M2, used as second blow mold in the double-blow molding process, comprises mold a cavity MC2 having a vertical central axis A″, and defined by the inner molding surfaces of a pair of mold halves 4A and 4B and by the top face 50 of a base mold 5, including a protruding centering portion 50a similar to the protruding centering portion 30 of first blow mold M1.


Mold halves 4A and 4B are knowingly provided with heating means (not shown), for example for example heating means using a heating fluid like oil, in order to heat up their inner molding surfaces to a set up and controlled temperature. The base mold 5 is also knowingly provided with heating means (not shown), for example heating means using a heating fluid like oil, in order to heat up the top face 50 of a base mold 5, including the protruding centering portion 50a, to a set up and controlled temperature that can be different than or equal to the temperature of the mold halves 4A, 4B.


By way of example only, for a PET container, the two mold halves 4A, 4B of the secondary blow mold M2 can be heated up to a temperature of at least about 140° C., and are preferably heated up to a temperature around 140° C.; the base mold 5 of the secondary blow mold M2 can be heated up to a temperature around 120° C.-130° C.


In the particular example of FIGS. 7 to 9, the base mold 50 is movable axially between a lower position shown on FIG. 7 and an upper position shown on FIG. 9.


During the second blow molding step inside the secondary blow mold


M2, in first sub-step, the secondary shrunk container C2 is first re-blown inside the mold cavity MC2, with the base mold 50 in the lower position, in order to mold the intermediate container C3 of FIG. 8. Then, in second sub-step, the base mold 50 is actuated to move from the lower position of FIG. 8 to the upper position of FIG. 9, in order to box inwardly the base of the intermediate container C3, and form the base 101 of the final container 1.


In reference to FIG. 10, the base 101 of the final container is deformable inwardly (phantom lines) to absorb the vacuum pressure inside the container, when hot filled, without causing unwanted deformation in the other portions of the container 1.


More particularly, this base 101 comprises a heel portion 1010 forming a contact ring for stably supporting the container 1 in upright position on a flat surface. The base 101 also comprises a central movable wall portion 1011 surrounded by the heel portion and comprising a movable wall 1011a and a central push-up portion 1011b.


In this variant, the movable wall 1011a forms substantially a frustroconical wall.


When the container 1 is removed from the secondary mold M2, the apex of said substantially frustroconical wall 1011a is oriented towards the outside of the container 1 (see FIG. 10/straight line).


Once the container is hot filled with a hot liquid or the like, then is capped and cooled down, the vacuum pressure generated inside the container 1 make the movable wall portion 1011 move up towards the inside of the container, in order to automatically reduce the container volume and accommodate such vacuum pressure, without unwanted deformation of the container body 10. In this particular embodiment, the frustroconical wall 1011a is inverted under the vacuum pressures, the apex (FIG. 10/phantom line) of the deformed frustroconical wall 1011a being oriented towards the inside of the container 1.


The biaxially stretched container 1 issued from said double-blow process is heat resistant and can be hot filled without unwanted deformation or can be sterilized in pasteurization process or in retort process, without significant shrinking of the container 1.


It has to be outlined that thanks to the novel profile of the bottom molding portion 20 of the primary mold cavity MC1, the deformation, induced by shrinking, of the base of aforesaid primary biaxially stretched plastic container C1, leads to the formation of an improved shrunk base (container C2), whose dimension and geometry can be close to the dimension and geometry of the mold cavity MC2 of a secondary blow mold M2 of the double-blow process, and can thus significantly reduces the stretching of this shrunk base inside the secondary mold M2. The base 101 of the final container 1 is thus less subjected to a shrinking phenomenon when hot filled and is more stable, and in the best case does not shrink at all.


More particularly, in case of a container 1 having a movable base to accommodate vacuum pressure when hot filled, if said base 101 was shrinking too much, such a significant shrinkage would already move up the movable wall 1011a and central push-up portion 1011b in the final container (before being hot filled), thereby dramatically, and in the worst case loosing, the capability of said movable base to absorb vacuum. With the invention, the low shrinkage of the base 101 of the container 1 allows to maintain a movable wall 1011 substantially in its position of FIG. 10 (straight lines) with the apex of substantially frustroconical wall 1011a being oriented towards the outside of the container 1. The capability of the movable base 101 to accommodate vacuum pressure inside the container 1 when hot filled is thus fully preserved.



FIG. 11 shows another example of primary mold M1, wherein the bottom wall 202 is not flat, but is frustroconical with its apex oriented upwardly towards the inside of the mold cavity MC1. FIG. 13 shows the secondary shrunk container C2 that is obtained from a primary container that has been biaxially stretch blow molded in the mold cavity MC1 of FIG. 12, after shrinkage of said primary container. The shrinkage of the base of primary container forms a substantially flat base in the secondary shrunk container C2.



FIG. 13 shows another example of primary mold M1, wherein the sidewall 200 is not flat in longitudinal cross section but is slightly convex. FIG. 15 shows the secondary shrunk container C2 that is obtained from a primary container that has been biaxially stretch blow molded in the mold cavity MC1 of FIG. 13, after shrinkage of said primary container.

Claims
  • 1.-26. (canceled)
  • 27. A primary blow mold for biaxially stretch blow molding a primary container in a double-blow molding process, said primary blow mold comprising a mold cavity, wherein said mold cavity comprises a cylindrical upper molding portion and a bottom molding portion, wherein said bottom molding portion of the mold cavity comprises a sidewall, that is an extension of the cylindrical upper molding portion, that forms a molding surface centered on a central axis, and that is not cylindrical or does not comprise a cylindrical portion, a concave transition wall where the transverse cross section of the mold cavity, measured in a plan perpendicular to the central axis, is the largest, and a bottom wall transverse to the central axis, wherein the non-cylindrical sidewall of the bottom molding portion is transitioning on its whole periphery to the bottom wall along said concave transition wall, wherein the transverse cross section of the non-cylindrical sidewall, measured in a plan perpendicular to the central axis, is the largest at the transition with the concave transition wall, wherein the bottom molding portion defines an offset distance of at least 2 mm, said offset distance being measured, in a plan perpendicular to the central axis, between, on the one hand, the upper end of the non-cylindrical sidewall at the transition with the upper cylindrical molding portion and, on the other hand, an outermost point of the concave transition wall where the transverse cross section of the bottom molding portion, measured in a plan perpendicular to the central axis, is the largest, and wherein the slope angle of the non-cylindrical sidewall is not less than 3°, said slope angle being measured, in a longitudinal cross section plan parallel to the central axis, between the central axis and a straight line including the upper end and the lower end of the non-cylindrical sidewall.
  • 28. The primary blow mold of claim 27, wherein the non-cylindrical sidewall does not comprise any cylindrical portion.
  • 29. The primary blow mold of claim 27, wherein the offset distance is at least 3 mm.
  • 30. The primary blow mold of claim 27, wherein the offset distance is at least 4 mm.
  • 31. The primary blow mold of claim 27, wherein the height of the non-cylindrical sidewall is at least 10 mm.
  • 32. The primary blow mold of claim 27, wherein the transverse cross section of the non-cylindrical sidewall is increasing continuously from its upper end towards its lower end at the transition with said concave transition wall.
  • 33. The primary blow mold of claim 27, wherein the non-cylindrical sidewall is pyramidal or frustroconical with its apex oriented upwardly or comprises at least a lower portion which is pyramidal or frustroconical with its apex oriented upwardly.
  • 34. The primary blow mold of claim 27, wherein the said outermost point is at the transition between the non-cylindrical sidewall and the concave transition wall.
  • 35. The primary blow mold of claim 27, wherein the non-cylindrical sidewall is transitioning to the concave transition wall without any convex radius.
  • 36. The primary blow mold of claim 27, wherein the radius of the concave transition wall is constant.
  • 37. The primary blow mold of claim 36, wherein the radius of the concave transition wall is at least 4 mm.
  • 38. The primary blow mold of claim 36, wherein the radius of the concave transition wall is at least 7 mm.
  • 39. The primary blow mold of claim 27, comprising a base mold having a protruding centering portion that protrudes through the bottom wall inside the mold cavity.
  • 40. The primary blow mold of claim 39, wherein the maximum transverse dimension of said protruding centering portion is not more than 27 mm.
  • 41. The primary blow mold of claim 39, wherein the maximum transverse dimension of said protruding centering portion is not more than 25 mm.
  • 42. The primary blow mold of claim 39, wherein the maximum transverse dimension of said protruding centering portion is not more than 20 mm.
  • 43. The primary blow mold of claim 27, wherein the bottom wall is a flat wall perpendicular to the central axis, or is frustroconical with its apex oriented towards the inside of the mold cavity.
  • 44. The primary blow mold of claim 27, wherein the bottom wall is frustroconical with its apex oriented towards the inside of the mold cavity.
  • 45. The primary blow mold of claim 27, comprising heating means for heating the mold cavity.
  • 46. A primary blow mold for biaxially stretch blow molding a primary container in a double-blow molding process, said primary blow mold comprises a mold cavity defined by a pair of mold halves and a base mold, wherein the mold cavity comprises a bottom wall formed by a bottom part of each mold half, wherein the base mold comprises a protruding centering portion that protrudes inside the mold cavity through said bottom wall, and wherein the maximum transverse dimension of said protruding centering portion is not more than 27 mm.
  • 47. The primary blow mold of claim 46, wherein the protruding centering portion protrudes inside the mold cavity through said bottom wall, in such way that the protruding centering portion and the bottom parts of said mold halves form a bottom molding surface of the mold cavity for molding the base of a primary container.
  • 48. The primary blow mold of claim 46, wherein the maximum transverse dimension of said protruding centering portion is not more than 25 mm
  • 49. The primary blow mold of claim 46, wherein the maximum transverse dimension of said protruding centering portion is not more than 20 mm
  • 50. The primary blow mold of claim 46, comprising a first heating means for heating the pair of mold halves, and second heating means for heating the base mold.
  • 51. The primary blow mold of claim 50, wherein the second heating means is adapted to heat the base mold to a temperature lower than the heating temperature of the pair of mold halves.
  • 52. A system for double-blow molding heat resistant containers, said system comprising a primary blow mold as defined in claim 27, for blow molding a primary biaxially stretched container from a plastic preform, and a secondary blow mold for blow molding a final biaxially stretched container from the primary biaxially stretched container after shrinkage thereof.
  • 53. A method for double-blow molding a heat resistant container, comprising: providing a plastic preform in the mold cavity of a primary blow mold defined in claim 27;biaxially stretch blow molding the preform inside the mold cavity to form a primary biaxially stretched container;heating the primary biaxially stretched container inside or outside the primary blow mold to make the primary biaxially stretched container shrink and to obtain a secondary shrunk container,providing said secondary shrunk container in a secondary blow mold,blow molding the secondary shrunk container inside the secondary blow mold to form a final biaxially stretched and heat resistant container.
  • 54. The method of claim 53, wherein the secondary blow mold is adapted to mold, in the final container, a base that is movable upwardly inside the container to absorb vacuum pressure inside the container.
  • 55. The method of claim 53, wherein the preform is made of a plastic material comprising a homo or copolyester, and more preferably comprising a PET homo or copolymer.
  • 56. The method of claim 53, wherein the mold cavity of the primary blow mold and the mold cavity of the secondary blow mold are heated to temperatures above the Tg of the plastic material of the preform.
  • 57. The method of claim 53, wherein the mold cavity of the primary blow mold is defined by a pair of mold halves and a base mold, the base mold comprises a centering portion that protrudes inside the mold cavity through a bottom wall, and the base mold of said primary mold is heated to a temperature lower than the heating temperature of the pair of mold halves.
Priority Claims (1)
Number Date Country Kind
14154289.4 Feb 2014 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2015/052083 2/2/2015 WO 00