The present invention relates to a system for analyzing/inspecting airborne radioactive particles sampled in a draft flue, and more particularly, to a system capable of using a pre-detector for detecting the radioactivity distribution relating to the airborne radioactive particles as well as the peak of the distribution while using the detection to determine a sampling time for obtaining representative samples of the airborne radioactive particles in the draft flue. In addition, as the acquired samples are stored in a capture vessel, a longer period of time allowed for an analysis to be performed can be achieved while preventing the radioactive interference in the draft flue referring especially to the radioactivity caused by those airborne radioactive particles accumulated in the air filter or on the inner wall of the draft flue. Thereby, background noise relating to ambient radioactivity can be minimized and thus the detection limit of the aforesaid system is reduced, so that the system of the invention is much more sensitive compared to those conventional real-time radioactivity detection means with regard to the detection of radioactive nuclides in airborne particles. Moreover, the system of the invention is able to identify the type of radionuclide floating in the airborne radioactive particles
With rapid advance of nuclear technology, the related applications are developed from smoke detectors to nuclear reactors, and from gun sights to nuclear weapons, not to mention that it is being vastly applied in various medical uses. With the popularization of such radioactive medical apparatuses, they can easily be found even in those densely populated urban area and consequently there are more and more people who are living or working near a radioactive source but not aware of that. As the operation of any nuclear facilities/apparatuses is going to cause the emission of certain airborne radioactive materials, such emission might cause a certain degree of radiation exposure to its neighboring environment and people so that the concentration of such airborne radioactive materials must be sampled and controlled for ensuring the same to meet with a radiation safety standard and regulation defined by relating nuclear regulatory authority. As the use of positron emission tomography (PET) in the diagnosis of tumors, heart diseases, nerve-related diseases, and even mental diseases has achieved outstanding results, PET devices are becoming the must-have diagnosis apparatuses for almost every hospitals that there is a great deal of public concern about its possible implications relating to radioactive contamination. Among such concerns, the direct radiation leakage from those nuclear medical apparatuses as they are under normal operations can already be controlled effectively since there are already many effective radiation shielding devices especially designed for those nuclear medical apparatuses. However, there are still no solutions for the emission of airborne radioactive materials. Taking a positron circular accelerator for instance, its tube wall as well as the air filled therein will be activated by the neutrons generated from the nuclear reactions during each operation process of the positron circular accelerator, such as the charged particles is circulating, being separated, being synthesized or hitting on a target, which is going to cause a certain radioactive materials to be generated and thus airborne. If no proper precausious action is taken for processing such airborne radioactive materials before they are discharged freely into ambient environment, the people and the environment near the circular accelerator is going to be subjected to hadzardous radiation exposure. Therefore, it is important to have the relating nuclear regulatory authority to design a specification for regulating the discharging and processing of such airborne radioactive materials.
In order to effectively regulate the discharging of such airborne radioactive material, it is important to have a decent system that is capable of analyzing and inspecting airborne radioactive particles sampled from a draft flue so as to monitor whether there is an abnormal discharging or to detect whether the filtering device is operating as expected for contamination prevention. However, for those devices for discharging airborne radioactive material that are currently available, the radioactivity of those airborne radioactive materials that are to be discharged is only being monitored and detected by a simple detector arranged at the end of their discharging pipe. Thus, since the timing and volume of airborne radioactive materials to be discharged for different operations in a radioactive apparatus can be different, not to mention that the discharged airborne radioactive material can be dissipated in air rapidly when it is discharged by a large-volume draft flue, it is difficult and almost impossible to determine whether the radioactivity of the discharged airborne radioactive materials is exceeding the defined radiation safety standard and regulation or not. In addition, as allowable emission concentration relating to the discharging of the airborne radioactive materials for different positron-emitting nuclides are not the same despite that their energy peaks are all at 511 keV, it is important to have a system capable of identifying different nuclides from each other by the use of their decay characteristic so as to define a proper allowable emission concentration.
Therefore, it is in need of a system for analyzing/inspecting airborne radioactive particles sampled in a draft flue, capable of using a pre-detector for detecting the radioactivity distribution relating to the airborne radioactive particles as well as the peak of the distribution while using the detection to determine a sampling time for obtaining representative samples of the airborne radioactive particles in the draft flue. In addition, as the acquired samples are stored in a capture vessel, a longer period of time allowed for an analysis to be performed can be achieved while preventing the radioactive interference in the draft flue referring especially to the radioactivity caused by those airborne radioactive particles accumulated in the air filter or on the inner wall of the draft flue. Thereby, background noise relating to ambient radioactivity can be minimized and thus the detection limit of the aforesaid system is reduced, so that the system of the invention is much more sensitive compared to those conventional real-time radioactivity detection means with regard to the detection of radioactive nuclides in airborne particles. Moreover, the system of the invention is able to identify the type of positron-emitting nuclide floating in the airborne radioactive particles by the counting obtained from different time zones and the decay characteristic of different nuclides. With the software and processes embedded in the system of the invention, the system is able to work cooperatively with those existing laboratory equipments in a manner that not only the exactness of sampling and the detection limit for inspection and analysis are improved, but also the environment protection requirements regulated by the authority are achieved.
In view of the disadvantages of prior art, the primary object of the present invention is to provide a system for analyzing/inspecting airborne radioactive particles sampled in a draft flue, capable of using the operations of a pre-detector, a flow meter and a detector to generate and output a parameter relating to the amount of airborne particles to a hand-held electric device for activating a software programmed therein to perform a calculation while outputting a control signal accordingly to a blow motor for controlling the ON/OFF of the same.
Another object of the invention is to provide a system configured with a detector with airborne particle detection ability and a hand-held electric device embedded with a software, so that system is enabled to use the hand-held electric device to perform a calculation according to the detection of the detector for obtaining values relating to the peak amount of airborne particles being discharged, the total amount of airborne particle being discharged as well as the high time when the airborne particles is being discharged, and thus adapting the same for analyzing/inspecting airborne radioactive particles sampled in all kinds of draft flues.
To achieve the above object, the present invention provides a system for analyzing/inspecting airborne radioactive particles sampled in a draft flue, which comprises:
Preferably, the capture vessel is vacuumed for minimizing any residue particles and thus preventing the affection of exchanging rate from diluting the radioactivity of the collected airborne particles.
Preferably, the capture vessel is constructed as a piston structure for freeing the same from any airborne particle residue problem as it is able to achieve a vacuuming effect while enabling the same to change the volume of the airborne particles to be sampled in a dynamic manner.
Preferably, the capture vessel is constructed as a multi-cell structure to be used for sequentially connecting the sampled airborne particles into different cells according to a specific time sequence.
Preferably, the capture vessel is constructed as a spiral coil structure to be used for increasing the time required for the sampled airborne particles to pass through the detector and thus enhancing the detection efficiency.
Preferably, the hand-held electric device is a device capable of communicating with a control unit as well as a digital processor that is a device selected from the group consisting of: a notebook computer, an ultra-mobile person computer (UMPC), a personal digital assistant (PDA), a netbook computer, and a smart phone.
Preferably, each of the pre-detector, the detector, the flow meter, the blow motor the hand-held electric device is configured with a wireless transmission device to be used for transmitting electric signal in a wireless manner, and thereby, preventing any cable entanglement problem from happening.
Preferably, the wireless transmission device uses a technique selected from the group consisting of: Bluetooth transmission, Infrared transmission, radio frequency transmission, WiFi, WiMAX, and ZigBEE.
Preferably, the hand-held electric device is programmed with a software for performing a calculation to obtain values relating to the peak amount of airborne particles being discharged, the total amount of airborne particle being discharged as well as the high time when the airborne particles is being discharged according to the detection value obtained from the detection of the pre-detector in a manner that values relating to the total radioactivity of the airborne particle being discharged, the average radioactivity during the high time when the airborne particles is being discharged and the radioactivity at the time when airborne particles being discharged reaches its peak.
Further scope of applicability of the present application will become more apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention and wherein:
For your esteemed members of reviewing committee to further understand and recognize the fulfilled functions and structural characteristics of the invention, several exemplary embodiments cooperating with detailed description are presented as the follows.
Please refer to
In an exemplary embodiment, each of the pre-detector 2, the detector 5, the flow meter 4, the blow motor 8 and the hand-held electric device 3 is configured with a wireless transmission device to be used for transmitting electric signal in a wireless manner, whereas the wireless transmission device uses a technique selected from the group consisting of: Bluetooth transmission, Infrared transmission, radio frequency transmission, WiFi, WiMAX, and ZigBEE.
Please refer to
From the above description, the present invention provides a system for analyzing/inspecting airborne radioactive particles sampled in a draft flue, capable of using the operations of a pre-detector, a flow meter and an detector to generate and output a parameter relating to the amount of airborne particles to a hand-held electric device for activating a software programmed therein to perform a calculation while outputting a control signal accordingly to a blow motor for controlling the ON/OFF of the same. In addition, as the system is configured with an detector with airborne particle detection ability and a hand-held electric device embedded with a software, the system is able to use the hand-held electric device to perform a calculation according to the detection of the detector for obtaining values relating to the peak amount of airborne particles being discharged, the total amount of airborne particle being discharged as well as the high time when the airborne particles is being discharged, and thus adapting the same for analyzing/inspecting airborne radioactive particles sampled in all kinds of draft flues.
With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.
Number | Date | Country | Kind |
---|---|---|---|
097213781 | Aug 2008 | TW | national |