System and process for formation of a time-released, drug-eluting transferable coating

Information

  • Patent Grant
  • 10464100
  • Patent Number
    10,464,100
  • Date Filed
    Wednesday, May 30, 2012
    12 years ago
  • Date Issued
    Tuesday, November 5, 2019
    4 years ago
Abstract
A system and method are disclosed for coating surfaces of expandable medical devices with composite coatings. Coatings are composed of various materials including, e.g., polymers and drugs. Transfer of the coatings within a patient or other host forms a drug-eluting coating that delivers time-released drugs over time for treatment of a medical condition.
Description
FIELD OF THE INVENTION

The present invention relates generally to preparation of composite coatings. More particularly, the invention relates to a system and process for forming transferable coatings on expandable medical devices that upon deployment within a patient or host yield time-released, drug-eluting coatings for treatment of medical conditions.


BACKGROUND OF THE INVENTION

Expandable medical balloons have conventionally been used in the medical arts to open up plaque-restricted vessels by compressing the plaque that has accumulated within the vessel. However, in the process of expansion, these vessels can be damaged at the point of deployment of the medical balloons. Further, to date, conventional balloon technologies have been unable to provide any delivery of drugs over time to tissues damaged by the balloon expansion or the resulting distension of vessel walls. And, while stents have been used to deliver drugs within a patient over a period of time, the stents must remain in the patient for the period over which the drug delivery occurs, which can be problematic as the body responds to the presence of the stent. Accordingly, new devices and methods are needed that can deliver drugs over time in a patient that provide medical intervention without the need for the delivery device to remain in the patient.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a system for formation of transferable coatings on the surface of expandable medical devices, according to an embodiment of the invention.



FIG. 2 shows two expandable balloons of an “over-the-wire” catheter type used in accordance with the invention.



FIG. 3 shows a test configuration of system 100 for preparing e-RESS and e-STAT transferable coatings in accordance with the present invention



FIG. 4 presents exemplary process steps for delivering e-RESS coating layers as a component of transferable coatings formed in accordance with an embodiment of the invention.



FIG. 5 presents exemplary process steps for delivering e-STAT coating layers as a component of transferable coatings formed in accordance with an embodiment of the invention.



FIG. 6 presents exemplary process steps for delivering combined e-RESS/e-STAT coating layers as a component of transferable coatings formed in accordance with an embodiment of the invention.



FIG. 7 shows a transferable, time-released drug-eluting coating delivered in accordance with an embodiment of the process of the invention.





SUMMARY OF THE INVENTION

In its simplest form, the present invention includes a system and process for forming composite coatings on expandable medical devices that, upon deployment within a patient or host, transfer time-released, drug-eluting deposits at selected sites within the patient that deliver treatments for various medical conditions. In various embodiments, preparation of drug-eluting coatings on balloon surfaces is detailed including modifications that allow transfer of the drug-eluting coatings within target vessels where medical intervention is needed for treatment, that results in the formation of the time-released, drug-eluting coatings therein.


In various embodiments, particles that yield the coating layers include various materials including polymers, drugs, and polymer/drug combinations detailed herein.


The present invention also includes a process for modifying the surface of the composite coating that contains, e.g., time-released drugs that allows delivery of the material within the coating from the surface of the medical balloon to a target location within the patient, which forms a time-released, drug-eluting deposit of material at the target location. Formation of these drug-eluting deposits and deployment from expandable medical balloons to the actual host vessels (e.g., heart) has been demonstrated.


The purpose of the foregoing abstract is to enable the United States Patent and Trademark Office and the public generally, especially scientists, engineers, and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The abstract is neither intended to define the invention of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way.


Various advantages and novel features of the present invention are described herein and will be readily apparent to those skilled in this art from the following detailed description. In the preceding and following descriptions the preferred embodiment of the invention is shown and described by way of illustration of the best mode contemplated for carrying out the invention. As will be realized, the invention is capable of modification in various respects without departing from the invention. These and other enhancements and applications are described further herein.


The following description includes detail of the preferred best mode of one embodiment of the present invention. It will be clear from this description of the invention that the invention is not limited to these illustrated embodiments. The person of ordinary skill in the art will recognize that the invention is susceptible of various modifications and alternative constructions. Therefore the present description should be seen as illustrative and not limiting. It should further be understood that there is no intention to limit the invention to the specific form disclosed, but on the contrary, the invention is to cover all modifications, alternative constructions, and equivalents falling within scope of the invention as defined in the claims. Accordingly, the drawings and description should be seen as illustrative of the invention and not as limiting in any way.


Provided herein is a method for forming an implantable, drug-eluting coating on the surface of an expandable medical device, characterized by the steps of: mounting an expandable delivery device with an internally disposed conducting member that maximizes conduction of charge on the surface of the device; delivering preselected potentials with the conducting member to the surface of the expandable delivery device to maximize collection of coating particles on the surface thereof; and coating the expandable delivery device with coating particles delivered via an e-RESS process, and e-STAT process, or a combined e-RESS process and e-STAT process to form one or more coating layers on the surface thereof.


In some embodiments, the expandable delivery device is a medical balloon. In some embodiments, at least one coating layer of the expandable delivery device includes a drug-eluting component and at least one coating layer includes a biosorbable polymer forming the implantable drug eluting coating on the surface of the device. In some embodiments, the medical balloon comprises nylon.


In some embodiments, the coating provides transfer of at least a portion of the one or more coating layers upon contact with a host vessel.


In some embodiments, wherein the expandable delivery device is at least a portion of a medical implant device. In some embodiments, the expandable delivery device is an interventional device. In some embodiments, the expandable delivery device is a diagnostic device. In some embodiments, the expandable delivery device is mounted to a delivery device prior to insertion into a host vessel. In some embodiments, the delivery device is a catheter.


In some embodiments, the conduction of charge on the surface is via gas-phase conduction or surface conduction of charge. In some embodiments, the delivering of preselected potentials includes delivering an active potential with the conducting component. In some embodiments, the delivering of preselected potentials does not include applying an active potential to the conducting component. In some embodiments, the delivering includes applying an electrostatic field potential on the surface of the expandable delivery device of at least about 15 kV prior to the coating step with the e-STAT process.


In some embodiments, the biosorbable polymer and drug eluting component are located within the same coating layer. In some embodiments, the coating includes coating the surface simultaneously with the e-RESS process and the e-STAT process to encapsulate a drug and a biosorbable polymer in a single layer of the drug-eluting coating.


In some embodiments, the drug-eluting component includes a drug dispersed within a biosorbable polymer disposed in a single coating layer. In some embodiments, the biosorbable polymer and drug-eluting component are located in different coating layers. In some embodiments, at least one coating layer includes a binding component comprising polylactoglycolic acid (PLGA).


In some embodiments, the expandable delivery device is at least partially expanded during coating of same.


In some embodiments, at least a portion of the biosorbable polymer has a preselected molecular weight that enhances transferability of the drug-eluting coating to the receiving surface within the host vessel. In some embodiments, the drug is a time-released drug that provides time-selectivity for treatment of a host or patient. In some embodiments, the drug has a crystalline form. In some embodiments, the drug comprises sirolimus.


In some embodiments, the coating includes masking one or more preselected portions of the expandable delivery device. In some embodiments, the masking includes forming preselected shapes selected from: oval, square, rectangle, triangular, or cylindrical within the coating layers on the surface of the expandable delivery device that contain an active drug delivered in the drug-eluting coating when in contact with the receiving surface.


In some embodiments, at least one coating layer includes a releasing agent selected from the group consisting of hydrophilic or hydrophobic chemicals or polymers that lower the interfacial energy between the surface of the medical device and the coating layers, water soluble chemicals or polymers that dissolve to eliminate adhesion between coatings layers and the medical device surface, brittle or friable coatings that lose mechanical cohesion upon, polyethylene glycols (PEG), hydrogels, polyesters, polyacrylates, polysaccharides, silicones, silanes, tocopherol, glycerin, sucrose, cellulose, shellac, and combinations thereof providing release of the coating to the receiving surface upon contact with same. In some embodiments, the releasing agent is located within a coating layer disposed between the surface of the expandable delivery device and a first layer comprising a biosorbable polymer.


In some embodiments, at least one coating layer on the surface of the expandable delivery device comprises a low-energy releasing agent selected from the group consisting of a releasing agent with surface energy of less than 35 dynes/cm or agents onto which a drop of water would experience a contact angle of greater than 90 degrees, polyvinyl alcohols (PVA), ethylene vinyl acetates (EVA), folyolefins, fluorosilanes, fluoroacrylates, fluorohydrocarbons, paraffin, long chain hydrocarbons, and combinations thereof. In some embodiments, the low-energy releasing agent is located within a coating layer disposed between the surface of the expandable delivery device and a first layer comprising a biosorbable polymer.


In some embodiments, at least one coating layer on the surface of the expandable delivery device comprises an adhesive agent selected from the group consisting of agents with cationic moieties that assist in cellular adhesion/uptake, shattering agents that penetrate tissue surface and promote adhesion through mechanical entanglement, viscous polymeric agents, and cationic polyamino acids such as polyarginine, polylysine, polyhistidine, and polyethyleneimine (PEI), 3,4-dihydroxy-L-phenylalanine (dopa), (as in active component in mussel adhesive), laminins, cationic surfactant molecules such as didodecyldimethylammonium bromide (DMAB), ethylhexadecyldimethylammonium bromide, dodecyltrimethyl ammonium bromide, tetradodecylammonium bromide, dimethylditetradecylammonium bromide, detrabutylammonium iodide, DEAE-dextran hydrochloride, and hexadimethrine bromide, and combinations thereof that affixes the transferable coating material to the receiving surface upon expansion of the expandable delivery device. In some embodiments, the transferable coating material includes an adhesion layer that enhances adhesion with the receiving surface. In some embodiments, the adhesive agent is included with the biosorbable polymer in a single coating layer on the surface of the expandable delivery device.


In some embodiments, at least one coating layer includes both the biosorbable polymer and a drug or therapeutic agent to provide timed-release delivery of the drug or therapeutic agent by dissolution of the biosorbable polymer layer within the coating material transferred to the host vessel. In some embodiments, the leading layer of the transferable coating on the surface of the expandable delivery device contains therapeutic drug particles modified with a surface charge prior.


In some embodiments, the coating particles are of a size between about 0.01 micrometers and about 10 micrometers.


In some embodiments, the step of sintering the transferable coating material to form a dense, thermally stable film on the surface of the expandable delivery device prior to delivery of same at a temperature in the range from about 25° C. to about 150° C.


In some embodiments, the sintering includes sintering the transferable coating material in the presence of a solvent gas to form a dense, thermally stable film on the surface of the expandable delivery device.


In some embodiments, the method further includes the step of transferring at least a portion of the coating from the expandable delivery device to a receiving surface of a host vessel to form a drug-eluting deposit therein. In some embodiments, the transferring includes expanding the expandable delivery device to transfer and implant at least a portion of the drug-eluting coating to the receiving surface of the host vessel. In some embodiments, the step of expanding includes expanding the expandable delivery device using a fluid that maintains rigidity and integrity of along the external surface of same. In some embodiments, the expanding includes at least partially deflating the expandable delivery device to reduce the physical dimensions of the expandable delivery device when inserting same into the host vessel prior to transferring the coating to the receiving surface of the host vessel.


Provided herein are devices comprising the elements noted herein, which may be produced according to methods described herein.


DETAILED DESCRIPTION

A system and process are detailed for forming composite coatings of transferable material on the surface of expandable medical devices. While various embodiments of the invention will be described in reference to coating of expandable medical balloons, the invention is not intended to be limited thereto. For example, the invention is applicable to any of a variety of expandable medical devices. Thus, no limitations are intended. The invention finds application in medical intervention technologies wherein medical catheters and stents are routinely deployed including, e.g., medical angioplasty and treatment of vascular conditions. For example, these composite coatings of transferable material are deployed at various target locations within the vascular system of a patient or host by activation (i.e., expansion) of the expandable device. The term “coating” as used herein means at least one layer containing a selected material or materials (e.g., preselected drugs and polymers) of a selected thickness that extends over at least a portion of the surface of the expandable medical device. Once the material from the composite coating is transferred or otherwise implanted at the site of delivery within the patient or host, the expandable medical device is removed. The transferred material then delivers, e.g., time-released drugs that provide medical intervention at the site of delivery without the device remaining in the patient or host. The present invention provides benefits for delivery of drugs not achieved with prior art devices including, but not limited to, e.g., preparation of composite coatings of transferable materials onto the surface of expandable medical delivery devices, transfer of the composite material from the surface of the medical balloon to the target location within the host vessel, implantation of the transferable material that forms the time-released drug-eluting deposite within the patient or host, and removal of the expandable medical device once the material is transferred into the patient or host. At least some portion of the drug-eluting deposit remains at the target site providing delivery of the time-released drug for the term of treatment without the medical delivery device remaining in the patient or host. Composite coatings comprising one or more layers of selected materials are formed on the surface of individual medical balloons by electrostatic collection of coating particles.



FIG. 1 is a schematic showing a coating system 100 for coating expandable medical balloon devices 4, according to one embodiment of the invention. System 100 includes a coating chamber 50 that mounts to a coating delivery stage 2. Coating delivery stage 2 is configured to deliver respective e-STAT and e-RESS coating particles generated in processes e-RESS plumes 22 and e-STAT plumes 4, described herein. e-RESS is a process by which electrostatically charged coating particles of a selected size (between about 5 μm to about 100 nm) are delivered by Rapid Expansion of Supercritical Solution (RESS) and electrostatically collected to form one or more coating layers on the surface of medical balloon 4. The e-RESS process is detailed in U.S. Pat. Nos. 4,582,731; 4,734,227; 4,734,451; 6,749,902; and 6,756,084 assigned to Battelle Memorial Institute (Richland, Wash.), which patents are incorporated herein in their entirety. e-STAT is a process by which dry coating particles of a selected size (between about 0.1 μm to about 10 μm) are delivered by abrupt entrainment of the solid particles in a carrier gas without use of an expansion fluid or delivery solvent. The particles are electrostatically collected to form one or more coating layers on the surface on the medical balloon devices 4. The e-STAT process is detailed in patent publication number WO 2007/011707 A2 (assigned to Battelle Memorial Institute, Richland, Wash., USA, and MiCell Technologies, Inc., Raleigh, N.C., USA), which reference is incorporated herein in its entirety. The e-RESS and e-STAT processes can be performed either sequentially (i.e., first one and then the other), or concurrently (i.e., simultaneously) to form any number of individual coating layers or to provide unique combinations and concentrations of materials in a single coating layer. Any combination or sequence of e-RESS and e-STAT steps may be used to produce a coating. The e-RESS process for forming coating particles is preferred for delivery of materials that are soluble in a supercritical fluid or other solvent and where micrometer-scale (or smaller diameter) particles are desirable or where other particle types are generated. For example, rapid nucleation occurs during the RESS process and typically leads to formation of amorphous or non-crystalline nanoparticles. The e-STAT process is preferred when delivery of particles is desired which are insoluble in a supercritical fluid solvent, or when a solution or solvent may alter the desirable physical or chemical properties of the particles, as when, e.g., highly crystalline particles are desired or need to be collected. Both processes can be used together in cases where combinations of particles with different properties or solubilities are desired or when different particles must be co-collected to form a single coating layer. Thus, no limitations are intended to exemplary embodiments. Coating layers composed of these various e-RESS and/or e-STAT coating particles are generated and deposited on the surface of the medical balloons forming coating layers, as detailed hereafter.


In the instant embodiment, an e-STAT delivery nozzle 20 is positioned adjacent to, and apart from, the e-RESS delivery nozzle 18, but positioning of delivery nozzles 18 and 20 nozzles is not limited. In a preferred embodiment, chamber 50 includes a balloon mounting assembly 16 of a dual ring type that circumvolves the e-RESS delivery nozzle 18. Balloon mounting assembly 16 includes an upper staging ring 12 and a lower (base) staging ring 14 that provide an equal separation distance between delivery nozzle 18 and balloons 4 mounted in upper staging ring 12 of stage 16. Ring 12 also provides a suitable separation distance between adjacent medical balloons 4 for coating. Separation distance between balloons 4 is variable and need only be sufficient to prevent interference with electric fields that effect the electrostatic collection of e-RESS and e-STAT particles. Medical balloons 4 are preferably of an “over-the-wire” catheter type that include an inner guide wire (not shown) covered by a sleeve (not shown) internal to balloon 4, forming a tube-within-a-balloon or a sleeve-within-a-balloon arrangement, described further herein. e-RESS nozzle 18 couples to a cylinder 36 filled with a preselected solvent (e.g., R236ea). e-RESS nozzle 18 sprays a coating material in a supercritical solvent that expands as a plume 24 of electrostatically charged coating particles that collect on the surface of the medical balloons 4 mounted in mounting assembly 16. In the instant embodiment, solvent is delivered via syringe pump 32 and mixed in a high pressure cell 34 (e.g., 50 cm3 cell volume) with a 2nd material (e.g. PLGA polymer) and the resulting mixed coating solution is delivered via syringe pump 30 through a heated block 28 configured with temperature control feedback at a high pressure (e.g., 5500 psi), forming the supercritical solution containing the mixed materials. Pressure is maintained within the delivery system by passing solution through the small diameter (e.g., 50 μm to 200 μm) e-RESS nozzle 18.


In the figure, the e-RESS nozzle 18 consists of a length of capillary tubing (exemplary dimensions: 100 μm I.D.× 1/16th inch O.D.×10 cm) constructed of, e.g., a thermoplastic polymer [e.g., polyether ether ketone also known as PEEK® (Victrex USA, Inc., West Conshohocken, Pa., USA], but is not limited thereto. For example, other capillary materials may be used including, but not limited to, e.g., stainless steel. The nozzle materials may also be preformed, e.g., of sapphire. Thus, no limitations are intended. In the exemplary embodiment, RESS nozzle 18 (comprising, e.g., PEEK® tubing) is encased in stainless steel (e.g., ¼″ OD stainless steel tubing) that is grounded to establish a uniform electric field over each balloon 4 mounted to mounting assembly 16. Pressure drops continuously over the length of the nozzle (capillary) 18. The supercritical coating solution is delivered through e-RESS nozzle 18 as a plume 22 of coating particles in conjunction with a timed pneumatic valve 40 at a preselected pressure (e.g., 5500 psi) and a preselected temperature (e.g., 150° C.). The expanded e-RESS solution produces dry coating particles (e.g., of a solute polymer) of a preselected size in a plume 22 of solvent gas. The solute particles then are electrostatically collected on the surface of the medical balloons, forming a coating layer. In exemplary tests, coating particles were generated by expansion of a near-critical or a supercritical solution prepared using a hydrofluorocarbon solvent, (e.g., fluoropropane R-236ea, Dyneon, Oakdale, Minn., USA) that further contained a dissolved biosorbable polymer [e.g., a 50:50 poly(DL-lactide-co-glycolide) (PLGA)] available commercially (Catalog No. B6010-2P, LACTEL® Absorbable Polymers, a division of Durect, Corp., Pelham, Ala., USA). In the instant tests, the supercritical solution delivered at 5500 psi and 150° C. through the expansion nozzle 18 was expanded into ambient (i.e., STP) conditions, but is not limited thereto. For example, delivery of RESS coating particles may be made at various pressures and temperatures.


In the e-STAT process, e-STAT orifice 20 delivers dry coating particles in a plume 24 in the absence of a supercritical solvent to the surfaces of medical balloons 4 in mounting assembly 16. In the instant embodiment, e-STAT orifice 20 is constructed from a modified bulkhead union (e.g., ½-inch SWAGELOK®) composed of a plastic material (e.g., nylon), but is not limited thereto. e-STAT orifice 20 is not charged. e-STAT orifice 20 couples to a reservoir 46 filled with a preselected drug (e.g., Sirolimus) or other coating material in a crystalline or dry powder form with particles preferably of a size in the range from about 10 μm to about 10 nm, but is not limited thereto. The drug or coating material in dry form is provided to e-STAT nozzle 20 through tubing 44 (e.g., ½ inch polypropylene or another polymeric tubing). Drug reservoir 46 containing the dry coating powder couples to a pneumatic valve 42 that delivers the dry coating particles as a plume 24 through the connecting tubing 44 and the e-STAT orifice 20 into the containment vessel 50 at a preselected pressure (e.g., 500 psi nitrogen) and temperature where particles are electrostatically collected on the surface of the medical balloons 4 mounted in mounting assembly 16. Pressures at which dry coating particles are delivered are not limited. Pneumatic valve 42 further couples to a gas reservoir 48 containing an inert gas (e.g., N2) via tubing 49 that provides a discharging gas to pneumatic valve 42. In e-STAT processing of coatings for biomedical balloon applications, metal-containing guide wires 8 encased within the inner sleeve of the balloon 4 are charged with voltages that range preferably from about 5 kV to about 25 kV. More particularly, voltages range from about 10 kV to about 20 kV.


For combined e-RESS and e-STAT coating processes, delivery conditions are those described previously herein for the individual RESS and STAT processes, but the processes are performed simultaneously. Thus, the disclosure is not intended to be limited by the descriptions to the individual e-RESS and e-STAT processes.



FIG. 2 shows two medical balloons 4 of an “over-the-wire” catheter type coated in conjunction with one embodiment of the invention. In the figure, medical balloons 4 each include a catheter guide 6 through which a metal guide (conducting) wire 8 passes. Guide wire 8 passes through the center of each balloon 4 in a sleeve 10 that runs the length of balloon 4. The sleeve-within-the balloon configuration separates sleeve 10 from the expansion volume of each balloon 4. Sleeve 10 and balloon 4 are fused at either end of the balloon 4, forming a seal that allows for inflation of balloon 4 by introducing expansion gas through catheter guide 6. In the test configuration, balloons 4 were expanded by means of, e.g., a syringe coupled to a luer connection described hereafter positioned at the end of each catheter guide 6 distal to the expandable balloon 4, but the mechanism for expansion of balloons is not limited thereto. For example, a pneumatic pressure system may also be used, e.g., for production scale processing. Thus, no limitations are intended. In one balloon (on the right) of FIG. 2, metal guide wire 8 in balloon 4 was inserted to the tip of balloon 4 without protruding from the upper end (i.e., the normal coating condition). In the other balloon (on the left) of FIG. 2, balloon 4, guide wire 8 was retracted to below the mid section of balloon 4 prior to coating. Results in each image demonstrate that the coating on balloon 4 covers an area equal to the terminal position of guide wire 8 in sleeve 10, illustrating the effect the guide wire 8 has on collection efficiency of the coating materials.



FIG. 3 shows a test configuration of system 100 for preparing e-RESS and e-STAT transferable coatings in accordance with the present invention. System 100 includes a balloon mounting assembly 16 for mounting and coating expandable medical devices including medical balloons 4. In the e-RESS coating process used in conjunction with the present invention, lower (base) staging ring 14, metal sheath (post) 19 surrounding e-RESS nozzle 18, and guide wires 8 are grounded. In the figure, medical balloons 4 are shown vertically mounted on upper staging ring 12 of mounting assembly 16. The upper ends of balloon catheters 6 are inserted in slots machined in the upper stage ring 12, providing vertical staging of balloons 4 for coating. Guide wires 8 (not shown) are enclosed within the balloons 4 within the internal catheter guide sleeves 6 (e.g., in a tube-within-a-balloon arrangement). At the top end of balloons 4, one end of guide wires 8 extends through sleeve 10 from inside the inner balloon 4, with the tip of the metal guide wire 8 retracted immediately (˜1 mm) below the tip of balloon 4. Metal guide wires 8 extend a non-limiting distance of ˜12 inches from the end of balloon 4 within catheter guide 6. Guide wires 8 protrude from the catheter guide 6, e.g., below base staging ring 14, which are then coupled to an electrical source 22 (e.g., a high voltage power supply). This arrangement allows preselected potentials or electrical grounding to be applied to each guide wire 8 that delivers an electric field through surfaces of each balloon 4 individually or collectively during deposition of coating particles. Retraction of the guide wire 8 into the balloon 4 prevents disruptive fields (i.e. coronal discharge) from forming at the exposed tip of wire 8 that can lead to poor quality depositions on the balloon 4 surface. Guide wires 8 in the instant embodiment, provide a convenient way to electrically connect the interior of the balloons 4 to the surface of the balloons 4, but the process is not intended to be limited to the use of catheter guide wires 8 as active electrodes. In one embodiment, base staging ring 14 is composed of a molded or machined engineering plastic (e.g., DELRIN®) to which a conductive metal (e.g., copper) grounding wire or ring (not shown) is positioned along the perimeter of lower staging ring 14, providing a common potential to each metal guide wire 8 during e-RESS coating of medical balloons 4 with e-RESS coating particles. In the instant embodiment, base ring 14 includes a loop for attaching guide wires 8 to grounding screws mounted next, or adjacent, to the conductive ring on base staging ring 14. The grounding ring further couples to a power source 22, e.g., using a clip mechanism or other attaching means, which permits guide wires 8 to be charged or grounded (when not charged) as required for preparation of specific coatings on the surface of medical balloons 4 described further herein. When charged, guide wires 8 provide a uniform field over the surface of balloon 4. In the test configuration, balloons 4 were inflated by connecting a 1 cm3 (cc) syringe to a luer coupling (shown at left) located at the catheter 6 end of balloons 4 and fully depressing the syringe plunger, allowing the plunger to come back to an equilibrium position determined by the plunger friction in the syringe body, thereby providing a source of air that inflated each balloon 4. For commercial processing, a manifold of luer connections may be attached at the terminal ends of the catheters 6 and pumped to a pre-determined pressure such that each balloon 4 is pressurized equally for purposes of coating. A separate gas supply and pneumatics can be coupled for inflation of individual balloons 4 or simultaneous inflation of multiple balloons 4 during production. No limitations are intended.


Drug-Eluting Coatings

Composite coatings deposited to surfaces of expandable medical devices in conjunction with the invention using modified e-RESS and e-STAT processes can include various combinations of polymers and drugs in one or more coating layers that define the composite coating. Transferable deposits of the present invention prepared on the surfaces of expandable medical devices are preferably, but not exclusively, drug-eluting materials. The components of these composite coatings are subsequently transferred from the medical device to a specific location in a vessel (e.g., an artery) or other vascular location within a patient or host by activation or inflation of the balloons. Drugs and other therapeutic agents present in the various layers of the composite coating transferred are needed, thereby effecting treatment. Inclusion of a time-released drug or drugs in the transferred coating provides medical intervention or treatment at the delivery site over time (e.g., in a time-released fashion). The present invention further provides target delivery of a drug or drugs without need for long-term retention of the delivery device (i.e., the medical balloon or a stent) within the patient or host.


In one embodiment, the drug-eluting coating of transferrable material includes a drug that is dispersed in a matrix consisting of a biosorbable polymer that allows the drug to be deployed in a time-released fashion to a target location within the vascular system of the patient or host. In a preferred embodiment, the coating on the balloon that is completely or partially transferred to the vessel wall when deployed in the host vessel includes at least one layer that includes at least one drug. The coating may also include at least one biosorbable polymer (e.g., PLGA) in a single layer or in different layers. Tests conducted using medical-grade tubing as vessel surrogates and on test animals at conditions similar to those found in a human body have demonstrated that coating components collected on the surface of medical balloons using the above-described methods are successfully transferred to the inner vessel walls, forming a drug-eluting deposit within these specimens as detailed hereafter.


Polymer Coating Materials

In some embodiments, coating particles can include various materials selected from, e.g., polymers, drugs, biosorbable materials, bioactive proteins and peptides, as well as combinations of these materials. These materials find use in coatings that are applied to, e.g., medical devices (e.g., medical balloons) and medical implant devices (e.g., drug-eluting stents), but are not limited thereto. Choice for near-critical or supercritical fluid is based on the solubility of the selected solute(s) of interest, which is not limited.


Polymers used in conjunction with various embodiments include, but are not limited to, e.g., polylactoglycolic acid (PLGA); polyethylene vinyl acetate (PEVA); poly(butyl methacrylate) (PBMA); perfluorooctanoic acid (PFOA); tetrafluoroethylene (TFE); hexafluoropropylene (HFP); polylactic acid (PLA); polyglycolic acid (PGA); including combinations of these polymers. Other polymers include various mixtures of tetrafluoroethylene; hexafluoropropylene; and vinylidene fluoride (e.g., THV) at varying molecular ratios (e.g., 1:1:1).


Biosorbable polymers used in conjunction in some embodiments include, but are not limited to, e.g., polylactic acid (PLA); poly(DL-lactide-co-glycolide) (PLGA); poly(lactic-co-glycolic acid); polycaprolactone (poly(e-caprolactone)) (PCL); polyglycolide (PG) or (PGA); poly-3-hydroxybutyrate; LPLA poly(L-lactide); DLPLA poly(DL-lactide); PDO poly(dioxolane); PGA-TMC; 85/15 DLPLG poly(DL-lactide-co-glycolide); 75/25 DLPL; 65/35 DLPLG; 50/50 DLPLG; TMC poly(trimethylcarbonate); poly(CPP:SA); poly(1,3-bis-p-(carboxyphenoxy)propane-co-sebacic acid); and blends; combinations; homopolymers; condensation polymers; alternating; block; dendritic; crosslinked; and copolymers thereof.


Durable (biostable) polymers used in some embodiments include, but are not limited to, e.g., polyester; aliphatic polyester; polyanhydride; polyethylene; polyorthoester; polyphosphazene; polyurethane; polycarbonate urethane; aliphatic polycarbonate; silicone; a silicone-containing polymer; polyolefin; polyamide; polycaprolactam; polyamide; polyvinyl alcohol; acrylic polymer; acrylate; polystyrene; epoxy; polyethers; cellulosics; expanded polytetrafluoroethylene; phosphorylcholine; polyethylene-terephthalate; polymethylmethacrylate; poly(ethylmethacrylate/n-butylmethacrylate); parylene C; polyethylene-co-vinyl acetate; polyalkyl methacrylates; polyalkylene-co-vinyl acetate; polyalkylene; polyalkyl siloxanes; polyhydroxyalkanoate; polyfluoroalkoxyphosphazene; poly(styrene-b-isobutylene-b-styrene); poly-butyl methacrylate; poly-buta-diene; and blends; combinations; homopolymers; condensation polymers; alternating; block; dendritic; crosslinked; and copolymers thereof. Other polymers selected for use can include polymers to which drugs are chemically (e.g., ionically and/or covalently) attached or otherwise mixed, including, but not limited to, e.g., heparin-containing polymers (HCP).


Drugs/Drug Delivery

In various embodiments, time-released drugs are delivered to a wall of a vascular vessel (e.g., an artery) within a host or patient using a coating comprised of one or more coating layers. Coating layers can include various therapeutic agents in various combinations including, e.g., biosorbable polymers and drugs that are deposited onto the surface of, e.g., expandable polymer devices (e.g., a medical balloon). The expandable polymer device is subsequently transferred to, and deployed within the vascular system of a host or patient as detailed herein.


Drugs used in conjunction with various embodiments include, but are not limited to, e.g., antibiotics (e.g., Rapamycin [CAS No. 53123-88-9], LC Laboratories, Woburn, Mass., USA, anticoagulants (e.g., Heparin [CAS No. 9005-49-6]; antithrombotic agents (e.g., clopidogrel); antiplatelet drugs (e.g., aspirin); immunosuppressive drugs; antiproliferative drugs; chemotherapeutic agents (e.g., paclitaxel also known by the tradename TAXOL® [CAS No. 33069-62-4], Bristol-Myers Squibb Co., New York, N.Y., USA) and/or a pro-drug, a derivative, an analog, a hydrate, an ester, and/or a salt thereof). Examples of antibiotics include, but are not limited to, e.g., amikacin, amoxicillin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, tobramycin, geldanamycin, herbimycin, carbacephem (loracarbef), ertapenem, doripenem, imipenem, cefadroxil, cefazolin, cefalotin, cephalexin, cefaclor, cefamandole, cefoxitin, cefprozil, cefuroxime, cefixime, cefdinir, cefditoren, cefoperazone, cefotaxime, cefpodoxime, ceftazidime, ceftibuten, ceftizoxime, ceftriaxone, cefepime, ceftobiprole, clarithromycin, clavulanic acid, clindamycin, teicoplanin, azithromycin, dirithromycin, erythromycin, troleandomycin, telithromycin, aztreonam, ampicillin, azlocillin, bacampicillin, carbenicillin, cloxacillin, dicloxacillin, flucloxacillin, mezlocillin, meticillin, nafcillin, norfloxacin, oxacillin, penicillin-G, penicillin-V, piperacillin, pvampicillin, pivmecillinam, ticarcillin, bacitracin, colistin, polymyxin-B, ciprofloxacin, enoxacin, gatifloxacin, levofloxacin, lomefloxacin, moxifloxacin, o floxacin, trovafloxacin, grepafloxacin, sparfloxacin, afenide, prontosil, sulfacetamide, sulfamethizole, sulfanilimide, sulfamethoxazole, sulfisoxazole, trimethoprim, trimethoprim-sulfamethoxazole, demeclocycline, doxycycline, oxytetracycline, tetracycline, arsphenamine, chloramphenicol, lincomycin, ethambutol, fosfomycin, furazolidone, isoniazid, linezolid, mupirocin, nitrofurantoin, platensimycin, pyrazinamide, quinupristin/dalfopristin, rifampin, thiamphenicol, rifampicin, minocycline, sultamicillin, sulbactam, sulphonamides, mitomycin, spectinomycin, spiramycin, roxithromycin, and meropenem. Antibiotics can also be grouped into classes of related drugs, for example, aminoglycosides (e.g., amikacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, streptomycin, tobramycin), ansamycins (e.g., geldanamycin, herbimycin), carbacephem (loracarbef) carbapenems (e.g., ertapenem, doripenem, imipenem, meropenem), first generation cephalosporins (e.g., cefadroxil, cefazolin, cefalotin, cefalexin), second generation cephalosporins (e.g., cefaclor, cefamandole, cefoxitin, cefprozil, cefuroxime), third generation cephalosporins (e.g., cefixime, cefdinir, cefditoren, cefoperazone, cefotaxime, cefpodoxime, ceftazidime, ceftibuten, ceftizoxime, ceftriaxone), fourth generation cephalosporins (e.g., cefepime), fifth generation cephalosporins (e.g., ceftobiprole), glycopeptides (e.g., teicoplanin, vancomycin), macrolides (e.g., azithromycin, clarithromycin, dirithromycin, erythromycin, roxithromycin, troleandomycin, telithromycin, spectinomycin), monobactams (e.g., aztreonam), penicillins (e.g., amoxicillin, ampicillin, azlocillin, bacampicillin, carbenicillin, cloxacillin, dicloxacillin, flucloxacillin, mezlocillin, meticillin, nafcillin, oxacillin, penicillins-G and -V, piperacillin, pvampicillin, pivmecillinam, ticarcillin), polypeptides (e.g., bacitracin, colistin, polymyxin-B), quinolones (e.g., ciprofloxacin, enoxacin, gatifloxacin, levofloxacin, lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, trovafloxacin, grepafloxacin, sparfloxacin, trovafloxacin), sulfonamides (e.g., afenide, prontosil, sulfacetamide, sulfamethizole, sulfanilimide, sulfasalazine, sulfamethoxazole, sulfisoxazole, trimethoprim, trimethoprim-sulfamethoxazole), tetracyclines (e.g., demeclocycline, doxycycline, minocycline, oxytetracycline, tetracycline).


Drugs used in some embodiments described herein include, but are not limited to, e.g., immunosuppressive drugs such as a macrolide immunosuppressive drug, which may comprise one or more of: rapamycin; biolimus (biolimus A9); 40-O-(2-Hydroxyethyl)rapamycin (everolimus); 40-O-Benzyl-rapamycin; 40-O-(4′-Hydroxymethyl)benzyl-rapamycin; 40-O-[4′-(1,2-Dihydroxyethyl)]benzyl-rapamycin; 40-O-Allyl-rapamycin; 40-O-[3′-(2,2-Dimethyl-1,3-dioxolan-4(S)-yl)-prop-2′-en-1′-yl]-rapamycin; (2′:E,4′S)-40-O-(4′,5′-Dihydroxypent-2′-en-1′-yl)-rapamycin; 40-O-(2-Hydroxy)ethoxycar-bonylmethyl-rapamycin; 40-O-(3-Hydroxy)propyl-rapamycin; 40-O-(6-Hydroxy)hexyl-rapamycin; 40-O-[2-(2-Hydroxy)ethoxy]ethyl-rapamycin; 40-O-[(3S)-2,2-Dimethyldioxolan-3-yl]methyl-rapamycin; 40-O-[(2S)-2,3-Dihydroxyprop-1-yl]-rapamycin; 40-O-(2-Acetoxy)ethyl-rapamycin; 40-O-(2-Nicotinoyloxy)ethyl-rapamycin; 40-O-[2-(N-Morpholino)acetoxy]ethyl-rapamycin; 40-O-(2-N-Imidazolylacetoxy)ethyl-rapamycin; 40-O-[2-(N-Methyl-N′-piperazinyl)acetoxy]ethyl-rapamycin; 39-O-Desmethyl-39-40-O,O-ethylene-rapamycin; (26R)-26-Dihydro-40-O-(2-hydroxy)ethyl-rapamycin; 28-O-Methyl-rapamycin; 40-O-(2-Aminoethyl)-rapamycin; 40-O-(2-Acetaminoethyl)-rapamycin; 40-O-(2-Nicotinamidoethyl)-rapamycin; 40-O-(2-(N-Methyl-imidazo-2′-ylcarbethoxamido)ethyl)-rapamycin; 40-O-(2-Ethoxycarbonylaminoethyl)-rapamycin; 40-O-(2-Tolylsulfonamidoethyl)-rapamycin; 40-O-[2-(4′,5′-Dicarboethoxy-1′,2′,3′-triazol-1′-yl)-ethyl]-rapamycin; 42-Epi-(tetrazolyl)rapamycin (tacrolimus); 42-[3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate]rapamycin (temsirolimus); (42S)-42-Deoxy-42-(1H-tetrazol-1-yl)-rapamycin (zotarolimus); and salts, derivatives, isomers, racemates, diastereoisomers, pro-drugs, hydrates, esters, or analogs thereof.


Drugs used in various embodiments described further herein include, but are not limited to, e.g., Acarbose; acetylsalicylic acid; acyclovir; allopurinol; alprostadil; prostaglandins; amantadine; ambroxol; amlodipine; S-amino salicylic acid; amitriptyline; atenolol; azathioprine; balsalazide; beclomethasone; betahistine; bezafibrate; diazepam and diazepam derivatives; budesonide; bufexamac; buprenorphine; butizine; methadone; calcium salts; potassium salts; magnesium salts; candesartan; carbamazepine; captopril; cetirizine; chenodeoxycholic acid; theophylline and theophylline derivatives; trypsins; cimetidine; clobutinol; clonidine; cotrimoxazole; codeine; caffeine; vitamin D and derivatives of vitamin D; colestyramine; cromoglicic acid; coumarin and coumarin derivatives; cysteine; ciclosporin; cyproterone; cytabarine; dapiprazole; desogestrel; desonide; dihydralazine; diltiazem; ergot alkaloids; dimenhydrinate; dimethyl sulphoxide; dimeticone; domperidone and domperidan derivatives; dopamine; doxazocin; doxylamine; benzodiazepines; diclofenac; desipramine; econazole; ACE inhibitors; enalapril; ephedrine; epinephrine; epoetin and epoetin derivatives; morphinans; calcium antagonists; modafinil; orlistat; peptide antibiotics; phenytoin; riluzoles; risedronate; sildenafil; topiramate; estrogen; progestogen and progestogen derivatives; testosterone derivatives; androgen and androgen derivatives; ethenzamide; etofenamate; etofibrate; fenofibrate; etofylline; famciclovir; famotidine; felodipine; fentanyl; fenticonazole; gyrase inhibitors; fluconazole; fluarizine; fluoxetine; flurbiprofen; ibuprofen; fluvastatin; follitropin; formoterol; fosfomicin; furosemide; fusidic acid; gallopamil; ganciclovir; gemfibrozil; ginkgo; Saint John's wort; glibenclamide; urea derivatives as oral antidiabetics; glucagon; glucosamine and glucosamine derivatives; glutathione; glycerol and glycerol derivatives; hypothalamus hormones; guanethidine; halofantrine; haloperidol; heparin (and derivatives); hyaluronic acid; hydralazine; hydrochlorothiazide (and derivatives); salicylates; hydroxyzine; imipramine; indometacin; indoramine; insulin; iodine and iodine derivatives; isoconazole; isoprenaline; glucitol and glucitol derivatives; itraconazole; ketoprofen; ketotifen; lacidipine; lansoprazole; levodopa; levomethadone; thyroid hormones; lipoic acid (and derivatives); lisinopril; lisuride; lofepramine; loperamide; loratadine; maprotiline; mebendazole; mebeverine; meclozine; mefenamic acid; mefloquine; meloxicam; mepindolol; meprobamate; mesalazine; mesuximide; metamizole; metformin; methylphenidate; metixene; metoprolol; metronidazole; mianserin; miconazole; minoxidil; misoprostol; mizolastine; moexipril; morphine and morphine derivatives; evening primrose; nalbuphine; naloxone; tilidine; naproxen; narcotine; natamycin; neostigmine; nicergoline; nicethamide; nifedipine; niflumic acid; nimodipine; nimorazole; nimustine; nisoldipine; adrenaline and adrenaline derivatives; novamine sulfone; noscapine; nystatin; o lanzapine; olsalazine; omeprazole; omoconazole; oxaceprol; oxiconazole; oxymetazoline; pantoprazole; paracetamol (acetaminophen); paroxetine; penciclovir; pentazocine; pentifylline; pentoxifylline; perphenazine; pethidine; plant extracts; phenazone; pheniramine; barbituric acid derivatives; phenylbutazone; pimozide; pindolol; piperazine; piracetam; pirenzepine; piribedil; piroxicam; pramipexole; pravastatin; prazosin; procaine; promazine; propiverine; propranolol; propyphenazone; protionamide; proxyphylline; quetiapine; quinapril; quinaprilat; ramipril; ranitidine; reproterol; reserpine; ribavirin; risperidone; ritonavir; ropinirole; roxatidine; ruscogenin; rutoside (and derivatives); sabadilla; salbutamol; salmeterol; scopolamine; selegiline; sertaconazole; sertindole; sertralion; silicates; simvastatin; sitosterol; sotalol; spaglumic acid; spirapril; spironolactone; stavudine; streptomycin; sucralfate; sufentanil; sulfasalazine; sulpiride; sultiam; sumatriptan; suxamethonium chloride; tacrine; tacrolimus; taliolol; taurolidine; temazepam; tenoxicam; terazosin; terbinafine; terbutaline; terfenadine; terlipressin; tertatolol; teryzo line; theobromine; thiamazole; phenothiazines; tiagabine; tiapride; propionic acid derivatives; ticlopidine; timolol; tinidazole; tioconazole; tioguanine; tioxolone; tiropramide; tizanidine; tolazoline; tolbutamide; tolcapone; tolnaftate; tolperisone; topotecan; torasemide; tramadol; tramazoline; trandolapril; tranylcypromine; trapidil; trazodone; triamcinolone derivatives; triamterene; trifluperidol; trifluridine; trimipramine; tripelennamine; triprolidine; trifosfamide; tromantadine; trometamol; tropalpin; troxerutine; tulobuterol; tyramine; tyrothricin; urapidil; valaciclovir; valproic acid; vancomycin; vecuronium chloride; Viagra; venlafaxine; verapamil; vidarabine; vigabatrin; viloazine; vincamine; vinpocetine; viquidil; warfarin; xantinol nicotinate; xipamide; zafirlukast; zalcitabine; zidovudine; zolmitriptan; zolpidem; zoplicone; zotipine; amphotericin B; caspo fungin; voriconazole; resveratrol; PARP-1 inhibitors (including imidazoquinolinone; imidazpyridine; and isoquinolindione); tissue plasminogen activator (tPA); melagatran; lanoteplase; reteplase; staphylokinase; streptokinase; tenecteplase; urokinase; abciximab (ReoPro); eptifibatide; tirofiban; prasugrel; clopidogrel; dipyridamole; cilostazol; VEGF; heparan sulfate; chondroitin sulfate; elongated “RGD” peptide binding domain; CD34 antibodies; cerivastatin; etorvastatin; losartan; valartan; erythropoietin; rosiglitazone; pioglitazone; mutant protein Apo A1 Milano; adiponectin; (NOS) gene therapy; glucagon-like peptide 1; atorvastatin; and atrial natriuretic peptide (ANP); lidocaine; tetracaine; dibucaine; hyssop; ginger; turmeric; Arnica montana; helenalin; cannabichromene; rofecoxib; hyaluronidase; and salts, derivatives, isomers, racemates, diastereoisomers, prodrugs, hydrates, esters, or analogs thereof.


Anti-thrombotic Agents

Anti-thrombotic agents (e.g., clopidogrel) are also contemplated for use in the methods and devices described herein. Use of anti-platelet drugs (e.g., aspirin), for example, to prevent platelet binding to exposed collagen, is contemplated for anti-restenotic or anti-thrombotic therapy. Anti-platelet agents include “GpIIb/IIIa inhibitors” (e.g., abciximab, eptifibatide, tirofiban, RheoPro) and “ADP receptor blockers” (prasugrel, clopidogrel, ticlopidine). Particularly useful for local therapy are dipyridamole, which has local vascular effects that improve endothelial function (e.g., by causing local release oft-PA, that will break up clots or prevent clot formation) and reduce the likelihood of platelets and inflammatory cells binding to damaged endothelium, and cAMP phosphodiesterase inhibitors, e.g., cilostazol, that could bind to receptors on either injured endothelial cells or bound and injured platelets to prevent further platelet binding.


Chemotherapeutic Agents

Chemotherapeutic agents may also be used. Examples of chemotherapeutic agents include, but are not limited to, e.g., angiostatin; DNA topoisomerase; endostatin; genistein; ornithine decarboxylase inhibitors; chlormethine; melphalan; pipobroman; triethylene-melamine; triethylenethiophosphoramine; busulfan; carmustine (BCNU); streptozocin; 6-mercaptopurine; 6-thioguanine; deoxyco-formycin; IFN-α; 17α-ethinylestradiol; diethylstilbestrol; testosterone; prednisone; fluoxymesterone; dromostanolone propionate; testolactone; megestrolacetate; methylprednisolone; methyl-testosterone; prednisolone; triamcinolone; chlorotrianisene; hydroxyprogesterone; estramustine; medroxyprogesteroneacetate; flutamide; zoladex; mitotane; hexamethylmelamine; indolyl-3-glyoxylic acid derivatives; (e.g., indibulin); doxorubicin and idarubicin; plicamycin (mithramycin) and mitomycin; mechlorethamine; cyclophosphamide analogs; trazenes-dacarbazinine (DTIC); pentostatin and 2-chlorodeoxyadenosine; letrozole; camptothecin (and derivatives); navelbine; erlotinib; capecitabine; acivicin; acodazole hydrochloride; acronine; adozelesin; aldesleukin; ambomycin; ametantrone acetate; anthramycin; asperlin; azacitidine; azetepa; azotomycin; batimastat; benzodepa; bisnafide; bisnafide dimesylate; bizelesin; bropirimine; cactinomycin; calusterone; carbetimer; carubicin hydrochloride; carzelesin; cedefingol; celecoxib (COX-2 inhibitor); cirolemycin; crisnatol mesylate; decitabine; dexormaplatin; dezaguanine mesylate; diaziquone; duazomycin; edatrexate; eflomithine; elsamitrucin; enloplatin; enpromate; epipropidine; erbulozole; etanidazole; etoprine; flurocitabine; fosquidone; lometrexol; losoxantrone hydrochloride; masoprocol; maytansine; megestrol acetate; melengestrol acetate; metoprine; meturedepa; mitindomide; mitocarcin; mitocromin; mitogillin; mitomalcin; mitosper; mycophenolic acid; nocodazole; nogalamycin; ormaplatin; oxisuran; pegaspargase; peliomycin; pentamustine; perfosfamide; piposulfan; plomestane; porfimer sodium; porfiromycin; puromycin; pyrazofurin; riboprine; safingol; simtrazene; sparfosate sodium; spiromustine; spiroplatin; streptonigrin; sulofenur; tecogalan sodium; taxotere; tegafur; teloxantrone hydrochloride; temoporfin; thiamiprine; tirapazamine; trestolone acetate; triciribine phosphate; trimetrexate glucuronate; tubulozole hydrochloride; uracil mustard; uredepa; verteporfin; vinepidine sulfate; vinglycinate sulfate; vinleurosine sulfate; vinorelbine tartrate; vinrosidine sulfate; zeniplatin; zinostatin; 20-epi-1,25 dihydroxyvitamin-D3; 5-ethynyluracil; acylfulvene; adecypenol; ALL-TK antagonists; ambamustine; amidox; amifostine; aminolevulinic acid; amrubicin; anagrelide; andrographolide; antagonist-D; antagonist-G; antarelix; anti-dorsalizing morphogenetic protein-1; antiandrogen; antiestrogen; estrogen agonist; apurinic acid; ara-CDP-DL-PTBA; arginine deaminase; asulacrine; atamestane; atrimustine; axinastatin-1; axinastatin-2; axinastatin-3; azasetron; azatoxin; azatyrosine; baccatin III derivatives; balanol; BCR/ABL antagonists; benzochlorins; benzoylstaurosporine; beta lactam derivatives; beta-alethine; betaclamycin-B; betulinic acid; bFGF inhibitor; bisaziridinylspermine; bistratene-A; breflate; buthionine sulfoximine; calcipotriol; calphostin-C; carboxamide-amino-triazole; carboxyamidotriazole; CaRest M3; CARN 700; cartilage derived inhibitor; casein kinase inhibitors (ICOS); castanospermine; cecropin B; cetrorelix; chloroquinoxaline sulfonamide; cicaprost; cis-porphyrin; clomifene analogues; clotrimazole; collismycin-A; collismycin-B; combretastatin-A4; combretastatin analogue; conagenin; crambescidin-816; cryptophycin-8; cryptophycin-A derivatives; curacin-A; cyclopentanthraquinones; cycloplatam; cypemycin; cytolytic factor; cytostatin; dacliximab; dehydrodidemnin B; dexamethasone; dexifosfamide; dexrazoxane; dexverapamil; didemnin-B; didox; diethylnorspermine; dihydro-5-azacytidine; dihydrotaxol; docosanol; dolasetron; dronabinol; duocarmycin-SA; ebselen; ecomustine; edelfosine; edrecolomab; elemene; emitefur; estramustine analogue; filgrastim; flavopiridol; flezelastine; fluasterone; fluorodaunorunicin hydrochloride; forfenimex; gadolinium texaphyrin; galocitabine; gelatinase inhibitors; glutathione inhibitors; hepsulfam; heregulin; hexamethylene bisacetamide; hypericin; ibandronic acid; idramantone; ilomastat; imatinib (e.g., Gleevec); imiquimod; immunostimulant peptides; insulin-like growth factor-1 receptor inhibitor; interferon agonists; interferons; interleukins; iobenguane; iododoxorubicin; ipomeanol; iroplact; irsogladine; isobengazole; isohomohalicondrin-B; itasetron; jasplakinolide; kahalalide-F; lamellarin-N triacetate; leinamycin; lenograstim; lentinan sulfate; leptolstatin; leukemia inhibiting factor; leukocyte alpha interferon; leuprolide+estrogen+progesterone; linear polyamine analogue; lipophilic disaccharide peptide; lipophilic platinum compounds; lissoclinamide-7; lobaplatin; lombricine; loxoribine; lurtotecan; lutetium texaphyrin; lysofylline; lytic peptides; maitansine; mannostatin-A; marimastat; maspin; matrilysin inhibitors; matrix metalloproteinase inhibitors; meterelin; methioninase; metoclopramide; MIF inhibitor; mifepristone; miltefosine; mirimostim; mitoguazone; mitotoxin fibroblast growth factor-saporin; mofarotene; molgramostim; Erbitux; human chorionic gonadotrophin; monophosphoryl lipid A+myobacterium cell wall sk; mustard anticancer agent; mycaperoxide-B, mycobacterial cell wall extract, myriaporone, N-acetyldinaline, N-substituted benzamides, nagrestip, naloxone+pentazocine, napavin, naphterpin, nartograstim, nedaplatin, nemorubicin, neridronic acid, nisamycin, nitric oxide modulators, nitroxide antioxidant, nitrullyn, oblimersen (Genasense), O6-benzylguanine, okicenone, onapristone, ondansetron, oracin, oral cytokine inducer, paclitaxel analogues and derivatives, palauamine, palmitoylrhizoxin, pamidronic acid, panaxytriol, panomifene, parabactin, peldesine, pentosan polysulfate sodium, pentrozole, perflubron, perillyl alcohol, phenazinomycin, phenylacetate, phosphatase inhibitors, picibanil, pilocarpine hydrochloride, placetin-A, placetin-B, plasminogen activator inhibitor, platinum complex, platinum compounds, platinum-triamine complex, propyl bis-acridone, prostaglandin-J2, proteasome inhibitors, protein A-based immune modulator, protein kinase-C inhibitors, microalgal, pyrazoloacridine, pyridoxylated hemoglobin polyoxyethylene conjugate, raf antagonists, raltitrexed, ramosetron, ras farnesyl protein transferase inhibitors, ras-GAP inhibitor, retelliptine demethylated, rhenium Re-186 etidronate, ribozymes, RII retinamide, rohitukine, romurtide, roquinimex, rubiginone-B1, ruboxyl, saintopin, SarCNU, sarcophytol A, sargramostim, Sdi-1 mimetics, senescence derived inhibitor-1, signal transduction inhibitors, sizofiran, sobuzoxane, sodium borocaptate, solverol, somatomedin binding protein, sonermin, sparfosic acid, spicamycin-D, splenopentin, spongistatin-1, squalamine, stipiamide, stromelysin inhibitors, sulfinosine, superactive vasoactive intestinal peptide antagonist, suradista, suramin, swainsonine, tallimustine, tazarotene, tellurapyrylium, telomerase inhibitors, tetrachlorodecaoxide, tetrazomine, thiocoraline, thrombopoietin, thrombopoietin mimetic, thymalfasin, thymopoietin receptor agonist, thymotrinan, thyroid stimulating hormone, tin ethyl etiopurpurin, titanocene bichloride, topsentin, translation inhibitors, tretinoin, triacetyluridine, tropisetron, turosteride, ubenimex, urogenital sinus-derived growth inhibitory factor, variolin-B, velaresol, veramine, verdins, vinxaltine, vitaxin, zanoterone, zilascorb, zinostatin stimalamer, acanthifolic acid, aminothiadiazole, anastrozole, bicalutamide, brequinar sodium, capecitabine, carmofur, Ciba-Geigy CGP-30694, cladribine, cyclopentyl cytosine, cytarabine phosphate stearate, cytarabine conjugates, cytarabine ocfosfate, Lilly DATHF, Merrel Dow DDFC, dezaguanine, dideoxycytidine, dideoxyguanosine, didox, Yoshitomi DMDC, doxifluridine, Wellcome EHNA, Merck & Co. EX-015, fazarabine, floxuridine, fludarabine, fludarabine phosphate, N-(2′-furanidyl)-5-fluorouracil, Daiichi Seiyaku FO-152, 5-FU-fibrinogen, isopropyl pyrrolizine, Lilly LY-188011, Lilly LY-264618, methobenzaprim, methotrexate, Wellcome MZPES, norspermidine, nolvadex, NCI NSC-127716, NCI NSC-264880, NCI NSC-39661, NCI NSC-612567, Warner-Lambert PALA, pentostatin, piritrexim, plicamycin, Asahi Chemical PL-AC, stearate, Takeda TAC-788, thioguanine, tiazofurin, Erbamont TIF, trimetrexate, tyrosine kinase inhibitors, tyrosine protein kinase inhibitors, Taiho UFT, uricytin, Shionogi 254-S, aldo-phosphamide analogues, altretamine, anaxirone, Boehringer Mannheim BBR-2207, bestrabucil, budotitane, Wakunaga CA-102, carboplatin, carmustine (BiCNU), Chinoin-139, Chinoin-153, chlorambucil, cisplatin, cyclophosphamide, American Cyanamid CL-286558, Sanofi CY-233, cyplatate, dacarbazine, Degussa D-19-384, Sumimoto DACHP(Myr)2, diphenylspiromustine, diplatinum cytostatic, Chugai DWA-2114R, ITI E09, elmustine, Erbamont FCE-24517, estramustine phosphate sodium, etoposide phosphate, fotemustine, Unimed G-6-M, Chinoin GYKI-17230, hepsul-fam, ifosfamide, iproplatin, lomustine, mafosfamide, mitolactol, mycophenolate, Nippon Kayaku NK-121, NCI NSC-264395, NCI NSC-342215, oxaliplatin, Upjohn PCNU, prednimustine, Proter PTT-119, ranimustine, semustine, SmithKline SK&F-101772, thiotepa, Yakult Honsha SN-22, spiromus-tine, Tanabe Seiyaku TA-077, tauromustine, temozolomide, teroxirone, tetraplatin and trimelamol, Taiho 4181-A, aclarubicin, actinomycin-D, actinoplanone, Erbamont ADR-456, aeroplysinin derivative, Ajinomoto AN-201-II, Ajinomoto AN-3, Nippon Soda anisomycins, anthracycline, azino-mycin-A, bisucaberin, Bristol-Myers BL-6859, Bristol-Myers BMY-25067, Bristol-Myers BMY-25551, Bristol-Myers BMY-26605, Bristol-Myers BMY-27557, Bristol-Myers BMY-28438, bleomycin sulfate, bryostatin-1, Taiho C-1027, calichemycin, chromoximycin, dactinomycin, daunorubicin, Kyowa Hakko DC-102, Kyowa Hakko DC-79, Kyowa Hakko DC-88A, Kyowa Hakko DC89-A1, Kyowa Hakko DC92-B, ditrisarubicin B, Shionogi DOB-41, doxorubicin, doxorubicin-fibrinogen, elsamicin-A, epirubicin, erbstatin, esorubicin, esperamicin-A1, esperamicin-Alb, Erbamont FCE-21954, Fujisawa FK-973, fostriecin, Fujisawa FR-900482, glidobactin, gregatin-A, grincamycin, herbimycin, idarubicin, illudins, kazusamycin, kesarirhodins, Kyowa Hakko KM-5539, Kirin Brewery KRN-8602, Kyowa Hakko KT-5432, Kyowa Hakko KT-5594, Kyowa Hakko KT-6149, American Cyanamid LL-D49194, Meiji Seika ME 2303, menogaril, mitomycin, mitomycin analogues, mitoxantrone, SmithKline M-TAG, neoenactin, Nippon Kayaku NK-313, Nippon Kayaku NKT-01, SRI International NSC-357704, oxalysine, oxaunomycin, peplomycin, pilatin, pirarubicin, porothramycin, pyrindamycin A, Tobishi RA-I, rapamycin, rhizoxin, rodorubicin, sibanomicin, siwenmycin, Sumitomo SM-5887, Snow Brand SN-706, Snow Brand SN-07, sorangicin-A, sparsomycin, SS Pharmaceutical SS-21020, SS Pharmaceutical SS-7313B, SS Pharmaceutical SS-9816B, steffimycin B, Taiho 4181-2, talisomycin, Takeda TAN-868A, terpentecin, thrazine, tricrozarin A, Upjohn U-73975, Kyowa Hakko UCN-10028A, Fujisawa WF-3405, Yoshitomi Y-25024, zorubicin, 5-fluorouracil (5-FU), the peroxidate oxidation product of inosine, adenosine, or cytidine with methanol or ethanol, cytosine arabinoside (also referred to as Cytarabin, araC, and Cytosar), 5-Azacytidine, 2-Fluoroadenosine-5′-phosphate (Fludara, also referred to as FaraA), 2-Chlorodeoxyadenosine, Abarelix, Abbott A-84861, Abiraterone acetate, Aminoglutethimide, Asta Medica AN-207, Antide, Chugai AG-041R, Avorelin, aseranox, Sensus B2036-PEG, buserelin, BTG CB-7598, BTG CB-7630, Casodex, cetrolix, clastroban, clodronate disodium, Cosudex, Rotta Research CR-1505, cytadren, crinone, deslorelin, droloxifene, dutasteride, Elimina, Laval University EM-800, Laval University EM-652, epitiostanol, epristeride, Mediolanum EP-23904, EntreMed 2-ME, exemestane, fadrozole, finasteride, formestane, Pharmacia & Upjohn FCE-24304, ganirelix, goserelin, Shire gonadorelin agonist, Glaxo Wellcome GW-5638, Hoechst Marion Roussel Hoe-766, NCI hCG, idoxifene, isocordoin, Zeneca ICI-182780, Zeneca ICI-118630, Tulane University J015X, Schering Ag J96, ketanserin, lanreotide, Milkhaus LDI-200, letrozol, leuprolide, leuprorelin, liarozole, lisuride hydrogen maleate, loxiglumide, mepitiostane, Ligand Pharmaceuticals LG-1127, LG-1447, LG-2293, LG-2527, LG-2716, Bone Care International LR-103, Lilly LY-326315, Lilly LY-353381-HCl, Lilly LY-326391, Lilly LY-353381, Lilly LY-357489, miproxifene phosphate, Orion Pharma MPV-2213ad, Tulane University MZ-4-71, nafarelin, nilutamide, Snow Brand NKS01, Azko Nobel ORG-31710, Azko Nobel ORG-31806, orimeten, orimetene, orimetine, ormeloxifene, osaterone, Smithkline Beecham SKB-105657, Tokyo University OS W-1, Peptech PTL-03001, Pharmacia & Upjohn PNU-156765, quinagolide, ramorelix, Raloxifene, statin, sandostatin LAR, Shionogi S-10364, Novartis SMT-487, somavert, somatostatin, tamoxifen, tamoxifen methiodide, teverelix, toremifene, triptorelin, TT-232, vapreotide, vorozole, Yamanouchi YM-116, Yamanouchi YM-511, Yamanouchi YM-55208, Yamanouchi YM-53789, Schering AG ZK-1911703, Schering AG ZK-230211, and Zeneca ZD-182780, alpha-carotene, alpha-difluoromethyl-arginine, acitretin, Biotec AD-5, Kyorin AHC-52, alstonine, amonafide, amphethinile, amsacrine, Angiostat, ankinomycin, anti-neoplaston-A10, antineoplaston-A2, antineoplaston-A3, antineoplaston-A5, antineoplaston-AS2-1, Henkel-APD, aphidicolin glycinate, asparaginase, Avarol, baccharin, batracylin, benfluron, benzotript, Ipsen-Beaufour BIM-23015, bisantrene, Bristo-Myers BMY-40481, Vestar boron-10, bromofosfamide, Wellcome BW-502, Wellcome BW-773, calcium carbonate, Calcet, Calci-Chew, Calci-Mix, Roxane calcium carbonate tablets, caracemide, carmethizole hydrochloride, Ajinomoto CDAF, chlorsulfaquinoxalone, Chemes CHX-2053, Chemex CHX-100, Warner-Lambert CI-921, Warner-Lambert CI-937, Warner-Lambert CI-941, Warner-Lambert CI-958, clanfenur, claviridenone, ICN compound 1259, ICN compound 4711, Contracan, Cell Pathways CP-461, Yakult Honsha CPT-11, crisnatol, curaderm, cytochalasin B, cytarabine, cytocytin, Merz D-609, DABIS maleate, datelliptinium, DFMO, didemnin-B, dihaematoporphyrin ether, dihydrolenperone dinaline, distamycin, Toyo Pharmar DM-341, Toyo Pharmar DM-75, Daiichi Seiyaku DN-9693, docetaxel, Encore Pharmaceuticals E7869, elliprabin, elliptinium acetate, Tsumura EPMTC, ergotamine, etoposide, etretinate, Eulexin, Cell Pathways Exisulind (sulindac sulphone or CP-246), fenretinide, Florical, Fujisawa FR-57704, gallium nitrate, gemcitabine, genkwadaphnin, Gerimed, Chugai GLA-43, Glaxo GR-63178, grifolan NMF-5N, hexadecylphosphocholine, Green Cross HO-221, homoharringtonine, hydroxyurea, BTG ICRF-187, ilmofosine, irinotecan, isoglutamine, isotretinoin, Otsuka JI-36, Ramot K-477, ketoconazole, Otsuak K-76COONa, Kureha Chemical K-AM, MECT Corp KI-8110, American Cyanamid L-623, leucovorin, levamisole, leukoregulin, lonidamine, Lundbeck LU-23-112, Lilly LY-186641, Materna, NCI (US) MAP, marycin, Merrel Dow MDL-27048, Medco MEDR-340, megestrol, merbarone, merocyanine derivatives, methylanilinoacridine, Molecular Genetics MGI-136, minactivin, mitonafide, mitoquidone, Monocal, mopidamol, motretinide, Zenyaku Kogyo MST-16, Mylanta, N-(retinoyl)amino acids, Nilandron, Nisshin Flour Milling N-021, N-acylated-dehydroalanines, nafazatrom, Taisho NCU-190, Nephro-Calci tablets, nocodazole derivative, Normosang, NCI NSC-145813, NCI NSC-361456, NCI NSC-604782, NCI NSC-95580, octreotide, Ono ONO-112, oquizanocine, Akzo Org-10172, paclitaxel, pancratistatin, pazelliptine, Warner-Lambert PD-111707, Warner-Lambert PD-115934, Warner-Lambert PD-131141, Pierre Fabre PE-1001, ICRT peptide-D, piroxantrone, polyhaematoporphyrin, polypreic acid, Efamol porphyrin, probimane, procarbazine, proglumide, Invitron protease nexin I, Tobishi RA-700, razoxane, retinoids, R-flurbiprofen (Encore Pharmaceuticals), Sandostatin, Sapporo Breweries RBS, restrictin-P, retelliptine, retinoic acid, Rhone-Poulenc RP-49532, Rhone-Poulenc RP-56976, Scherring-Plough SC-57050, Scherring-Plough SC-57068, selenium (selenite and selenomethionine), SmithKline SK&F-104864, Sumitomo SM-108, Kuraray SMANCS, SeaPharm SP-10094, spatol, spirocyclopropane derivatives, spirogermanium, Unimed, SS Pharmaceutical SS-554, strypoldinone, Stypoldione, Suntory SUN 0237, Suntory SUN 2071, Sugen SU-101, Sugen SU-5416, Sugen SU-6668, sulindac, sulindac sulfone, superoxide dismutase, Toyama T-506, Toyama T-680, taxol, Teijin TEI-0303, teniposide, thaliblastine, Eastman Kodak TJB-29, tocotrienol, Topostin, Teijin TT-82, Kyowa Hakko UCN-01, Kyowa Hakko UCN-1028, ukrain, Eastman Kodak USB-006, vinblastine, vinblastine sulfate, vincristine, vincristine sulfate, vindesine, vindesine sulfate, vinestramide, vinorelbine, vintriptol, vinzolidine, withanolides, Yamanouchi YM-534, Zileuton, ursodeoxycholic acid, Zanosar. Drug choices are not intended to be limited. For example, coatings on medical devices can include drugs used in time-release drug applications. Proteins may be coated according to these methods and coatings described herein may comprise proteins. Peptides may be coated according to these methods and coatings described herein may comprise peptides.


Releasing Agents

In some embodiments, coating particles can include releasing agents, which may include low-energy releasing agents (also called low-energy release agents). Releasing agents may also be called a “release agent.” These materials find use in coatings that are applied to, e.g., medical devices (e.g., medical balloons) and medical implant devices (e.g., drug-eluting stents), but are not limited thereto. Choice for near-critical or supercritical fluid is based on the solubility of the selected solute(s) of interest, which is not limited.


A release agent may comprise: hydrophilic or hydrophobic chemicals or polymers that lower the interfacial energy between the surface of the medical device and the coating layers, water soluble chemicals or polymers that dissolve to eliminate adhesion between coatings layers and the medical device surface, brittle or friable coatings that lose mechanical cohesion upon, Polyethylene glycols (PEG), Hydrogels, Polyesters, Polyacrylates, Polysaccharides, Silicones, Silanes, Tocopherol, Glycerin, Sucrose, Cellulose, and Shellac.


A low-energy releasing agents may be a subset of the larger set of releasing agents. A releasing agent that is “low-energy” may be defined as a releasing agent with surface energy of less than 35 dynes/cm or agents onto which a drop of water would experience a contact angle of greater than 90 degrees. Examples of low-energy releasing agents include (but are not limited to): Polyvinyl alcohols (PVA), Ethylene vinyl acetates (EVA), Polyolefins, Fluorosilanes, Fluoroacrylates, Fluorohydrocarbons, Paraffin, and Long chain hydrocarbons.


Adhesive Agents

In some embodiments, coating particles can include adhesive agents that serve to affix the balloon coating to a receiving surface when the surface is contacted. Adhesive agents may comprise any one or more of the following: agents with cationic moieties that assist in cellular adhesion/uptake, shattering agents that penetrate tissue surface and promote adhesion through mechanical entanglement, viscous polymeric agents, and cationic polyamino acids. Cationic polyamino acids include, but are not limited to: polyarginine, polylysine, polyhistidine, and polyethyleneimine (PEI). Adhesive agents may comprise any one or more of the following: 3,4-dihydroxy-L-phenylalanine (dopa), (as in active component in mussel adhesive), laminins, and cationic surfactant molecules. Cationic surfactant molecules include, but are not limited to: didodecyldimethylammonium bromide (DMAB), ethylhexadecyldimethylammonium bromide, do decyltrimethyl ammonium bromide, tetradodecylammonium bromide, dimethylditetradecylammonium bromide, tetrabutylammonium iodide, DEAE-dextran hydrochloride, and hexadimethrine bromide.


e-RESS Generated Coating Layers


FIG. 4 presents exemplary process steps for generating e-RESS coating layers on expandable medical balloons that deliver transferable, drug-eluting deposits at target locations within a host or patient, according to an embodiment of the invention. In a first step (405), a preselected solvent is intermixed with at least one coating material at a preselected pressure or temperature to form a supercritical solution. Next (410), the selected coating material is discharged from the supercritical solution through a restrictor nozzle (FIG. 1) as a RESS plume to form e-RESS charged coating particles at a preselected pressure and temperature. Next (415), the e-RESS generated charged coating particles are delivered to the surface of the balloon to form a coating layer containing the charged coating particles. In some embodiments, the particles are electrostatically attracted to the surface of the balloon either with or without the addition of an actively induced electrostatic field. In an optional step (420), the coating layer containing the charged coating particles is sintered to form a stable RESS film layer, e.g., on the surface of the balloon. Next (425), form one or more coating layers on the surface of the balloon using the e-RESS process.


e-STAT Generated Coating Layers


FIG. 5 presents exemplary process steps for generating e-STAT coating layers as a component of drug-eluting coatings formed in accordance with an embodiment of the invention. First (505), a potential is applied to the conductive element located within the expandable medical balloon to generate a selected potential on the surface of the balloon as described herein. A potential of −15 kV is typical. However, potentials are not intended to be limited thereto. Next (510), a preselected coating material is discharged as a plume of dry charged (e-STAT) coating particles in an inert discharge gas absent a solvent at a preselected pressure and temperature. Next (515), the dry charged coating particles containing the preselected coating material are electrostatically attracted to the surface of the balloon to form a dry coating layer on the surface of the balloon. In some embodiments, the electrostatic attraction between the particles and the balloon surface is performed with or without the addition of an actively induced electrostatic field. In an optional step (520), the coating layer containing the charged coating particles is sintered to form a stable e-STAT film layer on the surface of the balloon or to stabilize the e-STAT particles by fusing them to a previously deposited polymer layer. Next (525), the e-STAT process is repeated as necessary to form one or more coating layers on the surface of the balloon.


Combined e-RESS/e-STAT Generated Coating Layers


FIG. 6 presents exemplary process steps for generating combined e-RESS/e-STAT coating layers as a component of drug-eluting coatings formed in accordance with an embodiment of the invention. First (605), e-RESS generated charged coating particles and/or e-STAT generated charged coating particles containing a preselected coating material are discharged in respective plumes at a preselected pressure and temperature. In some embodiments, the plumes containing the e-RESS and/or e-STAT generated charged coating particles can be discharged as separately in respective plumes or simultaneously in combined plumes in any order. No limitations are intended. Next (610), the e-RESS and/or e-STAT charged coating particles containing the preselected coating material are delivered to the surface of the balloon to form one or more coating layers containing the charged coating particles on the surface of the balloon. In some embodiments, the particles are electrostatically attracted to the surface of the balloon either with or without the addition of an actively induced electrostatic field. In an optional step (615), the e-RESS and/or e-STAT coating layers containing the charged coating particles are sintered to form stable coating layers on the surface of the balloon. Next (620), one or more e-RESS and/or e-STAT coating layers are formed on the surface of the balloon using e-RESS and/or e-STAT processes performed individually, serially, or simultaneously.


Delivery of Coatings that Form Drug-Eluting Deposits

The transferable material or “portion of the coating” is delivered from the surface of the medical balloon to the target site within the vascular system of the patient or host by expanding the medical balloon within the receiving vessel (e.g., an artery or other vessel) at the location where the therapeutic drug or other therapeutic agent is needed. This process transfers the drug-eluting composite (or “material”) to the host vessel (e.g., artery or vein) providing treatment or medical intervention in the host or patient. In exemplary tests, coatings comprised of one or more layers including a biosorbable polymer and drug were successfully deployed within the vascular system of a host or patient. Delivery and placement of all or portions of a cylindrical coating consisting of a therapeutic drug (e.g., rapamycin) encapsulated in a biosorbable polymer matrix (e.g., PLGA) into a blood vessel can provide long-term treatment of, e.g., arterial disease in patients. The drug-eluting composite/material remains deployed within the host vessel after deflation and removal of the medical balloon. Drug is continuously provided in a time-released manner by the drug-eluting composite/material without need for a permanent medical device to be present in the body. The drug-eluting coating can continue to deliver a needed drug benefit over time.



FIG. 7 is a photomicrograph showing a polymer coating transferred from medical balloon onto the inner surface of medical-grade tubing (e.g., TYGON® medical tubing) that simulates transfer in an environment like those expected for delivery in mammalian hosts and human patients. The coating material was successfully transferred from the balloon surface to the inner wall (surface) of the medical tubing. The coating material on the surface of the medical balloon attaches to the host vessel upon expansion of the balloon. Removal and transfer of coating material from the balloon surface was effected in concert with a release layer composed of a low surface energy PTFE polymer (commercial-grade) that was deposited between the surface of the balloon and a first polymer layer prior to application of a subsequent PLGA polymer layer. So-called “release layers” are preferably, but not exclusively used. In the instant test, release was accomplished by inserting the coated balloon into TYGON® tubing, expanding the balloon at a temperature of 37° C., and pressing the expanded balloon on the inner wall of the tubing for about 2 minutes at equilibrium, or for 1 minute at a pressure of about 250 psi while immersing in an aqueous bath. Pressure used in this test is comparable to pressures used to deploy medical balloons in typical medical procedures. Results showed the entire polymer coating deposited on the balloon surface was transferred to the inner wall of the tube, forming the polymer coating. The outermost layer of the transferable coating material that becomes the innermost layer of the transferred composite deposited in the vessel lumen is preferably, but not exclusively, a coherent layer. The transferred material may further consist of partial or incomplete layers.


Effecting Net Charge of Transferred Material Surface

In other embodiments, release and transfer of the transferable coating material from the surface of the medical device to the vessel wall of the host or patient may be further enhanced by adding a net positive or net negative charge to the outermost surface of the transferable coating. This enhanced charge can also enhance attraction or otherwise promote adhesion of the coating particles to the surface of the vessel wall to which the coating is delivered. Such charge can also promote uptake of the therapeutic agent present within the transferred coating material into various cells of the patient or host where tissue damage induced by balloon expansion can be treated. The outermost coating layer on the surface of the medical balloon is preferably, but not exclusively, charged with a net positive charge. In some embodiments, a net positive charge enhances the attraction of the coating material on the surface of the expandable delivery device to the receiving surface of the host vessel. Although a positive net charge is described here, choice of charge is not limited. Tests on host vessel surrogates have demonstrated the ability to transfer polymer and drug coating materials at conditions similar to those found in a human body.


Provided herein is a method for forming an implantable, drug-eluting coating on the surface of an expandable medical device, characterized by the steps of: mounting an expandable delivery device with an internally disposed conducting member that maximizes conduction of charge on the surface of the device; delivering preselected potentials with the conducting member to the surface of the expandable delivery device to maximize collection of coating particles on the surface thereof; and coating the expandable delivery device with coating particles delivered via an e-RESS process, and e-STAT process, or a combined e-RESS process and e-STAT process to form one or more coating layers on the surface thereof.


In some embodiments, the expandable delivery device is a medical balloon. In some embodiments, at least one coating layer of the expandable delivery device includes a drug-eluting component and at least one coating layer includes a biosorbable polymer forming the implantable drug eluting coating on the surface of the device. In some embodiments, the medical balloon comprises nylon.


In some embodiments, the coating provides transfer of at least a portion of the one or more coating layers upon contact with a host vessel.


In some embodiments, wherein the expandable delivery device is at least a portion of a medical implant device. In some embodiments, the expandable delivery device is an interventional device. In some embodiments, the expandable delivery device is a diagnostic device. In some embodiments, the expandable delivery device is mounted to a delivery device prior to insertion into a host vessel. In some embodiments, the delivery device is a catheter.


In some embodiments, the conduction of charge on the surface is via gas-phase conduction or surface conduction of charge. In some embodiments, the delivering of preselected potentials includes delivering an active potential with the conducting component. In some embodiments, the delivering of preselected potentials does not include applying an active potential to the conducting component. In some embodiments, the delivering includes applying an electrostatic field potential on the surface of the expandable delivery device of at least about 15 kV prior to the coating step with the e-STAT process.


In some embodiments, the biosorbable polymer and drug eluting component are located within the same coating layer. In some embodiments, the coating includes coating the surface simultaneously with the e-RESS process and the e-STAT process to encapsulate a drug and a biosorbable polymer in a single layer of the drug-eluting coating.


In some embodiments, the drug-eluting component includes a drug dispersed within a biosorbable polymer disposed in a single coating layer. In some embodiments, the biosorbable polymer and drug-eluting component are located in different coating layers. In some embodiments, at least one coating layer includes a binding component comprising polylactoglycolic acid (PLGA).


In some embodiments, the expandable delivery device is at least partially expanded during coating of same.


In some embodiments, at least a portion of the biosorbable polymer has a preselected molecular weight that enhances transferability of the drug-eluting coating to the receiving surface within the host vessel. In some embodiments, the drug is a time-released drug that provides time-selectivity for treatment of a host or patient. In some embodiments, the drug has a crystalline form. In some embodiments, the drug comprises sirolimus.


In some embodiments, the coating includes masking one or more preselected portions of the expandable delivery device. In some embodiments, the masking includes forming preselected shapes selected from: oval, square, rectangle, triangular, or cylindrical within the coating layers on the surface of the expandable delivery device that contain an active drug delivered in the drug-eluting coating when in contact with the receiving surface.


In some embodiments, at least one coating layer includes a releasing agent selected from the group consisting of hydrophilic or hydrophobic chemicals or polymers that lower the interfacial energy between the surface of the medical device and the coating layers, water soluble chemicals or polymers that dissolve to eliminate adhesion between coatings layers and the medical device surface, brittle or friable coatings that lose mechanical cohesion upon, polyethylene glycols (PEG), hydrogels, polyesters, polyacrylates, polysaccharides, silicones, silanes, tocopherol, glycerin, sucrose, cellulose, shellac, and combinations thereof providing release of the coating to the receiving surface upon contact with same. In some embodiments, the releasing agent is located within a coating layer disposed between the surface of the expandable delivery device and a first layer comprising a biosorbable polymer.


In some embodiments, at least one coating layer on the surface of the expandable delivery device comprises a low-energy releasing agent selected from the group consisting of a releasing agent with surface energy of less than 35 dynes/cm or agents onto which a drop of water would experience a contact angle of greater than 90 degrees, polyvinyl alcohols (PVA), ethylene vinyl acetates (EVA), folyolefins, fluorosilanes, fluoroacrylates, fluorohydrocarbons, paraffin, long chain hydrocarbons, and combinations thereof. In some embodiments, the low-energy releasing agent is located within a coating layer disposed between the surface of the expandable delivery device and a first layer comprising a biosorbable polymer.


In some embodiments, at least one coating layer on the surface of the expandable delivery device comprises an adhesive agent selected from the group consisting of agents with cationic moieties that assist in cellular adhesion/uptake, shattering agents that penetrate tissue surface and promote adhesion through mechanical entanglement, viscous polymeric agents, and cationic polyamino acids such as polyarginine, polylysine, polyhistidine, and polyethyleneimine (PEI), 3,4-dihydroxy-L-phenylalanine (dopa), (as in active component in mussel adhesive), laminins, cationic surfactant molecules such as didodecyldimethylammonium bromide (DMAB), ethylhexadecyldimethylammonium bromide, dodecyltrimethyl ammonium bromide, tetradodecylammonium bromide, dimethylditetradecylammonium bromide, detrabutylammonium iodide, DEAE-dextran hydrochloride, and hexadimethrine bromide, and combinations thereof that affixes the transferable coating material to the receiving surface upon expansion of the expandable delivery device. In some embodiments, the transferable coating material includes an adhesion layer that enhances adhesion with the receiving surface. In some embodiments, the adhesive agent is included with the biosorbable polymer in a single coating layer on the surface of the expandable delivery device.


In some embodiments, at least one coating layer includes both the biosorbable polymer and a drug or therapeutic agent to provide timed-release delivery of the drug or therapeutic agent by dissolution of the biosorbable polymer layer within the coating material transferred to the host vessel. In some embodiments, the leading layer of the transferable coating on the surface of the expandable delivery device contains therapeutic drug particles modified with a surface charge prior.


In some embodiments, the coating particles are of a size between about 0.01 micrometers and about 10 micrometers.


In some embodiments, the step of sintering the transferable coating material to form a dense, thermally stable film on the surface of the expandable delivery device prior to delivery of same at a temperature in the range from about 25° C. to about 150° C.


In some embodiments, the sintering includes sintering the transferable coating material in the presence of a solvent gas to form a dense, thermally stable film on the surface of the expandable delivery device.


In some embodiments, the method further includes the step of transferring at least a portion of the coating from the expandable delivery device to a receiving surface of a host vessel to form a drug-eluting deposit therein. In some embodiments, the transferring includes expanding the expandable delivery device to transfer and implant at least a portion of the drug-eluting coating to the receiving surface of the host vessel. In some embodiments, the step of expanding includes expanding the expandable delivery device using a fluid that maintains rigidity and integrity of along the external surface of same. In some embodiments, the expanding includes at least partially deflating the expandable delivery device to reduce the physical dimensions of the expandable delivery device when inserting same into the host vessel prior to transferring the coating to the receiving surface of the host vessel.


Provided herein are devices comprising the elements noted herein, which may be produced according to methods described herein.


While exemplary embodiments of the present invention have been shown and described herein, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the invention in its true scope and broader aspects. The appended claims are therefore intended to cover all such changes and modifications as fall within the spirit and scope of the invention.

Claims
  • 1. A method for forming an implantable, drug-eluting coating on the surface of an expandable medical device, characterized by the steps of: mounting an expandable delivery device on each of a plurality of conducting members such that each conducting member is internally disposed within a different one of a plurality of expandable delivery device, the conducting members being oriented around a circle;delivering preselected potentials with each conducting member to a surface of the expandable delivery devices in which the conducting member is disposed to optimize collection of coating particles on the surfaces of the expandable delivery device; andcoating the expandable delivery devices with coating particles delivered via an e-RESS process, an e-STAT process, or a combined e-RESS process and e-STAT process to form one or more coating layers on the surfaces thereof,wherein the coating particles are concurrently delivered to the surfaces of each one of the plurality of delivery devices via an e-RESS coating nozzle, an E-STAT coating nozzle, or the e-RESS coating nozzle and the E-STAT coating nozzle.
  • 2. The method of claim 1, wherein each expandable delivery device is a medical balloon.
  • 3. The method of claim 1, wherein at least one coating layer of each expandable delivery device includes a drug-eluting component and at least one coating layer includes a biosorbable polymer forming the implantable drug eluting coating on the surfaces of the devices.
  • 4. The method of claim 1, wherein the coating provides transfer of at least a portion of the one or more coating layers upon contact with a host vessel.
  • 5. The method of claim 2, where the medical balloons comprise nylon.
  • 6. The method of claim 1, wherein each expandable delivery device is at least a portion of a medical implant device.
  • 7. The method of claim 1, wherein each expandable delivery device is an interventional device.
  • 8. The method of claim 1, wherein each expandable delivery device is a diagnostic device.
  • 9. The method of claim 1, wherein each expandable delivery device is mounted to a delivery device prior to insertion into a host vessel.
  • 10. The method of claim 9, wherein each delivery device is a catheter.
  • 11. The method of claim 1, wherein a conduction of charge on the surface is via gas-phase conduction or surface conduction of charge.
  • 12. The method of claim 1, wherein the delivering includes applying an electrostatic field potential on the surfaces of each expandable delivery device of at least about 15 kV prior to the coating step with the e-STAT process.
  • 13. The method of claim 3, wherein the biosorbable polymer and drug eluting component are located within the same coating layer.
  • 14. The method of claim 3, wherein the coating includes coating the surfaces simultaneously with the e-RESS process and the e-STAT process to encapsulate a drug and a biosorbable polymer in a single layer of the drug-eluting coating.
  • 15. The method of claim 3, wherein the drug-eluting component includes a drug dispersed within a biosorbable polymer disposed in a single coating layer.
  • 16. The method of claim 3, wherein the biosorbable polymer and drug-eluting component are located in different coating layers.
  • 17. The method of claim 1, wherein at least one coating layer includes a binding component comprising polylactoglycolic acid (PLGA).
  • 18. The method of claim 1, wherein each expandable delivery device is at least partially expanded during coating of same.
  • 19. The method of claim 3, wherein at least a portion of the biosorbable polymer has a preselected molecular weight that enhances transferability of the drug-eluting coating to a receiving surface within a host vessel.
  • 20. The method of claim 19, wherein the drug is a time-released drug that provides time-selectivity for treatment of a host or patient.
  • 21. The method of claim 19, wherein the drug has a crystalline form.
  • 22. The method of claim 19, wherein the drug comprises sirolimus.
  • 23. The method of claim 1, wherein the coating includes masking one or more preselected portions of each expandable delivery device.
  • 24. The method of claim 23, wherein the masking includes forming preselected shapes selected from: oval, square, rectangle, triangular, or cylindrical within the coating layers on the surfaces of the expandable delivery devices that contain an active drug delivered in the drug-eluting coating when in contact with a receiving surface.
  • 25. The method of claim 1, wherein at least one coating layer includes a releasing agent selected from the group consisting of: hydrophilic or hydrophobic chemicals or polymers that lower the interfacial energy between the surface of the medical device and the coating layers, water soluble chemicals or polymers that dissolve to eliminate adhesion between coatings layers and the medical device surface, brittle or friable coatings that lose mechanical cohesion upon, polyethylene glycols (PEG), hydrogels, polyesters, polyacrylates, polysaccharides, silicones, silanes, tocopherol, glycerin, sucrose, cellulose, shellac, and combinations thereof providing release of the coating to the receiving surface upon contact with same.
  • 26. The method of claim 25, wherein the releasing agent is located within a coating layer disposed between the surface of the expandable delivery device and a first layer comprising a biosorbable polymer.
  • 27. The method of claim 1, wherein at least one coating layer on the surface of the expandable delivery device comprises a low-energy releasing agent selected from the group consisting of: a releasing agent with surface energy of less than 35 dynes/cm or agents onto which a drop of water would experience a contact angle of greater than 90 degrees, polyvinyl alcohols (PVA), ethylene vinyl acetates (EVA), folyolefins, fluorosilanes, fluoroacrylates, fluorohydrocarbons, paraffin, long chain hydrocarbons, and combinations thereof.
  • 28. The method of claim 27, wherein the low-energy releasing agent is located within a coating layer disposed between the surface of the expandable delivery device and a first layer comprising a biosorbable polymer.
  • 29. The method of claim 1, wherein at least one coating layer on the surface of the expandable delivery device comprises an adhesive agent selected from the group consisting of: agents with cationic moieties that assist in cellular adhesion/uptake, shattering agents that penetrate tissue surface and promote adhesion through mechanical entanglement, viscous polymeric agents, and cationic polyamino acids such as polyarginine, polylysine, polyhistidine, and polyethyleneimine (PEI), 3,4-dihydroxy-L-phenylalanine (dopa), (as in active component in mussel adhesive), laminins, cationic surfactant molecules such as didodecyldimethylammonium bromide (DMAB), ethylhexadecyldimethylammonium bromide, dodecyltrimethyl ammonium bromide, tetradodecylammonium bromide, dimethylditetradecylammonium bromide, detrabutylammonium iodide, DEAE-dextran hydrochloride, and hexadimethrine bromide, and combinations thereof that affixes the coating to a receiving surface upon expansion of the expandable delivery device.
  • 30. The method of claim 29, wherein the adhesive agent enhances adhesion with the receiving surface.
  • 31. The method of claim 29, wherein the adhesive agent is included with a biosorbable polymer in a single coating layer on the surface of the expandable delivery device.
  • 32. The method of claim 1, wherein at least one coating layer includes both a biosorbable polymer and either a drug or a therapeutic agent to provide timed-release delivery of the drug or the therapeutic agent by dissolution of the biosorbable polymer layer.
  • 33. The method of claim 1, wherein at least one coating layer of the coating on the surface of the expandable delivery device contains therapeutic drug particles modified with a surface charge prior.
  • 34. The method of claim 1, wherein the coating particles are of a size between about 0.01 micrometers and about 10 micrometers.
  • 35. The method of claim 1, further including the step of sintering the coating to form a dense, thermally stable film on the surfaces of each expandable delivery device prior to delivery of same at a temperature in the range from about 25° C. to about 150° C.
  • 36. The method of claim 35, wherein the sintering includes sintering the coating in the presence of a solvent gas to form a dense, thermally stable film on the surfaces of each expandable delivery device.
  • 37. The method of claim 1, further including a step of transferring at least a portion of the coating from at least one of the expandable delivery devices to a receiving surface of a host vessel to form a drug-eluting deposit therein.
  • 38. The method of claim 37, wherein the transferring step includes expanding the expandable delivery device to transfer and implant at least a portion of the drug-eluting coating to the receiving surface of the host vessel.
  • 39. The method of claim 38, wherein the step of expanding includes expanding the expandable delivery device using a fluid that maintains rigidity and integrity along an external surface of the delivery device.
  • 40. The method of claim 38, wherein the expanding includes at least partially deflating the expandable delivery device to reduce the physical dimensions of the expandable delivery device when inserting the delivery device into the host vessel prior to transferring the coating to the receiving surface of the host vessel.
  • 41. The method of claim 1, wherein each of the internally disposed conducting members are located on a ring and extend along a longitudinal axis of a respective expandable delivery device and substantially an entire length of the respective expandable delivery devices.
  • 42. The method of claim 41, wherein the mounting step includes contacting each of the plurality of expandable delivery devices with the ring.
  • 43. The method of claim 42, wherein the ring includes upper and lower rings, the plurality of expandable delivery devices being in contact with the upper ring.
CROSS-REFERENCE

This application claims the benefit of U.S. Provisional Application No. 61/491,847, filed May 31, 2011 and U.S. Provisional Application No. 61/649,585, filed May 21, 2012, each of which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2012/040040 5/30/2012 WO 00 8/11/2014
Publishing Document Publishing Date Country Kind
WO2012/166819 12/6/2012 WO A
US Referenced Citations (373)
Number Name Date Kind
3087860 Endicott Apr 1963 A
3123077 Alcamo Mar 1964 A
3457280 Schmitt et al. Jul 1969 A
3597449 Deprospero et al. Aug 1971 A
3929992 Sehgal et al. Dec 1975 A
4000137 Dvonch et al. Dec 1976 A
4285987 Ayer et al. Aug 1981 A
4289278 Itoh Sep 1981 A
4326532 Hammar Apr 1982 A
4336381 Nagata et al. Jun 1982 A
4582731 Smith Apr 1986 A
4655771 Wallsten Apr 1987 A
4733665 Palmaz Mar 1988 A
4734227 Smith Mar 1988 A
4734451 Smith Mar 1988 A
4931037 Wetterman Jun 1990 A
4950239 Gahara Aug 1990 A
4985625 Hurst Jan 1991 A
5000519 Moore Mar 1991 A
5071429 Pinchuk Dec 1991 A
5090419 Palestrant Feb 1992 A
5096848 Kawamura Mar 1992 A
5106650 Hoy et al. Apr 1992 A
5158986 Cha et al. Oct 1992 A
5195969 Wang et al. Mar 1993 A
5243023 Dezern Sep 1993 A
5270086 Hamlin Dec 1993 A
5288711 Mitchell et al. Feb 1994 A
5324049 Mistrater et al. Jun 1994 A
5340614 Perman et al. Aug 1994 A
5350361 Tsukashima et al. Sep 1994 A
5350627 Nemphos et al. Sep 1994 A
5342621 Eury Oct 1994 A
5356433 Rowland et al. Oct 1994 A
5366504 Andersen et al. Nov 1994 A
5368045 Clement et al. Nov 1994 A
5372676 Lowe Dec 1994 A
5385776 Maxfield et al. Jan 1995 A
5387313 Thoms Feb 1995 A
5403347 Roby et al. Apr 1995 A
5470603 Staniforth et al. Nov 1995 A
5494620 Liu et al. Feb 1996 A
5500180 Anderson et al. Mar 1996 A
5556383 Wang et al. Sep 1996 A
5562922 Lambert Oct 1996 A
5569463 Helmus et al. Oct 1996 A
5599576 Opolski Feb 1997 A
5609629 Fearnot et al. Mar 1997 A
5626611 Liu et al. May 1997 A
5626862 Brem et al. May 1997 A
5674242 Phan et al. Oct 1997 A
5725570 Heath Mar 1998 A
5800511 Mayer Sep 1998 A
5811032 Kawai et al. Sep 1998 A
5824049 Ragheb et al. Oct 1998 A
5837313 Ding et al. Nov 1998 A
5873904 Ragheb et al. Feb 1999 A
5876426 Kume et al. Mar 1999 A
5924631 Rodrigues et al. Jul 1999 A
5948020 Yoon et al. Sep 1999 A
5957975 Lafont et al. Sep 1999 A
5980972 Ding Nov 1999 A
6013855 McPherson et al. Jan 2000 A
6077880 Castillo et al. Jun 2000 A
6129755 Mathis et al. Oct 2000 A
6143037 Goldsten et al. Nov 2000 A
6143314 Chandrashekar et al. Nov 2000 A
6146356 Wang et al. Nov 2000 A
6146404 Kim et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
6171327 Daniel et al. Jan 2001 B1
6190699 Luzzi et al. Feb 2001 B1
6206914 Soykan et al. Mar 2001 B1
6231600 Zhong et al. May 2001 B1
6245104 Alt Jun 2001 B1
6248127 Shah et al. Jun 2001 B1
6248129 Froix Jun 2001 B1
6273913 Wright et al. Aug 2001 B1
6280802 Akedo et al. Aug 2001 B1
6284758 Egi et al. Sep 2001 B1
6309669 Setterstrom et al. Oct 2001 B1
6319541 Pletcher et al. Nov 2001 B1
6336934 Gilson et al. Jan 2002 B1
6342062 Suon et al. Jan 2002 B1
6355691 Goodman Mar 2002 B1
6358556 Ding et al. Mar 2002 B1
6361819 Tedeschi et al. Mar 2002 B1
6364903 Tseng et al. Apr 2002 B2
6368658 Schwartz et al. Apr 2002 B1
6372246 Wei et al. Apr 2002 B1
6387121 Alt May 2002 B1
6409716 Sahatjian et al. Jun 2002 B1
6414050 Howdle et al. Jul 2002 B1
6416779 D-Augustine et al. Jul 2002 B1
6448315 Lidgren et al. Sep 2002 B1
6461644 Jackson et al. Oct 2002 B1
6495163 Jordan Dec 2002 B1
6497729 Moussy et al. Dec 2002 B1
6506213 Mandel et al. Jan 2003 B1
6517860 Rosser et al. Feb 2003 B1
6521258 Mandel et al. Feb 2003 B1
6524698 Schmoock Feb 2003 B1
6537310 Palmaz et al. Mar 2003 B1
6541033 Shah Apr 2003 B1
6572813 Zhang et al. Jun 2003 B1
6610013 Fenster et al. Aug 2003 B1
6627246 Mehta et al. Sep 2003 B2
6649627 Cecchi et al. Nov 2003 B1
6660176 Tepper et al. Dec 2003 B2
6669785 DeYoung et al. Dec 2003 B2
6669980 Hanson et al. Dec 2003 B2
6670407 Howdle et al. Dec 2003 B2
6682757 Wright Jan 2004 B1
6706283 Appel et al. Mar 2004 B1
6710059 Labrie et al. Mar 2004 B1
6720003 Cheng et al. Apr 2004 B2
6723913 Barbetta Apr 2004 B1
6726712 Raeder-Devens et al. Apr 2004 B1
6736996 Carbonell et al. May 2004 B1
6743505 Antall et al. Jun 2004 B2
6749902 Yonker et al. Jun 2004 B2
6755871 Damaso et al. Jun 2004 B2
6756084 Fulton et al. Jun 2004 B2
6767558 Wang et al. Jul 2004 B2
6780475 Fulton et al. Aug 2004 B2
6794902 Becker et al. Sep 2004 B2
6800663 Asgarzadeh et al. Oct 2004 B2
6815218 Jacobsen et al. Nov 2004 B1
6821549 Jayaraman Nov 2004 B2
6837611 Kuo et al. Jan 2005 B2
6838089 Carlsson et al. Jan 2005 B1
6838528 Zhou Jan 2005 B2
6858598 McKearn et al. Feb 2005 B1
6860123 Uhlin et al. Mar 2005 B1
6884377 Burnham et al. Apr 2005 B1
6884823 Plerick et al. Apr 2005 B1
6897205 Beckert et al. May 2005 B2
6905555 DeYoung et al. Jun 2005 B2
6908624 Hossainy et al. Jun 2005 B2
6916800 McKearn et al. Jul 2005 B2
6923979 Fotland et al. Aug 2005 B2
6939569 Green et al. Sep 2005 B1
6973718 Sheppard et al. Dec 2005 B2
7148201 Stern et al. Dec 2006 B2
7152452 Kokish Dec 2006 B2
7160592 Rypacek et al. Jan 2007 B2
7163715 Kramer Jan 2007 B1
7169404 Hossainy et al. Jan 2007 B2
7171255 Holupka et al. Jan 2007 B2
7201750 Eggers et al. Apr 2007 B1
7201940 Kramer Apr 2007 B1
7229837 Chen Jun 2007 B2
7279174 Pacetti et al. Oct 2007 B2
7282020 Kaplan Oct 2007 B2
7308748 Kokish Dec 2007 B2
7326734 Zi et al. Feb 2008 B2
7378105 Burke et al. May 2008 B2
7419696 Berg et al. Sep 2008 B2
7429378 Serhan et al. Sep 2008 B2
7444162 Hassan Oct 2008 B2
7455688 Furst et al. Nov 2008 B2
7456151 Li et al. Nov 2008 B2
7462593 Cuttitta et al. Dec 2008 B2
7485113 Varner et al. Feb 2009 B2
7488389 Osawa Feb 2009 B2
7524865 D'Amato et al. Apr 2009 B2
7537610 Reiss May 2009 B2
7537785 Loscalzo et al. May 2009 B2
7553827 Attawia et al. Jun 2009 B2
7713538 Lewis et al. May 2010 B2
7727275 Betts et al. Jun 2010 B2
7763277 Canham et al. Jul 2010 B1
7837726 Von Oepen et al. Nov 2010 B2
7919108 Rees et al. Apr 2011 B2
7955383 Krivoruchko et al. Jun 2011 B2
7972661 Pui et al. Jul 2011 B2
8097292 Chen Jan 2012 B2
8298565 Taylor et al. Oct 2012 B2
8758429 Taylor et al. Jun 2014 B2
8795762 Fulton et al. Aug 2014 B2
8834913 Shaw et al. Sep 2014 B2
20010026804 Boutignon Oct 2001 A1
20010034336 Shah et al. Oct 2001 A1
20010044629 Stinson Nov 2001 A1
20010049551 Tseng et al. Dec 2001 A1
20020007209 Scheerder et al. Jan 2002 A1
20020051845 Mehta et al. May 2002 A1
20020082680 Shanley et al. Jun 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020099332 Slepian et al. Jul 2002 A1
20020125860 Schworm et al. Sep 2002 A1
20020133072 Wang et al. Sep 2002 A1
20020144757 Craig et al. Oct 2002 A1
20030001830 Wampler et al. Jan 2003 A1
20030031699 Van Antwerp Feb 2003 A1
20030077200 Craig et al. Apr 2003 A1
20030088307 Shulze et al. May 2003 A1
20030125800 Shulze et al. Jul 2003 A1
20030143315 Pui et al. Jul 2003 A1
20030170305 O'Neil et al. Sep 2003 A1
20030180376 Dalal et al. Sep 2003 A1
20030185964 Weber et al. Oct 2003 A1
20030204238 Tedeschi Oct 2003 A1
20030222017 Fulton et al. Dec 2003 A1
20030222018 Yonker et al. Dec 2003 A1
20030222019 Fulton et al. Dec 2003 A1
20030232014 Burke et al. Dec 2003 A1
20040013792 Epstein et al. Jan 2004 A1
20040018228 Fischell et al. Jan 2004 A1
20040022853 Ashton et al. Feb 2004 A1
20040044397 Stinson Mar 2004 A1
20040059290 Palasis Mar 2004 A1
20040106982 Jalisi Jun 2004 A1
20040122205 Nathan Jun 2004 A1
20040126542 Fujiwara et al. Jul 2004 A1
20040143317 Stinson et al. Jul 2004 A1
20040157789 Geall Aug 2004 A1
20040170685 Carpenter et al. Sep 2004 A1
20040193177 Houghton et al. Sep 2004 A1
20040193262 Shadduck Sep 2004 A1
20040220660 Shanley et al. Nov 2004 A1
20040224001 Pacetti et al. Nov 2004 A1
20040236416 Falotico Nov 2004 A1
20040260000 Chaiko Dec 2004 A1
20050003074 Brown et al. Jan 2005 A1
20050004661 Lewis et al. Jan 2005 A1
20050010275 Sahatjian et al. Jan 2005 A1
20050015046 Weber et al. Jan 2005 A1
20050019747 Anderson et al. Jan 2005 A1
20050038498 Dubrow et al. Feb 2005 A1
20050048121 East et al. Mar 2005 A1
20050049694 Neary Mar 2005 A1
20050069630 Fox et al. Mar 2005 A1
20050070990 Stinson Mar 2005 A1
20050075714 Cheng et al. Apr 2005 A1
20050079199 Heruth et al. Apr 2005 A1
20050079274 Palasis et al. Apr 2005 A1
20050084533 Howdle et al. Apr 2005 A1
20050131513 Myers Jun 2005 A1
20050147734 Seppala et al. Jul 2005 A1
20050166841 Robida Aug 2005 A1
20050175772 Worsham et al. Aug 2005 A1
20050177223 Palmaz Aug 2005 A1
20050191491 Wang et al. Sep 2005 A1
20050196424 Chappa Sep 2005 A1
20050208102 Schultz Sep 2005 A1
20050216075 Wang et al. Sep 2005 A1
20050238829 Motherwell et al. Oct 2005 A1
20050255327 Chaney et al. Nov 2005 A1
20050260186 Bookbinder et al. Nov 2005 A1
20050268573 Yan Dec 2005 A1
20050288481 DesNoyer et al. Dec 2005 A1
20060001011 Wilson et al. Jan 2006 A1
20060020325 Burgermeister et al. Jan 2006 A1
20060030652 Adams et al. Feb 2006 A1
20060045901 Weber Mar 2006 A1
20060089705 Ding et al. Apr 2006 A1
20060093771 Rypacek et al. May 2006 A1
20060094744 Maryanoff et al. May 2006 A1
20060116755 Stinson Jun 2006 A1
20060121080 Lye et al. Jun 2006 A1
20060121089 Michal et al. Jun 2006 A1
20060134211 Lien et al. Jun 2006 A1
20060136041 Schmid et al. Jun 2006 A1
20060147698 Carroll et al. Jul 2006 A1
20060153729 Stinson et al. Jul 2006 A1
20060160455 Sugyo et al. Jul 2006 A1
20060188547 Bezwada Aug 2006 A1
20060193886 Owens et al. Aug 2006 A1
20060193890 Owens et al. Aug 2006 A1
20060198868 DeWitt et al. Sep 2006 A1
20060210638 Liversidge et al. Sep 2006 A1
20060216324 Stucke et al. Sep 2006 A1
20060222756 Davila et al. Oct 2006 A1
20060228415 Oberegger et al. Oct 2006 A1
20060276877 Owens et al. Dec 2006 A1
20070009564 McClain et al. Jan 2007 A1
20070032864 Furst et al. Feb 2007 A1
20070038227 Massicotte et al. Feb 2007 A1
20070059350 Kennedy et al. Mar 2007 A1
20070110888 Radhakrishnan et al. May 2007 A1
20070123973 Roth et al. May 2007 A1
20070123977 Cottone et al. May 2007 A1
20070128274 Zhu et al. Jun 2007 A1
20070148251 Hossainy et al. Jun 2007 A1
20070154554 Burgermeister et al. Jul 2007 A1
20070196423 Ruane et al. Aug 2007 A1
20070198081 Castro et al. Aug 2007 A1
20070203569 Burgermeister et al. Aug 2007 A1
20070259017 Francis Nov 2007 A1
20070280992 Margaron et al. Dec 2007 A1
20080051866 Chen et al. Feb 2008 A1
20080071359 Thornton et al. Mar 2008 A1
20080075753 Chappa Mar 2008 A1
20080077232 Nishide Mar 2008 A1
20080095919 McClain et al. Apr 2008 A1
20080097575 Cottone Apr 2008 A1
20080097591 Savage et al. Apr 2008 A1
20080107702 Jennissen May 2008 A1
20080118543 Pacetti et al. May 2008 A1
20080124372 Hossainy et al. May 2008 A1
20080138375 Yan et al. Jun 2008 A1
20080206304 Lindquist et al. Aug 2008 A1
20080213464 O'Connor Sep 2008 A1
20080255510 Wang Oct 2008 A1
20080269449 Chattopadhyay et al. Oct 2008 A1
20080292776 Dias et al. Nov 2008 A1
20080300669 Hossainy Dec 2008 A1
20080300689 McKinnon et al. Dec 2008 A1
20090043379 Prescott Feb 2009 A1
20090062909 Taylor et al. Mar 2009 A1
20090068266 Raheja et al. Mar 2009 A1
20090076446 Dubuclet, IV et al. Mar 2009 A1
20090082855 Borges et al. Mar 2009 A1
20090098178 Hofmann et al. Apr 2009 A1
20090105809 Lee et al. Apr 2009 A1
20090110711 Trollsas et al. Apr 2009 A1
20090111787 Lim et al. Apr 2009 A1
20090123515 Taylor May 2009 A1
20090186069 DeYoung et al. Jul 2009 A1
20090202609 Keough et al. Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090227949 Knapp et al. Sep 2009 A1
20090231578 Ling et al. Sep 2009 A1
20090263460 McDonald Oct 2009 A1
20090285974 Kerrigan et al. Nov 2009 A1
20090292351 McClain et al. Nov 2009 A1
20090292776 Nesbitt et al. Nov 2009 A1
20090297578 Trollsas et al. Dec 2009 A1
20090300689 Conte et al. Dec 2009 A1
20100015200 McClain et al. Jan 2010 A1
20100030261 McClain Feb 2010 A1
20100042206 Yadav et al. Feb 2010 A1
20100055145 Betts et al. Mar 2010 A1
20100055294 Wang et al. Mar 2010 A1
20100063570 Pacetti et al. Mar 2010 A1
20100063580 McClain et al. Mar 2010 A1
20100074934 Hunter Mar 2010 A1
20100155496 Stark et al. Jun 2010 A1
20100166869 Desai et al. Jul 2010 A1
20100196482 Radovic-Moreno et al. Aug 2010 A1
20100198330 Hossainy et al. Aug 2010 A1
20100198331 Rapoza et al. Aug 2010 A1
20100211164 McClain et al. Aug 2010 A1
20100228348 McClain et al. Sep 2010 A1
20100233332 Xing et al. Sep 2010 A1
20100239635 McClain et al. Sep 2010 A1
20100241220 McClain et al. Sep 2010 A1
20100256746 Taylor et al. Oct 2010 A1
20100256748 Taylor et al. Oct 2010 A1
20100272778 McClain et al. Oct 2010 A1
20100298928 McClain et al. Nov 2010 A1
20110009953 Luk et al. Jan 2011 A1
20110034422 Kannan et al. Feb 2011 A1
20110159069 Shaw et al. Jun 2011 A1
20110160751 Granja Filho Jun 2011 A1
20110190864 McClain et al. Aug 2011 A1
20110238161 Fulton et al. Sep 2011 A1
20110257732 McClain et al. Oct 2011 A1
20110264190 McClain et al. Oct 2011 A1
20110301697 Hoffmann et al. Dec 2011 A1
20120064124 McClain et al. Mar 2012 A1
20120064143 Sharp et al. Mar 2012 A1
20120065723 Drasler et al. Mar 2012 A1
20120101566 Mews et al. Apr 2012 A1
20120150275 Shaw-Klein Jun 2012 A1
20120172787 McClain et al. Jul 2012 A1
20120177742 McClain et al. Jul 2012 A1
20120271396 Zheng et al. Oct 2012 A1
20120280432 Chen et al. Nov 2012 A1
20120323311 McClain et al. Dec 2012 A1
20130006351 Taylor et al. Jan 2013 A1
20130172853 McClain et al. Jul 2013 A1
Foreign Referenced Citations (99)
Number Date Country
2589761 Dec 2004 CA
2589761 Jun 2006 CA
1465410 Jan 2004 CN
1465410 Jan 2004 CN
1649551 Aug 2005 CN
0604022 Jun 1994 EP
0982041 Mar 2000 EP
1195822 Apr 2002 EP
1454677 Sep 2004 EP
2197070 Jun 2010 EP
2293357 Mar 2011 EP
2293366 Mar 2011 EP
1994-098902 Apr 1994 JP
H09-056807 Mar 1997 JP
2003-205037 Jul 2003 JP
2003-533286 Nov 2003 JP
2003-533493 Nov 2003 JP
2003533492 Nov 2003 JP
2004173770 Jun 2004 JP
2004-518458 Jun 2004 JP
2004-529674 Sep 2004 JP
2005-505318 Feb 2005 JP
2005-523119 Aug 2005 JP
2005-523332 Aug 2005 JP
2005-296690 Oct 2005 JP
2009-501566 Jan 2009 JP
10-2004-0034064 Apr 2004 KR
WO-95006487 Mar 1995 WO
WO-9620698 Jul 1996 WO
WO-97045502 Dec 1997 WO
WO-2001054662 Aug 2001 WO
WO-2001-087371 Nov 2001 WO
WO-2001087372 Nov 2001 WO
WO-2002040702 May 2002 WO
WO 2002043799 Jun 2002 WO
WO-2002-074194 Sep 2002 WO
WO-2002090085 Nov 2002 WO
WO-2003039553 May 2003 WO
WO-2003-082368 Oct 2003 WO
WO-2003101624 Dec 2003 WO
WO-2004009145 Jan 2004 WO
WO-2004028589 Apr 2004 WO
WO-2004043506 May 2004 WO
WO-2004045450 Jun 2004 WO
WO-2004098574 Nov 2004 WO
WO-2005042623 May 2005 WO
WO-2005063319 Jul 2005 WO
WO-2005069889 Aug 2005 WO
WO-2005117942 Dec 2005 WO
WO-2006014534 Feb 2006 WO
WO-2006052575 May 2006 WO
WO-2006065685 Jun 2006 WO
WO-2006083796 Aug 2006 WO
WO-2006099276 Sep 2006 WO
WO-2007-002238 Jan 2007 WO
WO-2007011707 Jan 2007 WO
WO-2007011708 Jan 2007 WO
WO-2007092179 Aug 2007 WO
WO-2007127363 Nov 2007 WO
WO 2007143609 Dec 2007 WO
WO-2008042909 Apr 2008 WO
WO-2008046641 Apr 2008 WO
WO-2008046642 Apr 2008 WO
WO-2008052000 May 2008 WO
WO-2008070996 Jun 2008 WO
WO-2008086369 Jul 2008 WO
WO 2008131131 Oct 2008 WO
WO-20080148013 Dec 2008 WO
WO-2009051780 Apr 2009 WO
WO-20090146209 Dec 2009 WO
WO-2010009335 Jan 2010 WO
WO-2010075590 Jul 2010 WO
WO-2010111196 Sep 2010 WO
WO-2010111196 Sep 2010 WO
WO-2010111232 Sep 2010 WO
WO-2010111232 Sep 2010 WO
WO-2010111238 Sep 2010 WO
WO-2010111238 Sep 2010 WO
WO-2010120552 Oct 2010 WO
WO-2010120552 Oct 2010 WO
WO-2010121187 Oct 2010 WO
WO-2010121187 Oct 2010 WO
WO-2011009096 Jan 2011 WO
WO-2011097103 Aug 2011 WO
WO-2011119762 Sep 2011 WO
WO-2011130448 Oct 2011 WO
WO-2011133655 Oct 2011 WO
WO-2012009684 Jan 2012 WO
WO-2012034079 Mar 2012 WO
WO-2012082502 Jun 2012 WO
WO-2012092504 Jul 2012 WO
WO-2012142319 Oct 2012 WO
WO-2012166819 Dec 2012 WO
WO-2013012689 Jan 2013 WO
WO-2013025535 Feb 2013 WO
WO-2013059509 Apr 2013 WO
WO-2013173657 Nov 2013 WO
WO-2013177211 Nov 2013 WO
WO-2014063111 Apr 2014 WO
Non-Patent Literature Citations (390)
Entry
Abreu Filho et al., “Influence of metal alloy and the profile of coronary stents in patients with multi-vessel coronary disease.” Clinics 66(6):985-989 (2011).
Akoh et al., “One-Stage Synthesis of Raffinose Fatty Acid Polyesters.” Journal Food Science 52:1570 (1987).
Albert et al., “Antibiotics for preventing recurrent urinary tract infection in non-pregnant women.” Cochrane Database System Rev. 3, CD001209 (2004).
Au et al., “Methods to improve efficacy of intravesical mitomycin C: Results of a randomized phase III trial.” Journal of the National Cancer Institute, 93(8), 597-604 (2001).
AU2006270221 Exam Report dated Apr. 6, 2010.
AU2007243268 Exam Report dated May 15, 2013.
AU2007243268 Exam Report dated Aug. 31, 2011.
AU2009251504 Exam Report dated Dec. 8, 2011.
AU2009270849 Exam Report dated Feb. 14, 2012.
AU2011232760 Exam Report dated Apr. 10, 2013.
AU2011256902 Exam Report dated Jun. 13, 2013.
AU2012203203 Exam Report dated Apr. 12, 2013.
AU2012203577 Exam Report dated Jun. 7, 2013.
AU2011256902 Exam Report dated Jun. 10, 2014.
Balss et al., “Quantitative spatial distribution of sirolumus and polymers in drug-eluting stents using confocal Raman microscopy.” J. of Biomedical Materials Research Part A, 258-270 (2007).
Belu et al., “Three-Dimensional Compositional Analysis of Drug Eluting Stent Coatings Using Cluster Secondary Loan Mass Spectroscopy.” Anal. Chem. 80:624-632 (2008).
Belu, et al., “Chemical imaging of drug eluting coatings: Combining surface analysis and confocal Rama microscopy.” J. Controlled Release 126: 111-121 (2008).
Boneff, “Topical Treatment of Chronic Prostatitis and Premature Ejaculation,” International Urology and Nephrology 4(2):183-186 (1971).
Bookbinder et al., “A recombinant human enzyme for enhanced interstitial transport of therapeutics.” Journal of Controlled Release 114:230-241 (2006).
Borchert et al., “Prevention and treatement of urinary tract infection with probiotics: Review and research perspective,” Indian Journal Urol. 24(2):139-144 (2008).
Brunstein et al., “Histamine, a vasoactive agent with vascular disrupting potential improves tumour response by enhancing local drug delivery,” British Journal of Cancer 95:1663-1669 (2006).
Bugay et al., “Raman Analysis of Pharmaceuticals,” in “Applications of Vibrational Spectroscopy in Pharmaceutical Research and Development,” Ed. Pivonka, D.E., Chalmers, J.M., Griffiths, P.R. Wiley and Sons, p. 1-24. (2007).
CA 2757276 Office Action dated Feb. 15, 2013.
CA 2757276 Office Action dated Feb. 5, 2014.
CA 2794704 Office Action dated Feb. 7, 2014.
CA 2613280 Office Action dated Oct. 2, 2012.
CA 2615452 Office Action dated Dec. 19, 2012.
CA 2615452 Office Action dated Oct. 8, 2013.
CA 2650590 Office Action dated Jul. 23, 2013.
CA 2613280 Office Action dated Dec. 10, 2013.
CA 2667228 Office Action dated Jan. 22, 2014.
CA 2679712 Office Action dated Feb. 24, 2014.
CA 2684482 Office Action dated Nov. 10, 2011.
CA 2684482 Office Action dated Jul. 11, 2012.
CA 2688314 Office Action dated Jun. 6, 2012.
CA 2667228 Office Action dated May 7, 2013.
CA 2730995 Office Action dated May 29, 2013.
CA 2730995 Office Action dated Sep. 26, 2012.
CA 2730995 Office Action dated Feb. 20, 2014.
CA 2756307 Office Action dated Feb. 18, 2013.
CA 2756307 Office Action dated Mar. 24, 2014.
CA 2756386 Office Action dated Mar. 15, 2013.
CA 2756388 Office Action dated Apr. 11, 2013.
CA 2756388 Office Action dated Apr. 14, 2014.
CA 2759015 Office Action dated Apr. 8, 2013.
CA 2759015 Office Action dated Jul. 21, 2014.
CA 2756386 Office Action dated Oct. 24, 2013.
CA 2756386 Office Action dated May 16, 2014.
CA 2805631 Office Action dated Jan. 17, 2014.
CA 2823355 Office action dated Apr. 14, 2014.
Cadieux et al., “Use of triclosan-eluting ureteral stents in patients with long-term stents.” J. Endourol (Epub) (Jun. 19, 2009).
Channon et al., “Nitric Oxide Synthase in Atherosclerosis and Vascular Injury: Insights from Experimental Gene Therapy.” Arteriosclerosis, Thrombosis and Vascular Biology, 20(8):1873-1881 (2000).
Chen et al. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Biomaterials. 26(35):7418-24 (2005).
Cholpek et al. “The influence of carbon fibres on the resorption time and mechanical properties of the lactide-glycolide co-polymer.” J. Biomater. Sci. Polymer Edn, vol. 18, No. 11, pp. 1355-1368 (2007).
Clair and Burks, “Thermoplastic/Melt-Processable Polyimides,” NASA Conf. Pub. #2334, pp. 337-355 (1984).
CN 2006800258093 Office Action dated May 30, 2012.
CN 200780047425.6 Office Action dated Aug. 3, 2012.
CN 200780047425.6 Office Action dated Feb. 28, 2013.
CN 200880007308.1 Office Action dated Jul. 3, 2013.
CN 200880007308.1 Office Action dated Nov. 23, 2011.
CN 200880007308.1 Office Action dated Oct. 18, 2012.
CN 200880007308.1 Office Action dated Jan. 2, 2014.
CN 200880020515 Office Action dated Jul. 22, 2013.
CN 200880020515 Office Action dated Oct. 9, 2012.
CN 200880020515 Office Action dated Apr. 15, 2014.
CN 200880100102.3 Office Action dated Apr. 11, 2013.
CN 200880100102.3 Office Action dated Jun. 1, 2012.
CN 200880100102.3 Office Action dated Dec. 11, 2013.
CN 200880100102.3 Office Action dated Aug. 27, 2014.
CN 200980122691 Office Action dated Oct. 10, 2012.
CN 200980136432.2 Office Action dated Jan. 14, 2013.
CN 200980136432.2 Office Action dated Nov. 4, 2013.
CN 200980136432.2 Office Action dated Jul. 3, 2014.
CN 201080024973.9 Office Action dated Dec. 20, 2013.
CN 201080024973.9 Office Action dated Aug. 7, 2014.
Cohen, et al. “Sintering Technique for the Preparation of Polymer Matrices for the Controlled Release of Macromolecules.” Journal of Pharmaceutical Sciences, 73:8, 1034-1037 (1984).
Colombo et al. “Selection of Coronary Stents.” Journal of the American College of Cardiology, vol. 40, No. 6, p. 1021-1033 (2002).
CRC Handbook of chemistry and physics. 71st ed. David R. Lide, Editor-in-Chief. Boca Raton, FL, CRC Press; 1990; 6-140.
Cyrus et al., “Intramural delivery of rapamycin with alphavbeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury.” Arterioscler Thromb Vasc Biol 28:820-826 (2008).
Derwent-ACC-NO: 2004-108578 Abstracting 2004003077; Jan. 8, 2004; 3 pages.
DiSTASI et al., “Percutaneous sequential bacillus Calmette-Guerin and mitomycin C for panurothelial carcinomatosis,” Can. J. Urol. 12(6):2895-2898 (2005).
Domb and Langer, “Polyanhydrides. I. Preparation of High Molecular Weight Polyanhydrides. ”J. Polym Sci. 25:3373-3386 (1987).
Domingo, C. et al., “Precipication of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle.” J. Supercritical Fluids 10:39-55 (1997).
Dzik-Jurasz, “Molecular imaging in vivo: an introduction.” The British Journal of Radiology, 76:S98-S109 (2003).
EA 200901254 Office Action dated Jul. 29, 2013.
EA 200901254/28 Office Action dated Jun. 28, 2012.
EA 201001497 Office Action dated Feb. 13, 2013.
EA 201001497 Office Action dated Jul. 29, 2013.
Electrostatic Process, Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc. 1999; 7:15-39.
Eltze et al., “Imidazoquinolinon, imidazopyridine, and isoquinolindione derivatives as novel and potent inhibitors of the poly (ADP-ribose) polymerase (PARP): a comparison with standard PARP inhibitors,” Mol. Pharmacol 74(6):1587-1598 (2008).
EP06773731.2 Search Report dated Oct. 2, 2012.
EP06787258.0 Office Action dated Mar. 15, 2013.
EP06787258.0 Search Report dated Feb. 6, 2012.
EP07756094.4 Office Action dated Jan. 21, 2014.
EP07756094.4 Office Action dated May 29, 2013.
EP07756094.4 Search Report dated Aug. 31, 2012.
EP08705772.5 Office Action dated Oct. 30, 2013.
EP08705772.5 Search Report dated Feb. 20, 2013.
EP08733210.2 Office Action dated Jul. 16, 2013.
EP08733210.2 Search Report dated Oct. 23, 2012.
EP08756215.3 Search Report dated Oct. 5, 2011.
EP08756215.3 Search Report dated Jan. 28, 2013.
EP09755571.8 Office Action dated Dec. 13, 2013.
EP09755571.8 Search Report dated Apr. 9, 2013.
EP09798764.8 Search Report dated Sep. 30, 2013.
EP09805981.9 Office Action dated Feb. 13, 2013.
EP10756676.2 Search Report dated Jan. 31, 2014.
EP10756696.0 Search Report dated Oct. 10, 2013.
EP10764884.2 Search Report dated Oct. 28, 2013.
EP10765295.0 Search Report dated Oct. 17, 2013.
EP11769546.0 Search Report dated Sep. 19, 2013.
EP10800642.0 Search Report dated Mar. 19, 2014.
EP11772624.0 Search Report dated Jun. 5, 2014.
EP09798764.8 Office Action dated Jun. 30, 2014.
Ettmayer et al. Lessons learned from marketed and investigational prodrugs. J Med Chem. 47(10):2393-404 (2004).
Fibbi et al., “Chronic inflammation in the pathogenesis of benign prostatic hyperplasia.” Int J Androl. 33(3):475-88 (2010).
Fleischmann et al., “High Expression of Gastrin-Releasing Peptide Receptors in the Vascular bed of Urinary Tract Cancers: Promising Candidates for Vascular Targeting Applications.” Endocr. Relat. Cancer 16(2):623-33 (2009).
Froehlich et al., “Conscious sedation for gastroscopy: patient tolerance and cardiorespiratory parameters,” Gastroenterology 108(3):697-704 (1995).
Fujiwara et al., “Insulin-like growth factor 1 treatment via hydrogels rescues cochlear hair cells from ischemic injury.” NeuroReport 19(16):1585-1588 (2008).
Fulton et al. Thin Fluoropolymer films and nanoparticle coatings from the rapid expansion of supercritical carbon dioxide solutions with electrostatic collection, Polymer Communication. 2627-3632 (2003).
Green et al., “Simple conjugated polymer nanoparticles as biological labels,” Proc Roy Soc A. published online Jun. 24, 2009 doi:10.1098/rspa.2009.0181.
Griebenow et al., “On Protein Denaturation in Aqueous-Organic Mixtures but not in Pure Organic Solvents,” J. Am Chem Soc., vol. 118. No. 47, 11695-11700 (1996).
Hamilos et al., “Differential effects of Drug-Eluting Stents on Local Endothelium-Dependent Coronary Vasomotion.” JACC vol. 51, No. 22, Endothelium and DES, 2123-9 (2008).
Han, et al., “Studies of a Novel Human Thrombomodulin Immobilized Substrate: Surface Characterization and Anticoagulation Activity Evaluation.” J. Biomater. Sci. Polymer Edn, 12 (10):1075-1089 (2001).
Hartmann et al., “Tubo-ovarian abscess in virginal adolescents: exposure of the underlying etiology,” J. Pediatr Adolesc Gynecol, 22(3):313-16 (2009).
Hasegawa et al., “Nylong 6/Na-montmorillonite nanocomposites prepared by compounding Nylon 6 with Na-montmorillonite slurry,” Polymer 44:2933-2937 (2003).
Hinds, WC. Aerosol Technology, Properties, Behavior and Measurement of Airborne Particles, Department of Environmental Health Sciences, Harvard University School of Public Health, Boston, Massachusetts. 1982; 283-314.
Hladik et al., “Can a topical microbicide prevent rectal HIV transmission?” PLoS Med. 5(8):e167 (2008).
Iconomidou et al., “Secondary Structure of Chorion Proteins of the Teleosatan Fish Dentex dentex by ATR FR-IR and FT-Raman Spectroscopy,” J. of Structural Biology, 132, 112-122 (2000).
ID—W00201003529 Office Action dated Apr. 28, 2014.
IL—208648 Official Notification dated Feb. 9, 2012.
IL—201550 Official Notification dated Dec. 8, 2013.
IN-368/DELNP/2008 Exam Report dated Oct. 17, 2011.
IN-6884/DELNP/2009 Office Action dated Oct. 31, 2013.
IN-7740/DELNP/2009 Office Action dated Jul. 29, 2014.
Jackson et al., “Characterization of perivascular poly(lactic-co-glycolic acid) films containing paclitaxel” Int. J. of Pharmaceutics, 283:97-109 (2004).
Jensen et al., Neointimal hyperplasia after sirollmus-eluting and paclitaxel-eluting stend implantation in diabetic patients: the randomized diabetes and drug eluting stent (DiabeDES) intravascular ultrasound trial. European heart journal (29), pp. 2733-2741. Oct. 2, 2008. Retrieved from the Internet. Retrieved on [Jul. 17, 2012]. URL:<http://eurheartj.oxfordjournals.org/content/29/22/2733.full.pdf> entire document.
Jewell, et al., “Release of Plasmid DNA from Intravascular Stents Coated with Ultrathin Multilayered Polyelectrolyte Films” Biomacromolecules. 7: 2483-2491 (2006).
Johns, H.E, J.R.Cunningham, Thomas, Charles C., Publisher, “The Physics of Radiology, ” Springfield, IL, pp. 133-143 (1983).
Joner et al. “Site-specific targeting of nanoparticle prednisolone reduces in-stent restenosis in a rabbit model of established atheroma,” Arterioscler Thromb Vasc Biol. 28:1960-1966 (2008).
Jovanovic et al. “Stabilization of Proteins in Dry Powder Formulations Using Supercritical Fluid Technology,” Pharm. Res. 21(11), (2004).
JP 2008-521633 Office Action dated Oct. 12, 2012.
JP2008-521633 Office Action dated Dec. 28, 2011.
JP-2009-534823 Office Action dated Apr. 23, 2013.
JP-2009-534823 Office Action dated Feb. 21, 2012.
JP-2009-534823 Office Action dated Sep. 20, 2012.
JP-2009-545647 Office Action dated Jun. 5, 2012.
JP-2009-545647 Office Action dated May 14, 2013.
JP-2009-545647 Office Action dated Apr. 22, 2014.
JP-2010-504253 Office Action dated Dec. 12, 2011.
JP-2010-504253 Office Action dated Dec. 7, 2012.
JP-2010-510441 Office Action dated May 7, 2013.
JP-2011-505248 Office Action dated Jun. 4, 2013.
JP-2011-518920 Office Action dated Dec. 17, 2012.
JP-2011-518920 Office Action dated Oct. 23, 2013.
JP-2012-503677 Office Action dated Jan. 18, 2013.
JP-2012-503677 Office Action dated Nov. 1, 2013.
JP-2012-151964 Office Action dated Dec. 10, 2013.
JP-2013-024508 Office Action dated May 2, 2014.
JP-2013-190903 Office Action dated Sep. 2, 2014.
Kazemi et al., “The effect of betamethasone gel in reducing sore throat, cough, and hoarseness after laryngo-tracheal intubation,” Middle East J. Anesthesiol. 19(1):197-204 (2007).
Kehinde et al., “Bacteriology of urinary tract infection associated with indwelling J ureteral stents,” J. Endourol. 18(9):891-896 (2004).
Kelly et al., “Double-balloon trapping technique for embolization of a large wide-necked superior cerebellar artery aneurysm: case report,” Neurosurgery 63(4 Suppl 2):291-292 (2008).
Khan et al., “Chemistry and the new uses of Sucrose: How Important?” Pur and Appl. Chem 56:833-844 (1984).
Khan et al., “Cyclic Acetals of 4,1′,6′-Trichloro-4,1′,6′,-Trideoxy- Trideoxy-galacto-Sucrose and their Conversion into Methyl Ether Derivatives.” Carb. Res. 198:275-283 (1990).
Khan et al., “Enzymic Regioselective Hydrolysis of Peracetylated Reducing Disaccharides, Specifically at the Anomeric Centre: Intermediates for the Synthesis of Oligosaccharides.” Tetrahedron Letters 34:7767 (1933).
Khayankarn et al., “Adhesion and Permeability of Polyimide-Clay Nanocomposite Films for Protective Coatings,” Journal of Applied Polymer Science, vol. 89, 2875-2881 (2003).
Koh et al., A novel nanostructured poly(lactic-co-glycolic-acid)—multi-walled carbon nanotube composite for blood-contacting applications: Thrombogenicity studies, Acta Biomaterialia 5:3411-3422 (2009).
KR10-2008-7003756 Office Action dated Sep. 23, 2013.
KR10-2008-7003756 Office Action dated Oct. 30, 2012.
KR 10-2013-7031237 Office Action dated Mar. 17, 2014.
Kurt et al., “Tandem oral, rectal and nasal administrations of Ankaferd Blood Stopper to control profuse bleeding leading to hemodynamic instability,” Am J. Emerg. Med. 27(5):631, e1-2 (2009).
Labhasetwar et al., “Arterial uptake of biodegradable nanoparticles: effect of surface modifications,” Journal of Pharmaceutical Sciences, vol. 87, No. 10, 1229-1234 (1998).
Lamm et al., “Bladder Cancer: Current Optimal Intravesical Treatment: Pharmacologic Treatment,” Urologic Nursing 25(5):323-6, 331-2 (Oct. 26, 2005).
Latella et al., “Nanoindentation hardness. Young's modulus, and creep behavior of organic-inorganic silica-based sol-gel thin films on copper,” J Mater Res 23(9): 2357-2365 (2008).
Lawrence et al., “Rectal tacrolimus in the treatment of resistant ulcerative proctitis,” Aliment. Pharmacol Ther. 28(10):1214-20 (2008).
Lee et al., “Novel therapy for hearing loss: delivery of insulin-like growth factor 1 to the cochlea using gelatin hydrogel,”Otol. Neurotol. 28(7):976-81 (2007).
Lehmann et al, “Drug treatment of nonviral sexually transmitted diseases: specific issues in adolescents,” Pediatr Drugs 3(7):481-494 (2001).
Mahoney et al., “Three-Dimensional Compositional Analysis of Drug Eluting Stent Coatings Using Cluster Secondary Ion mass Spectrometry,” Anal. Chem. 80:624-632 (2008).
Mario, C.D. et al., “Drug-Eluting Bioabsorbable Magnesium Stent,” J. Interventional Cardiology 16(6):391-395 (2004).
Matsumoto, D, et al. Neointimal Coverage of Sirolimus-Eluting Stents at 6-month Follow-up: Evaluated by Optical Coherence Tomography, European Heart Journal, 28:961-967 (2006).
McAlpine, J.B. et al., “Revised NMR Assignments for Rapamycine,” J. Antibiotics 44:688-690 (1991).
Mehik et al., “Alfuzosin treatment for chronic prostatitis/chronic pelvic pain syndrome: a prospecitve, randomized, double-blind, placebo-controlled, pilot study,” Urology 62(3):425-429 (2003).
Mei et al., “Local Delivery of Modified Paclitaxel-Loaded Poly(ε-caprolactone)/Pluronic F68 Nanoparticles for Long-Term Inhibition of Hyperplasia,” Journal of Pharmaceutical Sciences, Vol. 98, No. 6, (Jun. 2009).
Melonakos et al., Treatment of low-grade bulbar transitional cell carcinoma with urethral instillation of mitomycin C, Adv. Urol., 173694 Epub; (2008).
Merrett et al., “Interaction of corneal cells with transforming growth factor beta2-modified poly dimethyl siloxane surfaces,” Journal of Biomedical Materials Research, Part A, vol. 67A, No. 3, pp. 981-993 (2003).
Merriam-Webster Online Dictionary, obtained online at: http://www.merriam-webster.com/dictionary/derivative, downloaded Jan. 23, 2013.
Middleton and Tipton, Synthetic biodegradable polymers as orthopedic devises. Biomaterials 21:2335-46 (2000).
Minchin, “Nanomedicine: sizing up targets with nanoparticles,” Nature Nanotechnology, 33:12-13 (2008).
Minoque et al., “Laryngotracheal topicalization with lidocaine before intubation decreases the incidence of coughing on emergence from general anesthesia,” Anesth. Analg. 99(4):1253-1257 (2004).
Mishima et al. “Microencapsulation of Proteins by Rapid Expansion of Supercritical Solution with a Nonsolvent,” AIChE J. 46(4):857-65 (2000).
Mocco et al., “Pharos neurovascular intracranail stent: Elective use for a symptomatic stenosis refractory to medical therapy,” Catheter Cardiovasc. Interv. (epub) (Mar. 2009).
Mollen et al., “Prevalence of tubo-ovarian abcess in adolescents diagnosed with pelvice inflammatory disease in a pediatric emergency department,” Pediatr. Emerg. Care, 22(9): 621-625 (2006).
Moroni et al., “Post-ischemic brain damage:targeting PARP-1 within the ischemic neurovaschular units as a realistic avenue to stroke treatment,” FEBS J. 276(1):36-45 (2009).
Muhlen et al., “Magnetic Resonance Imaging Contrast Agent Targeted Toward Activated Platelets Allows in Vivo Detection of Thrombosis and Monitoring of Thrombolysis Circulation,” 118:258-267 (2008).
Murphy et al., “Chronic prostatitis: management strategies,” Drugs 69(1): 71-84 (2009).
MX/a/2010/01148 Office Action dated Feb. 11, 2014.
NZ 588549 Examination Report dated Mar. 28, 2011.
NZ 600814 Examination Report dated Jun. 29, 2012.
O'Neil et al., “Extracellular matrix binding mixed micelles for drug delivery applications,” Journal of Controlled Release 137:146-151 (2009).
O'Donnell et al., “Salvage intravesical therapy with interferon-alpha 2b plus low dose bacillus Calmette-Guerin alone perviously failed,” Jour. Urology, 166(4):1300-1304 (2001).
Olbert et al., “In vitro and in vivo effects of CpG-Oligodeoxynucleotides (CpG-ODN) on murine transitional cell carcinoma and on the native murine urinary bladder wall,” Anticancer Res. 29(6):2067-2076 (2009).
Ong and Serruys, “Technology Insight: an overview of research in drug-eluting stents,” Nat. Clin. Parct. Cardiovas. Med. 2(12):647-658 (2005).
PCT/US06/24221 International Preliminary Report on Patentability dated Dec. 24, 2007.
PCT/US06/24221 International Search Report dated Jan. 29, 2007.
PCT/US06/27321 International Preliminary Report on Patentability dated Jan. 16, 2008.
PCT/US06/27321 International Search Report dated Oct. 16, 2007.
PCT/US06/27322 International Preliminary Report on Patentability dated Jan. 16, 2008.
PCT/US06/27322 International Search Report dated Apr. 25, 2007.
PCT/US07/10227 International Preliminary Report on Patentability dated Oct. 28, 2008.
PCT/US07/10227 International Search Report dated Aug. 8, 2008.
PCT/US07/80213 International Preliminary Report on Patentability dated Apr. 7, 2009.
PCT/US07/80213 International Search Report dated Apr. 16, 2008.
PCT/US07/82275 International Search Report dated Apr. 18, 2008.
PCT/US07/82775 International Preliminary Report on Patentablity dated Apr. 28, 2009.
PCT/US08/11852 International Preliminary Report on Patentability dated Apr. 20, 2010.
PCT/US08/11852 International Search Report dated Dec. 19, 2008.
PCT/US08/50536 International Preliminary Report on Patentability dated Jul. 14, 2009.
PCT/US08/50536 International Search Report dated Jun. 2, 2008.
PCT/US08/60671 International Preliminary Report on Patentability dated Oct. 20, 2009.
PCT/US08/60671 International Search Report dated Sep. 5, 2008.
PCT/US08/64732 International Preliminary Report on Patentability dated Dec. 1, 2009.
PCT/US08/64732 International Search Report dated Sep. 4, 2008.
PCT/US09/41045 International Preliminary Report on Patentability dated Oct. 19, 2010.
PCT/US09/41045 International Search Report dated Aug. 11, 2009.
PCT/US09/50883 International Preliminary Report on Patentability dated Jan. 18, 2011.
PCT/US09/50883 International Search Report dated Nov. 17, 2009.
PCT/US09/69603 International Preliminary Report on Patentability dated Jun. 29, 2011.
PCT/US09/69603 International Search Report dated Nov. 5, 2010.
PCT/US10/28195 International Preliminary Report on Patentability dated Sep. 27, 2011.
PCT/US10/28195 Search Report and Written Opinion dated Jan. 21, 2011.
PCT/US10/28253 International Preliminary Report on Patentability dated Sep. 27, 2011.
PCT/US10/28253 Search Report and Written Opinion dated Dec. 6, 2010.
PCT/US10/28265 International Report on Patentability dated Sep. 27, 2011.
PCT/US10/28265 Search Report and Written Opinion dated Dec. 3, 2010.
PCT/US10/29494 International Preliminary Report on Patentability dated Oct. 4, 2011.
PCT/US10/29494 Search Report and Written Opinion dated Feb. 7, 2011.
PCT/US10/31470 International Preliminary Report on Patentability dated Oct. 18, 2011.
PCT/US10/31470 Search Report and Written Opinion dated Jan. 28, 2011.
PCT/US10/42355 International Preliminary Report on Patentability dated Jan. 17, 2012.
PCT/US10/42355 Search Report dated Sep. 2, 2010.
PCT/US11/032371 International Report on Patentability dated Oct. 16, 2012.
PCT/US11/032371 International Search Report dated Jul. 7, 2011.
PCT/US11/044263 International Search Report, International Preliminary Report on Patentability and Written Opinion dated Feb. 9, 2012.
PCT/US11/051092 International Preliminary Report on Patentability dated Mar. 21, 2013.
PCT/US11/051092 International Search Report dated Mar. 27, 2012.
PCT/US11/051092 Written Opinion dated Mar. 27, 2012.
PCT/US11/22623 International Preliminary Report on Patentability dated Aug. 7, 2012.
PCT/US11/22623 Search Report and Written Opinion dated Mar. 28, 2011.
PCT/US11/29667 International Search Report and Written Opinion dated Jun. 1, 2011.
PCT/US11/67921 International Preliminary Report on Patentability dated Jul. 11, 2013.
PCT/US11/67921 Search Report and Written Opinion dated Jun. 22, 2012.
PCT/US12/040040 International Search Report dated Sep. 7, 2012.
PCT/US12/33367 International Preliminary Report on Patentability dated Oct. 15, 2013.
PCT/US12/33367 International Search Report dated Aug. 1, 2012.
PCT/US12/46545 International Search Report dated Nov. 20, 2012.
PCT/US12/50408 International Search Report dated Oct. 16, 2012.
PCT/US13/41466 International Search Report and Written Opinion dated Oct. 17, 2013.
PCT/US13/42093 International Search Report and Written Opinion dated Oct. 24, 2013.
PCT/US2011/033225 International Search Report and Written Opinion dated Jul. 7, 2011.
PCT/US2012/60896 International Search Report and Written Opinion dated Dec. 28, 2012.
PCT/US2013/065777 International Search Report and Written Opinion dated Jan. 29, 2014.
PCT/US2014/025017 International Search Report and Written Opinion dated Jul. 7, 2014.
Perry et al., Chemical Engineer's Handbook, 5th Edition, McGraw-Hill, New York, p. 20-106 (1973).
Plas et al., “Tubers and tumors: rapamycin therapy for benign and malignant tumors”, Curr Opin Cell Bio 21: 230-236, (2009).
Poling et al., The Properties of Gases and Liquids. McGraw-Hill. 9:1-9.97 (2001).
Pontari, “Chronic prostatitis/chronic pelvic pain syndrome in elderly men: toward better understanding and treatment,” Drugs Aging 20(15):1111-1115 (2003).
Pontari, “Inflammation and anti-inflammatory therapy in chronic prostatits,” Urology 60(6Suppl):29-33 (2002).
Putkisto, K. et al. “Polymer Coating of Paper Using Dry Surface Treatment—Coating Structure and Performance”, ePlace newsletter, vol. 1, No. 8, pp. 1-20 (2004).
Raganath et al., “Hydrogel matrix entrapping PLGA-paclitaxel microspheres: drug delivery with near zero-order release and implantability advantages for malignant brain tumour,” Pharm Res (Epub) (Jun. 20, 2009).
Ranade et al., “Physical characterization of controlled release of paclitaxel from the TAXUS Express2 drug-eluting stent,” J. Biomed Mater. Res. 71(4):625-634 (2004).
Reddy et al., “Inhibition of apoptosis through localized delivery of rapamycin-loaded nanoparticles prevented neointimal hyperplasia and reendothelialized injured artery,” Circ Cardiovasc Interv 1:209-216 (2008).
Ristikankare et al., “Sedation, topical pharnygeal anesthesia and cardiorespiratory safety during gastroscopy,” J. Clin Gastorenterol. 40(1):899-905 (2006).
Sahajanand, Medical Technologies (Supralimus Core; Jul. 6, 2008).
Salo et al., “Biofilm formation by Escherichia coli isolated from patients with urinary tract infections,” Clin Nephrol. 71(5):501-507 (2009).
Saxena et al., “Haemodialysis catheter-related bloodstream infections: current treatment options and strategies for prevention,” Swiss Med Wkly 135:127-138 (2005).
Schetsky, L. McDonald, “Shape Memory Alloys”, Encyclopedia of Chemical Technology (3d Ed), John Wiley & Sons 20:726-736 (1982).
Scheuffler et al., “Crystal Structure of Human Bone Morphogenetic Protein-2 at 2.7 Angstrom resolution,” Journal of Molecular Biology, vol. 287, Issue 1, Mar. 1999.
Schmidt et al., “A Comparison of the Mechanical Performance Characteristics of Seven Drug-Eluting Stent Systems,” Catheterization and Cardiovascular Interventions 73:350-360 (2009).
Schmidt et al., “In vitro measurement of quality parameters of stent-catheter systems,” Biomed Techn 50(S1):1505-1506 (2005).
Schmidt et al., “New aspects of in vitro testing of arterial stents based on the new European standard,” EN 14299, [online] (2009), [retrieved on Mar. 10, 2001] http://www.lib0ev.de/pl/pdf/EN14299.pdf (2009).
Schmidt et al., “Trackability, Crossability, and Pushability of Coronary Stent Systems—An Experimental Approach,” Biomed Techn 47:Erg. 1, S. 124-126 (2002).
Schreiber, S.L. et al., “Atomic Structure of the Rapamycin Human Immunophilin FKBP-12 Complex,” J. Am. Chem. Soc. 113:7433-7435 (1991).
Sen et al., “Topical heparin: A promising agent for the prevention of tracheal stenosis in airway surgery,” J. Surg. Res (Epub ahead of print) (Feb. 21, 2009).
Serruys, Patrick et al., Comparison of Coronary-Artery Bypass Surgery and Stenting for the Treatment of Multivessel Disease, N. Engl. J. Med., vol. 344, No. 15, pp. 1117-1124 (2001).
SG201007602-4 Examination Report dated Feb. 13, 2013.
SG201007602-4 Written Opinion dated May 25, 2012.
Shekunov et al. “Crystallization Processes in Pharmaceutical Technology and Drug Delivery Design.” Journal of Crystal Growth 211:122-136 (2000).
Simpson et al., “Hyaluronan and hyaluronidase in genitourinary tumors.” Front Biosci. 13:5664-5680 (2008).
Smith et al., “Mitomycin C and the endoscopic treatment of laryngotracheal stenosis: are two applications better than one?” Laryngoscope 119(2):272-283 (2009).
Sumathi et al., “Controlled comparison between betamethasone gel and lidocaine jelly applied over tracheal tube to reduce postoperative sore throat, cough, and hoarseness of voice,” Br. J. Anaesth. 100(2):215-218 (2008).
Szabadits et al., “Flexibility and trackability of laser cut coronary stent systems,” Acta of Bioengineering and Biomechanics 11(3):11-18 (2009).
Testa, B. Prodrug research: futile or fertile? Biochem Pharmacol. 1:68(11):2097-106 (2004).
Thalmann et al., “Long-term experience with bacillus Calmette-Guerin therapy of upper urinary tract transitional cell carcinoma in patients not eligible for surgery,” J Urol. 168(4 Pt 1):1381-1385 (2002).
Torchilin, “Micellar Nanocarriers: Pharmaecutial Perspectives,” Pharmaceutical Research, vol. 24, No. 1, 17 pages (2007).
U.S. Appl. No. 11/158,724 Office Action dated Dec. 31, 2013.
U.S. Appl. No. 11/158,724 Office Action dated May 23, 2013.
U.S. Appl. No. 11/158,724 Office Action dated Sep. 17, 2009.
U.S. Appl. No. 11/158,724 Office Action dated Sep. 26, 2012.
U.S. Appl. No. 11/158,724 Office Action dated Sep. 8, 2008.
U.S. Appl. No. 11/158,724 Office Action dated Jun. 25, 2014.
U.S. Appl. No. 11/877,591 Final Office Action dated Nov. 4, 2013.
U.S. Appl. No. 11/877,591 Office Action dated Feb. 29, 2012.
U.S. Appl. No. 11/877,591 Office Action dated Jul. 1, 2013.
U.S. Appl. No. 11/877,591 Office Action dated Sep. 21, 2012.
U.S. Appl. No. 11/877,591 Office Action dated May 7, 2014.
U.S. Appl. No. 11/995,685 Office Action dated Aug. 20, 2010.
U.S. Appl. No. 11/995,685 Office Action dated Nov. 24, 2009.
U.S. Appl. No. 11/995,687 Office Action dated Apr. 6, 2012.
U.S. Appl. No. 11/995,687 Office Action dated Sep. 28, 2011.
U.S. Appl. No. 12/298,459 Office Action dated Apr. 6, 2012.
U.S. Appl. No. 12/298,459 Office Action dated Aug. 10, 2011.
U.S. Appl. No. 12/298,459 Office Action dated May 31, 2013.
U.S. Appl. No. 12/426,198 Office Action dated Feb. 6, 2012.
U.S. Appl. No. 12/426,198 Office Action dated Feb. 7, 2014.
U.S. Appl. No. 12/426,198 Office Action dated Mar. 23, 2011.
U.S. Appl. No. 12/443,959 Office Action dated Dec. 13, 2012.
U.S. Appl. No. 12/443,959 Office Action dated Feb. 15, 2012.
U.S. Appl. No. 12/504,597 Final Office Action dated Oct. 3, 2012.
U.S. Appl. No. 12/504,597 Office Action dated Apr. 1, 2014.
U.S. Appl. No. 12/504,597 Office Action dated Dec. 5, 2011.
U.S. Appl. No. 12/522,379 Office Action dated Apr. 8, 2014.
U.S. Appl. No. 12/522,379 Final Office Action dated Aug. 28, 2013.
U.S. Appl. No. 12/522,379 Office Action dated Dec. 26, 2012.
U.S. Appl. No. 12/595,848 Office Action dated Jan. 13, 2012.
U.S. Appl. No. 12/595,848 Office Action dated Mar. 15, 2013.
U.S. Appl. No. 12/595,848 Office Action dated Oct. 22, 2013.
U.S. Appl. No. 12/595,848 Office Action dated Jun. 3, 2014.
U.S. Appl. No. 12/601,101 Office Action dated Dec. 27, 2012.
U.S. Appl. No. 12/601,101 Office Action dated Feb. 13, 2014.
U.S. Appl. No. 12/601,101 Office Action dated Mar. 27, 2012.
U.S. Appl. No. 12/601,101 Office Action dated May 22, 2013.
U.S. Appl. No. 12/648,106 Final Office Action dated Sep. 25, 2012.
U.S. Appl. No. 12/648,106 Office Action dated Jan. 30, 2012.
U.S. Appl. No. 12/648,106 Office Action dated Sep. 18, 2013.
U.S. Appl. No. 12/729,156 Final Office Action dated Oct. 16, 2012.
U.S. Appl. No. 12/729,156 Office Action dated Feb. 1, 2012.
U.S. Appl. No. 12/729,156 Office Action dated Feb. 13, 2014.
U.S. Appl. No. 12/729,156 Office action dated May 8, 2013.
U.S. Appl. No. 12/729,580 Final Office Action dated Nov. 14, 2013.
U.S. Appl. No. 12/729,580 Office Action dated Apr. 10, 2012.
U.S. Appl. No. 12/729,580 Office Action dated Jan. 22, 2013.
U.S. Appl. No. 12/729,580 Office Action dated Sep. 10, 2014.
U.S. Appl. No. 12/729,603 Final Office Action dated Oct. 10, 2012.
U.S. Appl. No. 12/729,603 Office Action dated Mar. 27, 2012.
U.S. Appl. No. 12/729,603 Office Action dated Jun. 25, 2014.
U.S. Appl. No. 12/738,411 Final Office Action dated Apr. 11, 2013.
U.S. Appl. No. 12/738,411 Office Action dated Aug. 21, 2013.
U.S. Appl. No. 12/738,411 Office Action dated Feb. 6, 2014.
U.S. Appl. No. 12/738,411 Office Action dated May 30, 2014.
U.S. Appl. No. 12/748,134 Office Action dated Jul. 18, 2013.
U.S. Appl. No. 12/751,902 Office Action dated Dec. 19, 2013.
U.S. Appl. No. 12/751,902 Office Action dated Jul. 13, 2012.
U.S. Appl. No. 12/762,007 Final Office Action dated Oct. 22, 2013.
U.S. Appl. No. 12/762,007 Final Office Action dated Apr. 30, 2014.
U.S. Appl. No. 12/762,007 Office Action dated Feb. 11, 2013.
U.S. Appl. No. 13/014,632 Office Action dated Jan. 10, 2014.
U.S. Appl. No. 13/014,632 Office Action dated May 8, 2013.
U.S. Appl. No. 13/086,335 Office Action dated May 22, 2013.
U.S. Appl. No. 13/086,335 Office Action dated Apr. 4, 2014.
U.S. Appl. No. 13/229,473 Office Action dated Jun. 17, 2013.
U.S. Appl. No. 13/340,472 Office Action dated Apr. 26, 2013.
U.S. Appl. No. 13/340,472 Office Action dated Jan. 15, 2014.
U.S. Appl. No. 13/340,472 Office Action dated Aug. 29, 2014.
U.S. Appl. No. 13/384,216 Final Action dated Nov. 6, 2013.
U.S. Appl. No. 13/384,216 Office Action dated Apr. 24, 2013.
U.S. Appl. No. 13/605,904 Office Action dated Jun. 28, 2013.
U.S. Appl. No. 13/605,904 Office Action dated Nov. 27, 2012.
U.S. Appl. No. 13/445,723 Office Action dated Mar. 14, 2014.
U.S. Appl. No. 13/090,525 Office Action dated Apr. 11, 2014.
U.S. Appl. No. 11/995,685 Office Action dated Jun. 18, 2014.
Unger et al., “Poly(ethylene carbonate): A thermoelastic and biodegradable biomaterial for drug eluting stent coatings?” Journal of Controlled Release, vol. 117, Issue 3, 312-321 (2007).
Verma et al., “Effect of surface properties on nanoparticle-cell interactions,” Small 6(1):12-21 (2010).
Wagenlehner et al., “A pollen extract (Cernilton) in patients with inflammatory chronic prostatitis/chronic pelvic pain syndrome: a multicentre, randomized, prospective, double-blind, placebo-controlled phase 3 study,” Eur Urol 9 (Epub) (Jun. 3, 2009).
Wang et al. Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials 27:5588-95 (2000).
Wang et al., “Treatment with melagatran alone or in combination with thrombolytic therapy reduced ischemic brain injury,” Exp. Neurol 213(1):171-175 (2008).
Warner et al., “Mitomycin C and airway surgery: how well does it work?” Ontolaryngol Head Neck Surg. 138(6):700-709 (2008).
Wermuth, CG Similarity in drugs: reflections on analogue design. Drug Discov Today. 11(7-8):348-54. (2006).
Witjes et al., “Intravesical pharmacotherapy for non-muscle-invasive bladder cancer: a critical analysis of currently available drugs, treatment schedules, and long-term results,” Eur. Urol. 53(1):45-52 (2008).
Wu et al., “Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites.” Polymer 48: 4449-4458 (2007).
Xu et al., “Biodegradation of poly(l-lactide-co-glycolide tube stents in bile” Polymer Degradation and Stability. 93:811-817 (2008).
Xue et al., “Spray-as-you-go airway topical anesthesia in patients with a difficult airway: a randomized, double-blind comparison of 2% and 4% lidocaine,” Anesth. Analg. 108(2): 536-543 (2009).
Yepes et al., “Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic,” Trends Neurosci. 32(1):48-55 (2009).
Yousof et al., “Reveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunction and associated cell death during cerebral ischemia,” Brain Res. 1250:242-253 (2009).
Zhou et al. Synthesis and Characterization of Biodegradable Low Molecular Weight Aliphatic Polyesters and Their Use in Protein-Delivery Systems. J Appl Polym Sci 91:1848-56 (2004).
Zilberman et al., Drug-Eluting bioresorbable stents for various applications, Annu Rev Biomed Eng., 8:158-180 (2006).
PCT/US11/44263 International Search Report and Written Opinion dated Feb. 9, 2012.
Charging of Materials and Transport of Charged Particles (Wiley Encyclopedia of Electrical and Electronics Engineering, John G. Webster (Editor), vol. 7, 1999, John Wiley & Sons, Inc., pp. 20-24).
The Properties of Gases and Liquids, 5th ed., McGraw-Hill, Chapter 9, pp. 9.1-951, 2001.
Klein et al., Viscosities of pure gases can vary by as much as a factor of 5 depending upon the gas type, Int. J. Refrigeration 20: 208-217, 1997.
Related Publications (1)
Number Date Country
20150024116 A1 Jan 2015 US
Provisional Applications (2)
Number Date Country
61649585 May 2012 US
61491847 May 2011 US