There is an unmet need for the development of a closed environment for pharmaceutical formulation that will allow healthcare professionals to easily compound and dispense therapeutically valuable and medically necessary medications, that are commercially unavailable due to relatively short drug stability, stringent compounding/manufacturing requirements and/or lack of proper facilities for sterile preparation of pharmaceutical products, from powder to a solution/suspension form.
One ophthalmic mixing system that currently exists includes an open environment transfer of liquid diluents to an open environment glass bottle with powder that is mixed and then closed with a glass ophthalmic bottle dropper tip with rubber or silicone bulb. This product is available as Phospholine Iodide® (echothiophate) from Wyeth-Ayerst. It is referred to as an open system because it does not contain any features to prevent the contamination of the product during mixing and use or to protect the compounder from exposure to the product.
A new and unique system for compounding, labeling, and dispensing “Ready to Reconstitute Drug Powders or Solutions to Solution or to a Suspension or to an injectable”. In specific embodiment, the system can be used as an ophthalmic drop delivery container.
In one embodiment, described herein is a Compounding System which makes the availability of once unstable or non-mixable medications with short stability dating available to patients worldwide (especially where no specialty sterile compounding or manufacturing facilities are available for the preparation of such medications) for multiple medical indications. In one embodiment, the system is an Ophthalmic Medication. In one embodiment, the system is for treatment of multiple ophthalmic indications.
The system allows a health care professional or patient to reconstitute powder or solution with a system that locks together when transferring diluents solutions to powders or solution a closed environment.
A unique locking and vented diluent transferring device that screws onto a drug containing bottle with powder minimizes the risk of medication contamination or the inhalation of aerosolized powders upon diluent transfer present in other mixing systems. In one embodiment, the bottle is a bottle for dispensing an ophthalmic drug.
A unique conical design of the diluent solution neck/transfer chamber permits the solution to be transferred centrally which minimizes run off and spillage when opening.
The sterile easy to screw on dropper tip and outer cap (which all interlock with the assistance of a locking/dimple/nipple) can be easily connected to the reconstitution bottle after opening the sterile packet that houses both items.
Clear side or bottom panel permits viewing of solution to ensure it mixed properly (no visible signs of incompatibility such as clumping or precipitation) and permits patient to observe remaining volume as it is used.
In one embodiment, the bottle is adapted with a dropper. In one embodiment, the drug is contained in Ophthalmic bottles. Ophthalmic bottles are available in clear, opaque, or amber colored combinations to address potential drug/light sensitivity issues.
Sterile gloves can be provided for use by the compounder for added protection of both the compounded medication and as personal protective equipment for the compounder from topical exposure to the medication.
Sterile 70% Isopropyl Alcohol pads are provided for additional disinfection at the point of connection between the syringe and the transfer device and between the transfer device and the drug bottle. In a specific embodiment, the bottle is an ophthalmic bottle.
Beyond-use date/Discard after date stickers can be provided for placement onto the final bottle product that has been prepared for use by the patient. In one embodiment, the bottle is an ophthalmic bottle.
The novel features that are characteristic of the present disclosure are explained in the DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Section. The preferred embodiments are best understood by referencing the following detailed descriptions in connection with the accompanying drawings in which:
The present invention relates to a closed environment pharmaceutical Compounding System that will allow healthcare professionals to easily compound and dispense therapeutically valuable and medically necessary therapeutics that are commercially unavailable due to short stability dating or unique compounding requirements, from powder or solution to a solution/suspension form. This closed environment will limit the exposure of the drug to microbial or particulate contaminants carried by the environment as well as protect the compounder/healthcare professional from potential topical or inhalation exposure of the medication (using some present compounding methods or devices). In one embodiment, the pharmaceutical system is for the preparation of an ophthalmic Medication.
Referring to
Referring to
Referring to
A primary sterility barrier/aluminum seal barrier 118 is removed to expose the opening of the ophthalmic bottle with powder 102. Once removed the surface and rim of the bottle of which the seal sat on can be cleaned with a sterilizing agent, such as a 70% isopropyl alcohol pads swabbed over the surface, for physical removal of particulates and chemical disinfection.
A secondary sterility barrier 120 of an sterile inert material that will keep the inner mixing chamber 122 of the ophthalmic bottle with powder 102 closed until the membrane 120 is broken by a conical drainage tube 124 of the transfer device 100 when the transfer device 100 is connected to the ophthalmic bottle 102 by turning clockwise until locked by engagement of the threads 130 of the transfer device and the threads 132 of the bottle 102.
As shown in
Once all three stages have been locked in (i.e., the syringe 106, the transfer device 100, and the bottle 102) with the assistance of the luer-lock connection 128 and the threads of the ophthalmic bottle's neck 132, the syringe arm 134 is slowly pressed down until all the diluent 136 is released and transferred to the bottom of the ophthalmic bottle 102 where it can be seen through the clear panel 138 for mixture viewing by a compounder (user).
While all 3 stages are still connected the user can slowly rotate the three pieces clockwise to swirl the powder and solution until the powder dissolves completely (other acceptable mixing motions can be used, including counterclockwise motion, so long as care is taken so not as to prematurely disengage the connected pieces).
Once in solution (e.g., the powder and diluent are mixed), the diluent syringe 106 can be removed from the transfer device 100, which can in turn be removed from the ophthalmic bottle 102 and discard.
The sterile dropper tip 110 and bottle cap 108 can be provided in sterile plastic packaging. After the dropper tip 110 and the bottle cap 108 are removed from the sterile packaging they can be attached to the ophthalmic bottle 102 with the newly compounded solution or suspension (combination of powder 140 and diluent 136). Care should be taken to avoid contact between the top edge 144 of the ophthalmic bottle 102 with anything but the dropper tip 110. The dropper tip 110 can be rotated clockwise until the dimple/nipple lock is activated and the dropper tip 110 is locked in engagement with the bottle 102. This step should be performed immediately after the bottle 102 has been separated from the syringe 106 and the transfer device 100 in order to limit exposure of the opened container to particulate matter and microbial organisms that may compromise the sterility of the solution/suspension.
Cap 108 can be placed onto the dropper tip 110 and rotated such that the threads 146 of the dropper tip 110 and the internal threads (not shown) of the cap 108 engage until closed. The locked and complete cap 108, dropper tip 110, and ophthalmic bottle 102 combination can be seen at 114 in
Referring to
Beyond-use date/discard after date stickers which are provided for placement onto the final ophthalmic bottle that has been prepared for use by the patient have not been displayed in the drawings as they vary in style and color.
This ready-to-mix and dispense medication compounding system provides: a pre-measured sterile diluent in a syringe that luer locks onto a sterile vented transfer device (transfer device contains a vented pin that filters air and other particles while preventing a negative pressure environment that would affect the flow of the diluent solution into the bottle) that twists on with threads and connects onto a plastic bottle with medication in a powder form for mixing. In one embodiment, the medication is an ophthalmic medication.
In another embodiment the vented transfer device may include a separate injection port to permit injecting an additional substance (solution or medication) into the mixing chamber without disconnecting the primary syringe with solution that has been luer locked into the bottle that contains the powder or solution. This cap will likewise be screwed on till locked.
Bottle sizes may vary from 2.5 mL to 30 mL depending on the final volume required.
A primary sterility barrier (aluminum seal under the capped ophthalmic bottle containing the powder as supplied by the manufacturer).
A secondary sterility barrier (internal membrane within the neck of the drug powder bottle) for the protection of the medication while preparing for mixing. This secondary barrier will be made of an inert non-reactive, sterile, material that will maintain its integrity until the drainage cone, upon connection of the transfer device, pierces the center of the membrane thus causing it to snap into two exposing the inner mixing chamber with the powder to the diluents when the syringe is pressed. In an embodiment, the drug is an ophthalmic drug.
A unique conical drainage tube that will minimize spillage and further facilitate the flowing of the diluents towards the powder within the mixing chamber of the bottle. In one embodiment, the bottle is adapted with a dropper. In one embodiment, the bottle is an ophthalmic bottle.
A see through plastic window (include on the side or bottom of the bottle which allows the compounder to look at the solution so it is mixed properly).
In one embodiment, the system also includes a unique threaded sterile dropper tip and cap. In one embodiment, the sterile dropper tip contains a special lock-on dimple/nipple that will protect the dropper tip from being opened and spilling of the drug solution or compromising the sterility of the solution once compounded and dispensed. In one embodiment, the system is for patient drug administration into the eye. A snap-on type tip may also be used however the screw on is preferred for added security and prevention of tampering. The dropper tip will have internal and external threads for twisting onto the ophthalmic bottle and for twisting the cap onto the dropper tip. The sterile dropper cap will then screw onto the dropper tip for easy closing and opening.
Beyond-use/Discard after labels can also be provided to be used on the bottle so the patient will remember the assigned expiration/discard date of the drug.
The above described system can be provided in a kit that also contains sterile latex or non-latex gloves and 70% isopropyl alcohol pads for additional disinfecting of connector points and surfaces.
Additional safeguards and good techniques for compounding sterile products, such as those listed in the United States Pharmacopeia <797> guidelines, should be followed, where applicable, for added protection of the medication and the compounder i.e., wearing of a face mask.
Ultimately, a complete labeled, and ready-to-use bottle will be dispensed to the patient, for use and storage, by pharmacies, hospitals, clinics and other healthcare settings. In one embodiment, the bottle is an ophthalmic bottle.
In one embodiment, the disclosed system may be used for such medications as piperacillin-tazobactam, vancomycin, metronidazole, macrolide antibiotics, aztreonam, amphotericin B in conventional (desoxycholate) or liposomal forms, imipenem-cilastatin, ceftazidime, cefazolin, and other penicillins, cephalosporins or other related or non-related antimicrobial medications. Other medications that may be compounded using this system include antineoplastic/chemotherapeutic (5-fluorouracil, mitomycin, etc.) agents and other ophthalmic classes of medications. This system may be used together or without injectable medications such as those mentioned above as continuation of therapy post surgical or non surgical ophthalmic procedures. SEE TABLE 1 for the list of products that may be used with the system.
Fortified ophthalmic drops of cephalosporins, combination groups of antibiotics listed above, sodium sulfacetamide, acyclovir, cidofivir, ganciclovir, idoxuridine, trifluridine, amphotericin, clotrimazole, fluconazole, flucytosine, ketoconazole, miconazole, natamycin, voriconazole, Thiotepa, 5-fluorouracil mitomycin, paclitaxol, tetrahydonannabino marijuana (THC), cocaine, glycerin, hydroxyamphetamine, rose bengal solution, brilliant blue, indocyanine green (ICG) solution, albumin, autologous serum eye drops, cyclosporine with or without combination medications, methyl cellulose, tacrolimus, antioxidant/vitamin mixtures, acetazolamide, preservative-free eye drops which may include: include apraclonidine, betaxolol, bimatoprost, brimonidine, carbachol, clonidine, dipivefrin, dorzolamide, epinephrine, latanoprost, levobutanol, phospholine iodide, pilocarpine, pilocarpine combinations, travoprost: dexamethasone, methylprednisolone, prednisolonoe, rimexolone, triamcinolone, acetylcysteine, aminocaproic acid, bevacizumab, brilliant green, brilliiant blue, dicofenac, ethylenediaminetetraacetic acid (EDTA), glutathione, interferon, polyhexamethylene biguanide (PHMB), physostigmine, povidone-iodine, silver nitrate, sodium chloride, sterile water or artificial tear combination product with or without methylcelluslose, tetrahydrolazine, vitamins, atropine, benoxinate, cylcopentolate, cyclopentolate combinations, cyclopentolate/phenylephrine, dapiprazole, homatropine, lidocaine, phenylephrine, proparacaine alone or in combination with other drugs, scopolamine, tetracaine, tropicamide, tropicamide combinations with cyclopentolate or phenylephrine,
In another embodiment, the vented transfer device, with or without additional injection port may be sold as a part of a commercially available kit. These bottles can contain the vented transfer device, the bottle for mixing (which will be empty and not be provided with any powder or solution for mixing), with a twist on cap (which contains the special locking device), and the cap for closing the final compounded product. It can be made available as a retail product for retail pharmacy, the pharmaceutical market, or academic, institutional, research or public settings which require bottles for mixing eye products or non-eye products that requires protection of the product and the individual while mixing a powder to solution or a solution to solution in any setting. This system can also be considered for use in mixing other artistic, cosmetic, commercial or industrial products such as creams, gels, solutions, paints and glues.
According to one embodiment and referring to
A vent member 126 can be included that provides a fluid communication passage through a wall of the sleeve such that when the sleeve is in a first condition and engaged with the collar of the container air can be expelled from the container through the vent as fluid is introduced into the container through the luer lock. The vent can include a one-way valve that permits air in the container to be expelled and does not permit air to enter the container from the outside environment.
A protective cap 116 can also be included that is sized and shaped to be removably disposed over the membrane. The protective cap provides additional protect against inadvertent puncture of the membrane and being removable prior to engagement of the sleeve with the collar. The protective cap can be a removable plastic disk, for example.
After the sleeve is removed from the collar, a dropper tip 110 that is sized and shaped to be removably engaged to the collar such that the dropper tip can be attached to the first container. The dropper tip permits controlled dispensing of a mixture of the first compound and a fluid introduced into the first container through the luer lock. Referring to
The system of
The system of
The systems shown in
Each kit to be commercially supplied as:
This ready-to-mix and dispense medication compounding system provides: a pre-measured sterile diluent in a syringe that luer locks onto a sterile vented transfer device that twists on and connects onto a bottle with medication in a powder form for mixing, a primary and secondary sterility barrier found in the bottle, a unique drain spout, and a see through plastic window for viewing of the product while mixing. In one embodiment, this system also includes a unique threaded sterile dropper tip and cap. The sterile dropper tip contains a special lock-on dimple/nipple that will protect the dropper tip from opening and spilling of the drug solution or compromising the sterility of the solution once compounded and dispensed. In one embodiment, a traditional snap-on tip may also be used, however, the screw on is preferred for added security. The sterile dropper cap will then screw onto the dropper tip for easy closing and opening. Beyond-use stickers/labels are also provided to be used on the bottle so the patient will remember the expiration/discard date of the drug. Also provided is a kit comprising the disclosed system and contains sterile latex or non-latex gloves and 70% isopropyl alcohol pads to minimize the risk of extrinsic contamination of connector locations. Ultimately a complete, labeled, and ready-to-use bottle will be dispensed to the patient, for use and storage, by pharmacies, hospitals, clinics and other healthcare settings. The system may be used for compounding such medications as piperacillin-tazobactam, vancomycin, metronidazole, macrolide antibiotics, aztreonam, amphotericin B (in desoxycholate or liposomal formulations), imipenem-cilastatin, ceftazidime, cefazolin, and other penicillins, cephalosporins or other related or non-related antimicrobial medications. Other medications that may be compounded using this system include antineoplastic chemotherapeutic agents and other ophthalmic classes of medications. In specific embodiment, the system is for ophthalmic medication.
The invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.
All references cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.
This application is a divisional application of U.S. application Ser. No. 14/357,728, filed May 12, 2014, which is a national stage application under 35 U.S.C. § 371, of PCT Application No. PCT/US2013/055153, filed on Aug. 15, 2013, which claims the benefit of priority under 35 U.S.C. Section 119(c) of U.S. Application Ser. No. 61/684,467, filed on Aug. 17, 2012, U.S. Application Ser. No. 61/738,535, filed Dec. 18, 2012, and U.S. Application Ser. No. 61/792,792, filed Mar. 15, 2013 and the entire disclosures of each of the above identified applications are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2999943 | Willard | Sep 1961 | A |
3410444 | Morane | Nov 1968 | A |
3677248 | McPhee | Jul 1972 | A |
3802604 | Morane et al. | Apr 1974 | A |
3857423 | Ronca, Jr. | Dec 1974 | A |
3917063 | Chibret | Nov 1975 | A |
RE29656 | Chittenden et al. | Jun 1978 | E |
4201208 | Cambio, Jr. | May 1980 | A |
4227615 | Flick | Oct 1980 | A |
4336802 | Stone et al. | Jun 1982 | A |
4384960 | Polley | May 1983 | A |
4573506 | Paoletti | Mar 1986 | A |
4591357 | Sneider | May 1986 | A |
4986322 | Chibret et al. | Jan 1991 | A |
5105993 | La Haye | Apr 1992 | A |
5156284 | del Pilar Pia Rodriguez | Oct 1992 | A |
5409141 | Kikuchi et al. | Apr 1995 | A |
5573525 | Watson | Nov 1996 | A |
5634714 | Guild | Jun 1997 | A |
5778902 | Nagy | Jul 1998 | A |
5865309 | Futagawa et al. | Feb 1999 | A |
6179125 | Kvitrud et al. | Jan 2001 | B1 |
6457899 | Lin | Oct 2002 | B1 |
7210575 | Oswald | May 2007 | B2 |
7308915 | Johns et al. | Dec 2007 | B2 |
7861855 | Casey | Jan 2011 | B2 |
8075545 | Moy et al. | Dec 2011 | B2 |
8147477 | Smith et al. | Apr 2012 | B2 |
20020104766 | De Laforcade | Aug 2002 | A1 |
20020115980 | Niedospial, Jr. | Aug 2002 | A1 |
20030088232 | Duell | May 2003 | A1 |
20030159983 | Naji | Aug 2003 | A1 |
20040065635 | Turnbough | Apr 2004 | A1 |
20040134562 | Engel | Jul 2004 | A1 |
20040249341 | Newbrough | Dec 2004 | A1 |
20050033260 | Kubo | Feb 2005 | A1 |
20050184091 | Abergel | Aug 2005 | A1 |
20050252879 | Pedmo | Nov 2005 | A1 |
20060106360 | Wong | May 2006 | A1 |
20060289316 | Henry | Dec 2006 | A1 |
20070079894 | Kraus | Apr 2007 | A1 |
20070093765 | Kawashiro | Apr 2007 | A1 |
20070095721 | Davis et al. | May 2007 | A1 |
20070233020 | Hearne | Oct 2007 | A1 |
20080015539 | Pieroni et al. | Jan 2008 | A1 |
20080172024 | Yow | Jul 2008 | A1 |
20080245314 | Brodowski et al. | Oct 2008 | A1 |
20080245380 | Ecker et al. | Oct 2008 | A1 |
20090152302 | Grevin | Jun 2009 | A1 |
20090274762 | Willis | Nov 2009 | A1 |
20090326506 | Hasegawa | Dec 2009 | A1 |
20100016826 | Billiet-Prades et al. | Jan 2010 | A1 |
20100022986 | Breuer-Thal | Jan 2010 | A1 |
20100063473 | Schwarz | Mar 2010 | A1 |
20100198147 | Perovitch | Aug 2010 | A1 |
20110022023 | Weitzel | Jan 2011 | A1 |
20110042255 | Traboulsi et al. | Feb 2011 | A1 |
20110042944 | Johns et al. | Feb 2011 | A1 |
20110087164 | Mosler | Apr 2011 | A1 |
20110218511 | Yokoyama | Sep 2011 | A1 |
20110264069 | Bochenko | Oct 2011 | A1 |
20120031401 | Berger et al. | Feb 2012 | A1 |
20120067429 | Mosler et al. | Mar 2012 | A1 |
20120220949 | Davies | Aug 2012 | A1 |
20120234432 | Lamboux | Sep 2012 | A1 |
20120323210 | Lev et al. | Dec 2012 | A1 |
20130220484 | De Marco | Aug 2013 | A1 |
20130245579 | Kouyoumjian | Sep 2013 | A1 |
20140039413 | Jugl et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
202004009453 | Aug 2004 | DE |
WO 2006076492 | Jun 2006 | WO |
Entry |
---|
International Search Report and Written Opinion dated Jan. 29, 2014 for PCT/US2013/055153. |
Non-Final Office Action in corresponding U.S. Appl. No. 14/357,728, dated May 13, 2016. |
Final Office Action in corresponding U.S. Appl. No. 14/357,728, dated Nov. 1, 2016. |
Number | Date | Country | |
---|---|---|---|
20170253372 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
61792792 | Mar 2013 | US | |
61738535 | Dec 2012 | US | |
61684467 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14357728 | US | |
Child | 15604429 | US |