System for arresting a seagoing vessel

Information

  • Patent Grant
  • 6325015
  • Patent Number
    6,325,015
  • Date Filed
    Monday, October 30, 2000
    23 years ago
  • Date Issued
    Tuesday, December 4, 2001
    22 years ago
Abstract
A system for arresting a fleeing seagoing vessel deploys a net using one or more self-propelled vehicles from a platform. The net is flown over and draped onto a seagoing vessel of interest such that a portion of the net's periphery resides in the water. Drag devices are coupled to the net to generate drag forces at the portion of the net's periphery in the water as the seagoing vessel moves through the water. The system can also include a variety of non-lethal weapon systems that are coupled to or incorporated with the net, and designed to subdue the crew of the vessel and/or the vessel's engine and electronic components.
Description




FIELD OF THE INVENTION




The invention relates generally to the capture of a fleeing seagoing vessel, and more particularly to a system that slows and/or incapacitates a fleeing seagoing vessel from a pursuing platform.




BACKGROUND OF THE INVENTION




Military and law enforcement operations need the ability to stop or significantly slow a rapidly fleeing maritime vessel without harming the occupants of the fleeing craft. In certain situations, it may also be necessary to incapacitate the occupants of the fleeing vessel. Often, the operators of such vessels are involved with illegal smuggling operations. For effective legal prosecution, law enforcement must capture these individuals with contraband. The problem is that smugglers tend to run when confronted by law enforcement. Resulting high-speed boat chases may last for several hours. In many cases, the fleeing vessel is fast and filled with enough fuel that the law enforcement agency can reach but not catch the fleeing vessel before it enters foreign waters or before the law enforcement watercraft runs out of fuel. Since most smugglers do not fire upon law enforcement when they run, law enforcement is precluded from using lethal means to stop the fleeing vessel.




Previous methods used to stop such fleeing vessels use ropes and/or metallic lines launched ahead of the fleeing vessel with the hope that it will travel over the extended line and pull it into the vessel's propeller. This method is limited in area of coverage and thus is often eluded by maneuverable vessels that simply steer away from the line in the water. Additionally, vessels that do travel over the line often do not get entangled in the line and continue on their way. Further, large vessels with large propellers simply shred the line, cut the line using propeller guards or line cutters, or carry the line along without any degradation in speed. Impeller jet propelled vessels are not susceptible to entanglement with such lines.




Other currently-used capture methods include the use of lines with harpoon-like devices that are fired and attached to the fleeing vessel. The opposite end of the line is secured to the pursuing vessel. This method is limited because it can only be used on fiberglass and wooden hulls and is virtually useless on a hull of substantial thickness or a hull made of steel. Additionally, this method adds an element of risk to the pursuing vessel since dynamic loads between the two vessels connected by a line can be formidable. The loads can cause hull failure, sinking of the vessel and inadvertent injuries and/or loss of life. Further, the tension in the line itself can be sufficient to break the line and send it flying with great lethal capacity toward people on either vessel.




SUMMARY OF THE INVENTION




Accordingly, it is an object of the present invention to provide a system that can slow and/or incapacitate a fleeing seagoing vessel.




Another object of the present invention is to provide a system that can be deployed from a pursuing vehicle to arrest a fleeing seagoing vessel.




Still another object of the present invention is to provide a system that can slow and/or incapacitate a fleeing seagoing vessel and initiate activation of a non-lethal weapon against the seagoing vessel and/or its occupants.




Yet another object of the present invention is to provide a system for slowing and/or incapacitating a fleeing seagoing vessel without endangering personnel on a pursuing vehicle.




Other objects and advantages of the present invention will become more obvious hereinafter in the specification and drawings.




In accordance with the present invention, a system for arresting a fleeing seagoing vessel includes a net having a periphery. The net is deployed by one or more self-propelled vehicles from a platform. The net is flown over and draped onto a seagoing vessel of interest such that a portion of the net's periphery resides in the water. Drag devices are coupled to the net to generate drag forces at the portion of the net's periphery in the water as the seagoing vessel moves through the water. The drag forces are imparted to the net which, in turn, imparts the drag forces to the vessel and slow the speed thereof. The use of the net disperses the dynamic drag forces throughout the entirety thereof thereby limiting the potential for failure of single or multiple strength members of the net. Continuing forward motion of the vessel can ultimately cause overheating and destruction of the engines of the vessel. Still further, the net may become entangled in the propulsion system (e.g., propellers) of the vessel thereby quickly incapacitating same. A variety of non-lethal weapon systems can also be coupled to or incorporated with the net. The weapon systems are designed to subdue the crew of the vessel and/or the vessel's engine and electronic components.











BRIEF DESCRIPTION OF THE DRAWINGS




Other objects, features and advantages of the present invention will become apparent upon reference to the following description of the preferred embodiments and to the drawings, wherein corresponding reference characters indicate corresponding parts throughout the several views of the drawings and wherein:





FIG. 1

is a schematic view of one embodiment of the arresting system of the present invention in its airborne phase enroute to being draped over a fleeing seagoing vessel;





FIG. 2

is a schematic diagram of the arresting system of

FIG. 1

draped over the fleeing vessel;





FIG. 3A

is a schematic view of a section of the arresting net's strength member surrounded by an explosive or electric-shock type of weapon system that is initiated when an attempt is made to cut the net;





FIG. 3B

is a schematic view of a section of the arresting net's strength member surrounded by a chemical type of weapon system that is initiated when an attempt is made the cut the net;





FIG. 4A

is a schematic view of a section of the arresting net's strength member containing a chemical weapon system that is initiated when tension develops in the net;





FIG. 4B

is a schematic view of a section of the arresting net's strength member containing sharp objects that protrude therefrom when tension develops in the net;





FIG. 5

is a schematic view of the present invention in its airborne phase and equipped with a remotely initiated weapon system;





FIG. 6

is a schematic view of a section of a detonating cord and surrounded by a chemical-containing sheath;





FIG. 7

is a schematic view of the present invention in its airborne phase and equipped with another embodiment of a remotely initiated weapon system;





FIG. 8

is a schematic view of another embodiment of the resent invention in which an electric shock can be delivered;





FIG. 9

is a schematic view of a section of an electromagnetic pulse (EMP) generator that can be coupled to the arresting net in the present invention;





FIG. 10

is a schematic view of the arresting net in a folded configuration prior to deployment thereof;





FIG. 11A

is a schematic view of a triangle-shaped net configuration; and





FIG. 11B

is a schematic view of a diamond-shaped net configuration.











DETAILED DESCRIPTION OF THE INVENTION




Referring now to the drawings, and more particularly to

FIGS. 1 and 2

, one embodiment of a system


10


for arresting a fleeing seagoing vessel


100


is illustrated. Arresting system


10


is referenced generally in

FIG. 1

where it is shown in its airborne phase. In

FIG. 2

, system


10


is illustrated in its operational phase. Arresting system


10


is assumed to have been launched from a platform (not shown) such as a pursuing aircraft or seagoing vessel belonging to law enforcement authorities. The launch platform and choice thereof are not limitations of the present invention. Various launch configurations will be described below.




Once launched, arresting system


10


assumes a configuration shown schematically in FIG.


1


. That is, arresting system


10


includes a net


12


propelled through the air by one or more self-propelled vehicles or rockets (two are illustrated in this embodiment)


14


attached to the front of net


12


. Rockets


14


can be directed at slightly diverging angles to assure the full opening of net


12


. Towards this same goal, the aft end of net


12


can have one or more (two are illustrated) net opening devices (e.g., parachutes)


16


attached thereto. Attached about the periphery of net


12


are a plurality of devices


18


that can induce drag forces in water as will be described later herein.




Net


12


is made from a high-strength, flexible material that is difficult to cut. Suitable materials include, for example, various commercially-available synthetic fibrous materials that can be used to construct net


12


. Such synthetic fibers include, for example, nylon, polyesters, aramids (e.g., KEVLAR), polyaramids and polyethylenes, just to name a few. The flexible nature of net


12


will allow it to be easily folded/packed into a pre-deployment package. The high-strength nature of net


12


will allow it to withstand launch forces and drag forces experienced during its use.




The “difficult to cut” nature of net


12


will make it difficult or impossible for occupants (not shown) of fleeing vessel


100


to cut net


12


. The size of net


12


should be such that it can be substantially or fully draped over fleeing vessel


100


such that the net's periphery and many of drag-producing devices


18


reside in the water surrounding fleeing vessel


100


as best seen in FIG.


2


. The particular shape of net


12


is not a limitation of the present invention.




Rockets


14


represent any currently-available or specially-designed self-propelled vehicles that can be used to propel net


12


through the air. Rockets


14


can follow a pre-determined ballistic path selected at launch that will cause net


12


to land on fleeing vessel


100


. Rockets


14


can also be equipped with guidance and control computers (GCC)


14


A as illustrated to provide for the in-flight maneuvering of net


12


thereby allowing system


10


to track evasive actions by fleeing vessel


100


. Such guidance and control systems are well known in the art and, therefore, need not be described further herein.




Net opening devices


16


can be any device(s) that will aid in the opening of net


12


to its fullest extent during flight. Accordingly, devices


16


can be coupled to net


12


wherever needed to aid in the opening of net


12


, e.g., the aft end, sides or middle of net


12


. Choices for devices


16


include parachutes as shown, or glide vehicles or weights that vector outward from the forward path of net


12


as net


12


flies forward.




Drag inducing devices


18


can be any object or system that will generate drag forces that can be imparted to net


12


as devices


18


move through water. Accordingly, devices


18


can include parachutes deployed in the water, streamers released into the water, anchors, buckets, balloons that fill with gas when deployed in the water, weights, self-propelled vehicles designed to travel in a direction opposite that of fleeing vessel


100


, other devices that will induce drag forces in the water, or any combination of the above. Note that if drag devices


18


do not weigh enough to cause the periphery of net


12


to sink in the water, weights (not shown) can be attached to net


12


. By way of example, drag devices


18


can be underwater parachutes. Such underwater parachutes are typically furled prior to deployment by means of small lines which can be cut by tension-activated reefing line cutters. Such reefing line cutters are available commercially from Roberts Research Laboratory, Torrance, Calif.




After net


12


has been draped on fleeing vessel


100


with a substantial number or all of drag inducing devices


18


residing in the surrounding water, the present invention acts to slow and/or incapacitate fleeing vessel


100


in one or more ways. For example, as illustrated, devices


18


are parachutes that open in water to generate drag forces as fleeing vessel


100


continues to move forward dragging net


12


therealong. The drag forces are imparted to net


12


which, in turn, imparts the drag forces to fleeing vessel


100


to slow fleeing vessel


100


to a speed at which it can be overtaken and/or boarded. The use of net


12


disperses the dynamic drag forces throughout the entirety thereof thereby limiting the potential for failure of single or multiple strength members of net


12


. Continuing forward motion of fleeing vessel


100


is slowed under the high drag loads imposed by net


12


. Further, continued operation of fleeing vessel


100


can ultimately cause overheating and destruction of the engines of fleeing vessel


100


. Still further, net


12


may become entangled in the propulsion system (e.g., propellers) of fleeing vessel


100


thereby quickly incapacitating same.




While the above description addresses the basic concept of the present invention, the present invention can include a weapon system designed to incapacitate fleeing vessel


100


and/or its crew. Such a weapon system can be lethal or non-lethal in a nature. However, since the present invention will generally be used when lethal force is neither warranted nor permitted, the description herein will focus on a variety of non-lethal weapon systems. The weapon system can be explosive, chemical and/or electrical in nature. That is, upon initiation, the weapon system could deliver an explosive force designed to have an effect on the crew of fleeing vessel


100


(or the vessel itself). Additionally or alternatively, the weapon system could be designed to deliver a chemical substance(s) that have an effect on the crew and/or fleeing vessel


100


. Additionally or alternatively, the weapon system could deliver an electrical force that affects the crew and/or fleeing vessel


100


. Initiation of such weapon system(s) can occur automatically (e.g., when an attempt is made to cut net


12


, when tension is generated in net


12


as described above etc.) or under remote control from, for example, the pursuing vehicle. Several non-limiting examples of weapon systems and initiation schemes will be explained below.




As mentioned above, the goal of the present invention is to slow and/or incapacitate fleeing vessel


100


so that it can be overtaken. Accordingly, it may only be desired to initiate a weapon system if/when attempts are made (onboard fleeing vessel


100


) to cut net


12


. Examples of such weapon systems are illustrated in

FIGS. 3A and 3B

where a small section of the net's strength member is illustrated along with a weapon system. In

FIG. 3A

, a weapon system


20


is formed about a strength member


120


of net


12


. Weapon system


20


surrounds strength member


120


, and includes a sheath


22


having electrical conductors


24


and


26


extending therein and separated from one another by a material


28


. If weapon system


20


is cut into, presumably with a metal implement, conductors


24


and


26


will be pressed into engagement to complete an electrical circuit that can generate a shock. The electric shock could also be used to detonate material


28


which can be an explosive. In

FIG. 3B

, a chemical weapon system


30


includes a sheath


32


surrounding strength member


120


and a chemical agent or substance


34


that is emitted when sheath


32


is cut. Chemical substance


34


can take the form of a variety of non-lethal noxious substances such as pepper spray, cadaverine, etc., or a sticky foam or glue that impedes the further use of the implement being used to cut sheath


32


.




A weapon system could also be initiated once tension begins to develop in net


12


. Examples of such weapon systems are illustrated in

FIGS. 4A and 4B

where, in each case, tension in strength member


120


causes initiation of the weapon system. Since strength member


120


is typically a weave of synthetic fibers, the weapon systems in

FIGS. 4A and 4B

are contained within the weave (not shown) that makes up strength member


120


. In

FIG. 4A

, a thin plastic tube or membrane


40


contains a chemical agent or substance


42


. As tension builds in strength member


120


, it naturally necks down and causes membrane


40


to rupture thereby allowing the release of chemical substance


42


through the weave of strength member


120


. For example, if chemical substance


42


is a sticky foam or glue, net


12


will quickly bond to fleeing vessel


100


and any of its crew that it contacts. In

FIG. 4B

, a plurality of sharp objects


50


such as needles, barbs, hooks, etc. are embedded in the internal portions of strength member


120


. As tension builds in strength member


120


and it necks down, sharp objects


50


will protrude therefrom thereby making movement against net


12


difficult and treacherous in a non-lethal fashion.




The weapon system used in the present invention could also be remotely initiated once net


12


was draped on a fleeing vessel. In this way, the weapon system could be reserved as a deterrent from further resistance if the speed reduction provided by the net is insufficient to subdue the fleeing vessel. For example, as illustrated in

FIG. 5

, a plurality of detonating cords


60


can be attached to and extending throughout net


12


. Detonating cords


60


are coupled to a fuze


62


that is activated by remotely-issued radio commands received at a floating antenna


64


once net


12


is draped on fleeing vessel


100


. Detonating cords


60


would typically have an explosive grain density that would be sufficient to incapacitate the crew without being lethal.




An alternative to using just detonating cords is illustrated in

FIG. 6

where a section of detonating cord


60


is surrounded by a sheath


70


that forms a bladder thereabout for retaining a chemical agent or substance


72


. Sheath


70


can be continuous on cord


60


or formed as segments thereon. Chemical substance


72


could be any of the afore-mentioned chemical irritants. Chemical substance


72


could also be tear gas, a sticky foam or glue, a dispersible liquid fuel ignited by a separately-deployed pyrotechnic (not shown), or a chemical substance (e.g., powdered silicon carbide) that can be ingested by the air intake of fleeing vessel


100


in order to destroy its engines. Another way to deliver a chemical substance is to attach chemically-filled canisters


80


to detonating cord


60


as illustrated in FIG.


7


. Each of canisters


80


is designed to rupture upon receiving the explosive train propagating along detonating cord


60


.




A remotely-controlled weapon system could also be provided to deliver electrical energy in the form of an electric shock designed to incapacitate the crew or an electromagnetic pulse design to induce destructive stray voltages in the electronic components of fleeing vessel


100


.

FIG. 8

depicts an electric-shock type of weapon system where a bare-wire grid


90


is attached to net


12


. Grid


90


is coupled to an electric power source


92


. Power source


92


could be activated remotely as described above or, alternatively, could be a generator that produces electricity as net


12


is dragged through the water.





FIG. 9

depicts a simple electromagnetic pulse (EMP) generator that can be attached to net


12


in the present invention. Briefly, the EMP generator includes a detonating cord sheath


94


filled with a combination of magnetic and explosive material


96


surrounded by a tubular permanent magnet


98


. Upon explosive detonation at one end of the EMP generator, a fast-moving jet of molten magnetic and explosive material


96


moves through magnet


98


. The high velocity movement of the magnetic material through magnet


98


causes a very sharp change in the surrounding magnetic field to produce a large EMP pulse. Examples of other EMP generation techniques are disclosed in U.S. Pat. Nos. 4,862,021, 5,301,362, and 6,005,305.




Regardless of the particular embodiment used, net


12


(with or without an accompanying weapon system) will typically be folded in a packed configuration that unfurls either when rockets


14


are launched or sometime thereafter. For example, as illustrated in

FIG. 10

, a container


200


houses a folded configuration of net


12


until time of deployment. To prevent adjacent folds from sticking to one another, thin sheets


202


of material can be disposed between folds. Alternatively or additionally, net


12


can be dry-coated with talcum powder or any other non-stick material.




The advantages of the present invention are numerous. An arresting system is provided that can slow and/or incapacitate a fleeing vessel as the fleeing vessel tries its best to escape. The system can be used without seriously injuring any of the occupants of the vessel. The arresting system can be deployed safely from a pursuing seagoing vessel or aircraft since the system is not tethered to the pursuing vehicle. A variety of non-lethal weapon systems can be used to subdue the crew of fleeing vessel and/or the fleeing vessel's engine and electronic components.




Although the invention has been described relative to a specific embodiment thereof, there are numerous variations and modifications that will be readily apparent to those skilled in the art in light of the above teachings. For example, the function of drag devices


18


could be incorporated directly into net


12


. That is, the periphery of net


12


could be embodied by a tight mesh grid in order to create drag forces as the periphery of the net was dragged through the water. In terms of propelling net


12


through the air, another alternative could include the use of a single rocket and weights designed to vector outward from the direction of rocket travel. For example, net


12


could be deployed in a triangle pattern by a single rocket


14


and two aft-mounted vectoring weights


15


as illustrated in FIG.


11


A. In

FIG. 11B

, net


12


is deployed in a diamond pattern by a single rocket


14


, two mid-mounted vectoring weights


15


and an aft-mounted parachute


17


. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described.



Claims
  • 1. A system for arresting a fleeing seagoing vessel, comprising:a net having a periphery; means for deploying said net from a platform to drape onto a seagoing vessel of interest such that a portion of said periphery resides in the water; and a plurality of drag-producing devices coupled to said periphery for generating drag forces at said portion of said periphery as said seagoing vessel moves through the water.
  • 2. A system as in claim 1 wherein said net is constructed from a fibrous strength material.
  • 3. A system as in claim 1 wherein said means for deploying includes at least one self-propelled vehicle coupled to said net and launched from said platform.
  • 4. A system as in claim 1 further comprising a non-lethal weapon system coupled to said net.
  • 5. A system as in claim 4 wherein said non-lethal weapon system is initiated when an attempt is made to cut said net.
  • 6. A system as in claim 5 wherein said non-lethal weapon system generates an explosive event upon initiation.
  • 7. A system as in claim 5 wherein said non-lethal weapon system releases a chemical agent upon initiation.
  • 8. A system as in claim 5 wherein said non-lethal weapon system delivers electrical energy upon initiation.
  • 9. A system as in claim 4 wherein said non-lethal weapon system is initiated by remote control.
  • 10. A system as in claim 9 wherein said non-lethal weapon system generates an explosive event upon initiation.
  • 11. A system as in claim 9 wherein said non-lethal weapon system releases a chemical agent upon initiation.
  • 12. A system as in claim 9 wherein said non-lethal weapon system delivers electrical energy upon initiation.
  • 13. A system as in claim 9 wherein said non-lethal weapon system delivers an electromagnetic pulse upon initiation.
  • 14. A system as in claim 4 wherein said non-lethal weapon system is initiated by increased tension in said net resulting from said drag forces.
  • 15. A system as in claim 14 wherein said non-lethal weapon system releases a chemical agent upon initiation.
  • 16. A system as in claim 14 wherein said non-lethal weapon system exposes sharp objects upon initiation.
  • 17. A system as in claim 14 wherein said net is packed in a series of folds prior to being deployed.
  • 18. A system as in claim 17 further comprising means disposed between said folds for preventing said folds from sticking together as said net is deployed.
  • 19. A system as in claim 1 wherein said means for deploying comprises:first means for propelling said net through the air; and second means for opening said net to its fullest extent as said first means propels said net through the air.
  • 20. A system as in claim 1 wherein said means for deploying includes guidance and control means.
  • 21. A system for arresting a fleeing seagoing vessel, comprising:a net having a periphery; at least one self-propelled vehicle coupled to said net and launched from said platform for propelling said net through the air, wherein said net opens as said net is propelled through the air, said at least one self-propelled vehicle being directed along a path that causes said net to drape onto a seagoing vessel of interest such that a portion of said periphery resides in the water; and a plurality of drag-producing devices coupled to said periphery of said net for generating drag forces at said portion of said periphery as said seagoing vessel moves through the water.
  • 22. A system as in claim 21 wherein said net is constructed from a fibrous strength material.
  • 23. A system as in claim 21 further comprising a non-lethal weapon system coupled to said net.
  • 24. A system as in claim 21 wherein said non-lethal weapon system is initiated when an attempt is made to cut said net.
  • 25. A system as in claim 24 wherein said non-lethal weapon system generates an explosive event upon initiation.
  • 26. A system as in claim 24 wherein said non-lethal weapon system releases a chemical agent upon initiation.
  • 27. A system as in claim 24 wherein said non-lethal weapon system delivers electrical energy upon initiation.
  • 28. A system as in claim 23 wherein said non-lethal weapon system is initiated by remote control.
  • 29. A system as in claim 28 wherein said non-lethal weapon system generates an explosive event upon initiation.
  • 30. A system as in claim 28 wherein said non-lethal weapon system releases a chemical agent upon initiation.
  • 31. A system as in claim 28 wherein said non-lethal weapon system delivers electrical energy upon initiation.
  • 32. A system as in claim 28 wherein said non-lethal weapon system delivers an electromagnetic pulse upon initiation.
  • 33. A system as in claim 23 wherein said non-lethal weapon system is initiated by increased tension in said net resulting from said drag forces.
  • 34. A system as in claim 33 wherein said non-lethal weapon system releases a chemical agent upon initiation.
  • 35. A system as in claim 33 wherein said non-lethal weapon system exposes sharp objects upon initiation.
  • 36. A system as in claim 21 wherein said net is packed in a series of folds prior to being deployed.
  • 37. A system as in claim 36 further comprising means disposed between said folds for preventing said folds from sticking together as said net is deployed.
  • 38. A system as in claim 21 further comprising guidance and control means coupled to said self-propelled vehicle for guiding said self-propelled vehicle through the air.
  • 39. A system for arresting a fleeing seagoing vessel, comprising:a net having a periphery; at least one self-propelled vehicle coupled to said net and launched from said platform for propelling said net through the air; means coupled to said net for causing said net to open as said net is propelled through the air, wherein said at least one self-propelled vehicle is directed along a path that causes said net so-opened to drape onto a seagoing vessel of interest such that a portion of said periphery resides in the water; and a plurality of drag-producing devices coupled to said periphery of said net for generating drag forces at said portion of said periphery as said seagoing vessel moves through the water.
  • 40. A system as in claim 39 wherein said means comprises a plurality of devices coupled to said periphery of said net, said plurality of devices being selected from the group consisting of vectoring weights and parachutes.
  • 41. A system as in claim 39 wherein said net is constructed from a fibrous strength material.
  • 42. A system as in claim 39 further comprising a non-lethal weapon system coupled to said net.
  • 43. A system as in claim 42 wherein said non-lethal weapon system is initiated when an attempt is made to cut said net.
  • 44. A system as in claim 43 wherein said non-lethal weapon system generates an explosive event upon initiation.
  • 45. A system as in claim 43 wherein said non-lethal weapon system releases a chemical agent upon initiation.
  • 46. A system as in claim 43 wherein said non-lethal weapon system delivers electrical energy upon initiation.
  • 47. A system as in claim 42 wherein said non-lethal weapon system is initiated by remote control.
  • 48. A system as in claim 47 wherein said non-lethal weapon system generates an explosive event upon initiation.
  • 49. A system as in claim 47 wherein said non-lethal weapon system releases a chemical agent upon initiation.
  • 50. A system as in claim 47 wherein said non-lethal weapon system delivers electrical energy upon initiation.
  • 51. A system as in claim 47 wherein said non-lethal weapon system delivers an electromagnetic pulse upon initiation.
  • 52. A system as in claim 42 wherein said non-lethal weapon system is initiated by increased tension in said net resulting from said drag forces.
  • 53. A system as in claim 52 wherein said non-lethal weapon system releases a chemical agent upon initiation.
  • 54. A system as in claim 52 wherein said non-lethal weapon system exposes sharp objects upon initiation.
  • 55. A system as in claim 39 wherein said net is packed in a series of folds prior to being deployed.
  • 56. A system as in claim 55 further comprising means disposed between said folds for preventing said folds from sticking together as said net is deployed.
  • 57. A system as in claim 39 further comprising guidance and control means coupled to said self-propelled vehicle for guiding said self-propelled vehicle through the air.
  • 58. A system for arresting a fleeing seagoing vessel, comprising:a net having a periphery; at least one self-propelled vehicle coupled to said net for deploying said net from a platform to drape onto a seagoing vessel of interest such that a portion of said periphery resides in the water; and means coupled to said net for generating drag forces at said portion of said periphery as said seagoing vessel moves through the water.
  • 59. A system for arresting a fleeing seagoing vessel, comprising:a net having a periphery; means for deploying said net from a platform to drape onto a seagoing vessel of interest such that a portion of said periphery resides in the water, said means for deploying comprising first means for propelling said net through the air and second means for opening said net to its fullest extent as said first means propels said net through the air; and means coupled to said net for generating drag forces at said portion of said periphery as said seagoing vessel moves through the water.
  • 60. A system for arresting a fleeing seagoing vessel, comprising:a net having a periphery; means for deploying said net from a platform to drape onto a seagoing vessel of interest such that a portion of said periphery resides in the water, said means for deploying including guidance and control means; and means coupled to said net for generating drag forces at said portion of said periphery as said seagoing vessel moves through the water.
ORIGIN OF THE INVENTION

The invention described herein was made in the performance of official duties by employees of the Department of the Navy and may be manufactured, used, licensed by or for the Government for any governmental purpose without payment of any royalties thereon.

US Referenced Citations (2)
Number Name Date Kind
4768417 Wright Sep 1988
5069109 Lavan, Jr. Dec 1991