The field of invention relates generally to imprint lithography. More particularly, the present invention is directed to a system for controlling a flow of a substance over an imprinting material.
Micro-fabrication involves the fabrication of very small structures, e.g., having features on the order of micro-meters or smaller. One area in which micro-fabrication has had a sizeable impact is in the processing of integrated circuits. As the semiconductor processing industry continues to strive for larger production yields while increasing the circuits per unit area formed on a substrate, micro-fabrication becomes increasingly important. Micro-fabrication provides greater process control while allowing increased reduction of the minimum feature dimension of the structures formed. Other areas of development in which micro-fabrication has been employed include biotechnology, optical technology, mechanical systems and the like.
An exemplary micro-fabrication technique is shown in U.S. Pat. No. 6,334,960 to Willson et al. Willson et al. disclose a method of forming a relief image in a structure. The method includes providing a substrate having a transfer layer. The transfer layer is covered with a polymerizable fluid composition. A mold makes mechanical contact with the polymerizable fluid. The mold includes a relief structure, and the polymerizable fluid composition fills the relief structure. The polymerizable fluid composition is then subjected to conditions to solidify and polymerize the same, forming a solidified polymeric material on the transfer layer that contains a relief structure complimentary to that of the mold. The mold is then separated from the solid polymeric material such that a replica of the relief structure in the mold is formed in the solidified polymeric material. The transfer layer and the solidified polymeric material are subjected to an environment to selectively etch the transfer layer relative to the solidified polymeric material such that a relief image is formed in the transfer layer. The time required and the minimum feature dimension provided by this technique is dependent upon, inter alia, the composition of the polymerizable material.
U.S. Pat. No. 5,772,905 to Chou discloses a lithographic method and apparatus for creating ultra-fine (sub-25 nm) patterns in a thin film coated on a substrate in which a mold having at least one protruding feature is pressed into a thin film carried on a substrate. The protruding feature in the mold creates a recess of the thin film. The mold is removed from the film. The thin film then is processed such that the thin film in the recess is removed, exposing the underlying substrate. Thus, patterns in the mold are replaced in the thin film, completing the lithography. The patterns in the thin film will be, in subsequent processes, reproduced in the substrate or in another material which is added onto the substrate.
Yet another imprint lithography technique is disclosed by Chou et al. in Ultrafast and Direct Imprint of Nanostructures in Silicon, Nature, Col. 417, pp. 835–837, June 2002, which is referred to as a laser assisted direct imprinting (LADI) process. In this process. a region of a substrate is made flowable, e.g., liquefied, by heating the region with the laser. After the region has reached a desired viscosity, a mold, having a pattern thereon, is placed in contact with the region. The flowable region conforms to the profile of the pattern and is then cooled, solidifying the pattern into the substrate. A concern with this technique involves pattern distortions attributable to the presence of gases in the flowable region.
It is desired, therefore, to provide a system to reduce distortions in patterns formed using imprint lithographic techniques.
The present invention is directed toward a system for introducing a flow of a fluid between a mold, disposed on a template, and a substrate, the system including, a fluid supply system; and a chuck body having a baffle and first and second apertures, the first and second apertures disposed between the baffle and the template, with the first and second apertures in fluid communication with the fluid supply system to produce a turbulent flow of the fluid between the mold and said substrate. These and other embodiments are discussed more fully below.
Referring to both
Referring to both
Referring to
To facilitate filling of recessions 28a, material 36a is provided with the requisite properties to completely fill recessions 28a, while covering surface 32 with a contiguous formation of material 36a. In the present embodiment, sub-portions 34b of imprinting layer 34 in superimposition with protrusions 28b remain after the desired, usually minimum, distance “d” has been reached, leaving sub-portions 34a with a thickness t1, and sub-portions 34b with a thickness, t2. Thicknesses “t1” and “t2” may be any thickness desired, dependent upon the application. Typically, t1 is selected so as to be no greater than twice the width u of sub-portions 34a, i.e., t1≦2u, shown more clearly in
Referring to
Referring to
Alternatively, or in addition to, imprinting layer 34 may be provided with an etch differential with respect to photo-resist material (not shown) selectively disposed thereon. The photo-resist material (not shown) may be provided to further pattern imprinting layer 34, using known techniques. Any etch process may be employed, dependent upon the etch rate desired and the underlying constituents that form substrate 30 and imprinting layer 34. Exemplary etch processes may include plasma etching, reactive ion etching, chemical wet etching and the like.
Referring to
As discussed above, during imprinting template 26 and, therefore, mold 28, is brought into proximity with substrate 30 before patterning imprinting material 36a, shown in
Referring to
Referring to
Referring to
Referring to
Referring to
To ensure that the fluids exiting apertures 104a and 106a crosses through processing region 78a, it may be advantageous to concurrently pulse fluid through both apertures 104a and 106a concurrently and then alternatingly evacuate through one of apertures 104a or 106a. Concurrently introducing the fluid through both apertures 104a and 106a minimizes the time required to saturate atmosphere 78. Alternatingly evacuating the fluid through one of apertures 104a and 106a ensures that the fluid travels through processing region 78a. For example, a first step would include introducing fluid into atmosphere 78 through both apertures 104a and 106a. A second step would include evacuating the fluid through one of apertures 104a and 106a, e.g., aperture 104a. Thereafter, at a third step, fluid would be introduced into atmosphere 78 through both apertures 104a and 106a, concurrently. At a fourth step, fluid would be evacuated through one of apertures 104a and 106a that was not employed in the previous step to remove fluid, e.g., aperture 106a. It should be understood that evacuation may occur through one of apertures 104a and 106a, while fluid is being introduced through the remaining aperture of apertures 104a and 106a. Alternatively, evacuation may occur in the absence of a fluid flow into atmosphere 78. The desired result is that fluid ingression into atmosphere 78 and fluid evacuation therefrom occurs so that the desired concentration of fluid is present.
Referring to
As shown, each of apertures 104a, 106a, 108a and 110a, are arranged to lie on a common circle with adjacent apertures being spaced-apart therefrom by 900. In this manner, each of apertures 104a, 106a, 108a and 110a are arranged to facilitate fluid flow in/out of a different quadrant of chuck body 42. Specifically, aperture 104a facilitates fluid flow in/out of quadrant I; aperture 106a facilitates fluid flow in/out of quadrant II; aperture 108a facilitates fluid flow in/out of quadrant III; and aperture 110a facilitates fluid flow in/out of quadrant IV. However, any number of apertures may be employed, e.g., more than one per quadrant with differing quadrants having differing numbers of apertures and arranged in any spatial arrangement desired. Each of these arrangements should facilitate introduction and/or evacuation of a plurality of flows of fluid streams into atmosphere 78, with a subset of the plurality of flows being introduced to differing regions about template 26. It is believed that introduction of the multiple flows of fluid streams provides a turbulent flow of fluid in atmosphere 78. This, it is believed, increases the probability that molecules in the fluid streams would reach processing region 78a. However, fluid flow into atmosphere 78 through each of the apertures 104a, 106a, 108a and 110a and evacuation of fluid from atmosphere 78 therethrough may occur in any manner discussed above.
In another embodiment, a fluid stream may be introduced through each of apertures 104a, 106a, 108a and 110a sequentially so that a flow cell 112 may be created between template 26 and region 77. Flow cell 112 would facilitate ingression of molecules in the fluid streams into processing region 78a to provide the benefits mentioned above. For example, first a fluid flow may be introduced through aperture 104a and then terminated. After termination of fluid flow through aperture 104a, fluid flow through aperture 106a is commenced to introduce fluid into atmosphere 78. Subsequently, fluid flow through aperture 106a is terminated. After termination of fluid flow through aperture 106a, fluid flow through aperture 108a is commenced to introduce fluid into atmosphere 78. Fluid flow in through aperture 108a is subsequently terminated. After termination of fluid flow through aperture 108a, fluid flow through aperture 110a is commenced to introduce fluid into atmosphere 78. In this manner, fluid is introduced into atmosphere 78 through a single quadrant at any given time. However, it may be desirable to introduce fluid into more than one quadrant. Although this may frustrate creation of flow cell 112, it is within confines of the present invention.
Alternatively, sequential introduction and evacuation through apertures 104a, 106a, 108a and 110a may be undertaken to create flow cell 112. This would include introducing fluid through one or more of apertures 104a, 106a, 108a and 110a, concurrently. Subsequently, sequential evacuation may occur through each of apertures 104a, 106a, 108a and 110a to create flow cell 112. For example, fluid may be introduced through all apertures in chuck body 42, concurrently. Thereafter, fluid may be evacuated from each of apertures 104a, 106a, 108a and 110a, one at a time. Before, the concentration in atmosphere 78 of fluid introduced through apertures 104a, 106a, 108a and 110a went below a desired level due to evacuation. The fluid may then be reintroduced through one or all of apertures 104a, 106a, 108a and 110a again and the process repeated to create and/or maintain flow cell 112.
The embodiments of the present invention described above are exemplary. Many changes and modifications may be made to the disclosure recited above, while remaining within the scope of the invention. Therefore, the scope of the invention should not be limited by the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
The present application is a divisional, and claims priority from, U.S. patent application Ser. No. 10/677,639 filed on Oct. 2, 2003, now U.S. Pat. No. 7,090,716 entitled “Single Phase Fluid Imprint Lithography Method,” which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3997447 | Breton et al. | Dec 1976 | A |
4279628 | Wymer et al. | Jul 1981 | A |
4512848 | Deckman et al. | Apr 1985 | A |
4521175 | Medwed | Jun 1985 | A |
4689004 | Kunkel | Aug 1987 | A |
4731155 | Napoli et al. | Mar 1988 | A |
4767584 | Siler | Aug 1988 | A |
5028366 | Harakal et al. | Jul 1991 | A |
5259926 | Kuwabara et al. | Nov 1993 | A |
5338177 | Le Touche | Aug 1994 | A |
5425848 | Haisma et al. | Jun 1995 | A |
5512131 | Kumar et al. | Apr 1996 | A |
5545367 | Bae et al. | Aug 1996 | A |
5601641 | Stephens | Feb 1997 | A |
5669303 | Maracas et al. | Sep 1997 | A |
5772905 | Chou | Jun 1998 | A |
5776748 | Singhvi et al. | Jul 1998 | A |
5820769 | Chou | Oct 1998 | A |
5821175 | Engelsberg | Oct 1998 | A |
5849209 | Kindt-Larsen et al. | Dec 1998 | A |
5849222 | Jen et al. | Dec 1998 | A |
5948470 | Harrison et al. | Sep 1999 | A |
5956216 | Chou | Sep 1999 | A |
6099771 | Hudkins et al. | Aug 2000 | A |
6159400 | Laquer | Dec 2000 | A |
6218316 | Marsh | Apr 2001 | B1 |
6257866 | Fritz et al. | Jul 2001 | B1 |
6309580 | Chou | Oct 2001 | B1 |
6334960 | Willson et al. | Jan 2002 | B1 |
6355198 | Kim et al. | Mar 2002 | B1 |
6391217 | Schaffer et al. | May 2002 | B2 |
6416311 | Springer et al. | Jul 2002 | B1 |
6461524 | Tsuihiji et al. | Oct 2002 | B1 |
6482742 | Chou | Nov 2002 | B1 |
6517995 | Jacobenson et al. | Feb 2003 | B1 |
6518189 | Chou | Feb 2003 | B1 |
6580172 | Mancini et al. | Jun 2003 | B2 |
6646662 | Nebashi et al. | Nov 2003 | B1 |
6696220 | Bailey et al. | Feb 2004 | B2 |
6713238 | Chou et al. | Mar 2004 | B1 |
6776094 | Whitesides et al. | Aug 2004 | B1 |
6809356 | Chou | Oct 2004 | B2 |
6828244 | Chou | Dec 2004 | B2 |
6849558 | Schaper | Feb 2005 | B2 |
6900881 | Sreenivasan et al. | May 2005 | B2 |
6908861 | Sreenivasan et al. | Jun 2005 | B2 |
6916584 | Sreenivasan et al. | Jul 2005 | B2 |
6932934 | Choi et al. | Aug 2005 | B2 |
6982783 | Choi et al. | Jan 2006 | B2 |
7019819 | Choi et al. | Mar 2006 | B2 |
20020018190 | Nogawa et al. | Feb 2002 | A1 |
20020042027 | Chou et al. | Apr 2002 | A1 |
20020132482 | Chou | Sep 2002 | A1 |
20020167117 | Chou | Nov 2002 | A1 |
20020177319 | Chou | Nov 2002 | A1 |
20030034329 | Chou | Feb 2003 | A1 |
20030062334 | Lee et al. | Apr 2003 | A1 |
20030080471 | Chou | May 2003 | A1 |
20030080472 | Chou | May 2003 | A1 |
20040007799 | Choi et al. | Jan 2004 | A1 |
20040008334 | Sreenivasan et al. | Jan 2004 | A1 |
20040009673 | Sreenivasan et al. | Jan 2004 | A1 |
20040021254 | Sreenivasan et al. | Feb 2004 | A1 |
20040021866 | Watts et al. | Feb 2004 | A1 |
20040022888 | Sreenivasan et al. | Feb 2004 | A1 |
20040036201 | Chou et al. | Feb 2004 | A1 |
20040046288 | Chou | Mar 2004 | A1 |
20040110856 | Young et al. | Jun 2004 | A1 |
20040118809 | Chou et al. | Jun 2004 | A1 |
20040123293 | Eichenberger | Jul 2004 | A1 |
20040124566 | Sreenivasan et al. | Jul 2004 | A1 |
20040131718 | Chou et al. | Jul 2004 | A1 |
20040137734 | Chou et al. | Jul 2004 | A1 |
20040156108 | Chou et al. | Aug 2004 | A1 |
20040192041 | Jeong et al. | Sep 2004 | A1 |
20040197843 | Chou et al. | Oct 2004 | A1 |
20040250945 | Zheng et al. | Dec 2004 | A1 |
20050037143 | Chou et al. | Feb 2005 | A1 |
20050072755 | McMackin et al. | Apr 2005 | A1 |
20050074512 | McMackin et al. | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
1-196749 | Aug 1989 | JP |
02-24848 | Jan 1990 | JP |
02-92603 | Apr 1990 | JP |
02192045 | Jul 1990 | JP |
WO8702935 | May 1987 | WO |
WO9905724 | Feb 1999 | WO |
WO 0021689 | Apr 2000 | WO |
WO 0147003 | Jun 2001 | WO |
WO 0207199 | Jan 2002 | WO |
WO 03010289 | Feb 2003 | WO |
WO 03079416 | Sep 2003 | WO |
WO 03099536 | Dec 2003 | WO |
WO 2004114016 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050074512 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10677639 | Oct 2003 | US |
Child | 10898037 | US |