System for displaying medical monitoring data

Information

  • Patent Grant
  • 11241199
  • Patent Number
    11,241,199
  • Date Filed
    Thursday, October 31, 2019
    4 years ago
  • Date Issued
    Tuesday, February 8, 2022
    2 years ago
Abstract
A first medical device can receive a physiological parameter value from a second medical device. The second physiological parameter value may be formatted according to a protocol not used by the first medical device such that the first medical device is not able to process the second physiological parameter value to produce a displayable output value. The first medical device can pass the physiological parameter data from the first medical device to a separate translation module and receive translated parameter data from the translation module at the first medical device. The translated parameter data can be processed for display by the first medical device. The first medical device can output a value from the translated parameter data for display on the first medical device or an auxiliary device.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to patient monitoring devices and specifically to a patient monitor and medical data communication hub.


BACKGROUND OF THE DISCLOSURE

Today's patient monitoring environments are crowded with sophisticated and often electronic medical devices servicing a wide variety of monitoring and treatment endeavors for a given patient. Generally, many if not all of the devices are from differing manufactures, and many may be portable devices. The devices may not communicate with one another and each may include its own control, display, alarms, configurations and the like. Complicating matters, caregivers often desire to associate all types of measurement and use data from these devices to a specific patient. Thus, patient information entry often occurs at each device. Sometimes, the disparity in devices leads to a need to simply print and store paper from each device in a patient's file for caregiver review.


The result of such device disparity is often a caregiver environment scattered with multiple displays and alarms leading to a potentially chaotic experience. Such chaos can be detrimental to the patient in many situations including surgical environments where caregiver distraction is unwanted, and including recovery or monitoring environments where patient distraction or disturbance may be unwanted.


Various manufacturers produce multi-monitor devices or devices that modularly expand to increase the variety of monitoring or treatment endeavors a particular system can accomplish. However, as medical device technology expands, such multi-monitor devices begin to be obsolete the moment they are installed.


SUMMARY

This disclosure describes embodiments of a medical monitoring hub as the center of monitoring for a monitored patient. The hub can include configurable medical ports and serial ports for communicating with other medical devices in the patient's proximity. Moreover, the hub can communicate with a portable patient monitor. The monitor, when docked with the hub, may provide display graphics different from when undocked. The display graphics can include anatomical information. The hub can assemble the often vast amount of electronic medical data, associate it with the monitored patient, and in some embodiments, communicate the data to the patient's medical records.


Some aspects of the disclosure describe a first medical device having digital logic circuitry receives a physiological signal associated with a patient from a physiological sensor, obtains a first physiological parameter value based on the physiological signal, and outputs the first physiological parameter value for display. The first medical device can also receive a second physiological parameter value from a second medical device other than the first medical device, where the second physiological parameter value is formatted according to a protocol not used by the first medical device, such that the first medical device is not able to process the second physiological parameter value to produce a displayable output value. The first medical device can pass the physiological parameter data from the first medical device to a separate translation module, receive translated parameter data from the translation module at the first medical device, where the translated parameter data is able to be processed for display by the first medical device, and output a second value from the translated parameter data for display. The first medical device may be, for example, a monitoring hub, a portable physiological monitor, or a multi-patient monitoring system, and the second medical device may be an infusion pump, ventilator, or the like.


For purposes of summarizing the disclosure, certain aspects, advantages and novel features are discussed herein. It is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular embodiment of the invention and an artisan would recognize from the disclosure herein a myriad of combinations of such aspects, advantages or features.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings and the associated descriptions are provided to illustrate embodiments of the present disclosure and do not limit the scope of the claims.



FIGS. 1A-1C illustrate perspective views of an exemplary medical monitoring hub according to an embodiment of the disclosure. For example, FIG. 1A illustrates the hub with an exemplary docked portable patient monitor, FIG. 1B illustrates the hub with a set of medical ports and a noninvasive blood pressure input, and FIG. 1C illustrates the hub with various exemplary temperature sensors attached thereto, all according to various embodiments of the disclosure.



FIG. 2 illustrates a simplified block diagram of an exemplary monitoring environment including the hub of FIG. 1, according to an embodiment of the disclosure.



FIG. 3 illustrates a simplified exemplary hardware block diagram of the hub of FIG. 1, according to an embodiment of the disclosure.



FIG. 4 illustrates a perspective view of an exemplary removable docking station of the hub of FIG. 1, according to an embodiment of the disclosure.



FIG. 5 illustrates a perspective view of exemplary portable patient monitors undocked from the hub of FIG. 1, according to an embodiment of the disclosure. Moreover, FIG. 5 illustrates an exemplary alternative docking station.



FIG. 6 illustrates a simplified block diagram of traditional patient device electrical isolation principles.



FIG. 7A illustrates a simplified block diagram of an exemplary optional patient device isolation system according to an embodiment of the disclosure, while FIG. 7B adds exemplary optional non-isolation power levels for the system of FIG. 7A, also according to an embodiment of the disclosure.



FIG. 8 illustrates a simplified exemplary universal medical connector configuration process, according to an embodiment of the disclosure.



FIGS. 9A-9B, 10, 11A-11F, 11G1-11G2, and 11H-11K illustrate simplified block diagrams of exemplary universal medical connectors having a size and shape smaller in cross section than tradition isolation requirements.



FIG. 10 illustrates a perspective view of a side of the hub of FIG. 1, showing exemplary instrument-side channel inputs for exemplary universal medical connectors, according to an embodiment of the disclosure.



FIGS. 11A-11F, 11G1-11G2, and 11H-11K illustrate various views of exemplary male and mating female universal medical connectors, according to embodiments of the disclosure.



FIG. 12 illustrates a simplified block diagram of a channel system for the hub of FIG. 1, according to an embodiment of the disclosure.



FIG. 13 illustrates an exemplary logical channel configuration, according to an embodiment of the disclosure.



FIG. 14 illustrates a simplified exemplary process for constructing a cable and configuring a channel according to an embodiment of the disclosure.



FIG. 15 illustrates a perspective view of the hub of FIG. 1, including an exemplary attached board-in-cable to form an input channel, according to an embodiment of the disclosure.



FIG. 16 illustrates a perspective view of a back side of the hub of FIG. 1, showing an exemplary instrument-side serial data inputs, according to an embodiment of the disclosure.



FIG. 17A illustrates an exemplary monitoring environment with communication through the serial data connections of FIG. 16, according to embodiments of the disclosure.



FIG. 17B illustrates an exemplary connectivity display of the hub of FIG. 1, according to embodiments of the disclosure.



FIG. 18 illustrates a simplified exemplary patient data flow process, according to an embodiment of the disclosure.



FIGS. 19A-19J illustrate exemplary displays of anatomical graphics for the portable patient monitor of FIG. 1 docked with the hub of FIG. 1, according to embodiments of the disclosure.



FIGS. 20A-20C illustrate exemplary displays of measurement data showing data separation and data overlap on a display of the hub of FIG. 1, respectively, according embodiments of the disclosure.



FIGS. 21A and 21B illustrate exemplary displays of measurement data showing data separation and data overlap on a display of the portable patient monitor of FIG. 1, respectively, according embodiments of the disclosure.



FIGS. 22A and 22B illustrate exemplary analog display indicia according to an embodiment of the disclosure.



FIGS. 23A-23F illustrate exemplary displays of measurement data showing, for example, data presentation in FIGS. 23A-23D when a depth of consciousness monitor is connected to a channel port of the hub of FIG. 1, data presentation in FIG. 23E when temperature and blood pressure sensors communicate with the hub of FIG. 1 and data presentation in FIG. 23F when an acoustic sensor is also communicating with the hub of FIG. 1, according embodiments of the disclosure.



FIG. 24 illustrates another embodiment of a monitoring environment including the hub of FIG. 1.



FIG. 25 illustrates an embodiment of a translation message handling process.



FIGS. 26-39 illustrate additional example hub displays, including displays of measurement data.



FIG. 40A illustrates an example first medical device and an example second medical device that communicate with one another via a translation module.



FIG. 40B illustrates an example first medical device and an example second medical device that communicate with one another via a translation module and a communication bus.



FIG. 41A illustrates an example input message received by the translation module.



FIG. 41B illustrates an example message header segment of an input message that has been parsed into fields.



FIG. 41C illustrates an example encoded version of the parsed message header segment of FIG. 41B.



FIG. 41D illustrates an example output message of the translation module based on the input message of FIG. 41A.



FIG. 42 illustrates an example translation process for generating an output message based on an input message and a comparison with translation rules associated with the translation module.



FIG. 43A illustrates an example translation process in which the translation module facilitates communication of an HL7 message from a Hospital Information System (“HIS”) having a first HL7 format to an intended recipient medical device having a second HL7 format.



FIG. 43B illustrates an example translation process in which the translation module facilitates communication of an HL7 message from a medical device having a first HL7 format to a HIS having a second HL7 format.



FIG. 44 illustrates an example screenshot from a messaging implementation tool for manually configuring translation rules to be used by the translation module.



FIGS. 45A and 45B illustrate example automatic rule configuration processes that can be performed by the translation module.



FIGS. 45C and 45D illustrate example automatic rule configuration processes that can be performed by the translation module for messages utilizing the HL7 protocol.



FIGS. 46-71 illustrate additional example hub displays, including displays of measurement data.





While the foregoing “Brief Description of the Drawings” references generally various embodiments of the disclosure, an artisan will recognize from the disclosure herein that such embodiments are not mutually exclusive. Rather, the artisan would recognize a myriad of combinations of some or all of such embodiments.


DETAILED DESCRIPTION

I. Introduction


Based on at least the foregoing, a solution is needed that coordinates the various medical devices treating or monitoring a patient. Embodiments of such a solution should provide patient identification seamlessly across the device space and embodiments of such a solution should expand for future technologies without necessarily requiring repeated software upgrades. In addition, embodiments of such a solution may include patient electrical isolation where desired.


Therefore, the present disclosure relates to a patient monitoring hub that is the center of patient monitoring and treatment activities for a given patient. Embodiments of the patient monitoring hub interface with legacy devices without necessitating legacy reprogramming, provide flexibility for interfacing with future devices without necessitating software upgrades, and offer optional patient electrical isolation. In an embodiment, the hub includes a large display dynamically providing information to a caregiver about a wide variety of measurement or otherwise determined parameters. Additionally, in an embodiment, the hub includes a docking station for a portable patient monitor. The portable patient monitor may communicate with the hub through the docking station or through various wireless paradigms known to an artisan from the disclosure herein, including WiFi, Bluetooth, Zigbee, or the like.


In still other embodiments, the portable patient monitor modifies its screen when docked. The undocked display indicia is in part or in whole transferred to a large dynamic display of the hub and the docked display presents one or more anatomical graphics of monitored body parts. For example, the display may present a heart, lungs, a brain, kidneys, intestines, a stomach, other organs, digits, gastrointestinal systems or other body parts when it is docked. In an embodiment, the anatomical graphics may advantageously be animated. In an embodiment, the animation may generally follow the behavior of measured parameters, such as, for example, the lungs may inflate in approximate correlation to the measured respiration rate and/or the determined inspiration portion of a respiration cycle, and likewise deflate according to the expiration portion of the same. The heart may beat according to the pulse rate, may beat generally along understood actual heart contraction patterns, and the like. Moreover, in an embodiment, when the measured parameters indicate a need to alert a caregiver, a changing severity in color may be associated with one or more displayed graphics, such as the heart, lungs, brain, or the like. In still other embodiments, the body portions may include animations on where, when or how to attach measurement devices to measurement sites on the patient. For example, the monitor may provide animated directions for CCHD screening procedures or glucose strip reading protocols, the application of a forehead sensor, a finger or toe sensor, one or more electrodes, an acoustic sensor, and ear sensor, a cannula sensor or the like.


The present disclosure relates to a medical monitoring hub configured to be the center of monitoring activity for a given patient. In an embodiment, the hub comprises a large easily readable display, such as an about ten (10) inch display dominating the majority of real estate on a front face of the hub. The display could be much larger or much smaller depending upon design constraints. However, for portability and current design goals, the preferred display is roughly sized proportional to the vertical footprint of one of the dockable portable patient monitors. Other considerations are recognizable from the disclosure herein by those in the art.


The display provides measurement data for a wide variety of monitored parameters for the patient under observation in numerical or graphic form, and in various embodiments, is automatically configured based on the type of data and information being received at the hub. In an embodiment, the hub is moveable, portable, and mountable so that it can be positioned to convenient areas within a caregiver environment. For example, the hub is collected within a singular housing.


In an embodiment, the hub may advantageously receive data from a portable patient monitor while docked or undocked from the hub. Typical portable patient monitors, such as oximeters or co-oximeters can provide measurement data for a large number of physiological parameters derived from signals output from optical and/or acoustic sensors, electrodes, or the like. The physiological parameters include, but not limited to oxygen saturation, carboxy hemoglobin, methemoglobin, total hemoglobin, glucose, pH, bilirubin, fractional saturation, pulse rate, respiration rate, components of a respiration cycle, indications of perfusion including perfusion index, signal quality and/or confidences, plethysmograph data, indications of wellness or wellness indexes or other combinations of measurement data, audio information responsive to respiration, ailment identification or diagnosis, blood pressure, patient and/or measurement site temperature, depth of sedation, organ or brain oxygenation, hydration, measurements responsive to metabolism, combinations of the same or the like, to name a few. In other embodiments, the hub may output data sufficient to accomplish closed-loop drug administration in combination with infusion pumps or the like.


In an embodiment, the hub communicates with other devices in a monitoring environment that are interacting with the patient in a number of ways. For example, the hub advantageously receives serial data from other devices without necessitating their reprogramming or that of the hub. Such other devices include pumps, ventilators, all manner of monitors monitoring any combination of the foregoing parameters, ECG/EEG/EKG devices, electronic patient beds, and the like. Moreover, the hub advantageously receives channel data from other medical devices without necessitating their reprogramming or that of the hub. When a device communicates through channel data, the hub may advantageously alter the large display to include measurement information from that device. Additionally, the hub accesses nurse call systems to ensure that nurse call situations from the device are passed to the appropriate nurse call system.


The hub also communicates with hospital systems to advantageously associate incoming patient measurement and treatment data with the patient being monitored. For example, the hub may communicate wirelessly or otherwise to a multi-patient monitoring system, such as a server or collection of servers, which in turn many communicate with a caregiver's data management systems, such as, for example, an Admit, Discharge, Transfer (“ADT”) system and/or an Electronic Medical Records (“EMR”) system. The hub advantageously associates the data flowing through it with the patient being monitored thereby providing the electronic measurement and treatment information to be passed to the caregiver's data management systems without the caregiver associating each device in the environment with the patient.


In an embodiment, the hub advantageously includes a reconfigurable and removable docking station. The docking station may dock additional layered docking stations to adapt to different patient monitoring devices. Additionally, the docking station itself is modularized so that it may be removed if the primary dockable portable patient monitor changes its form factor. Thus, the hub is flexible in how its docking station is configured.


In an embodiment, the hub includes a large memory for storing some or all of the data it receives, processes, and/or associates with the patient, and/or communications it has with other devices and systems. Some or all of the memory may advantageously comprise removable SD memory.


The hub communicates with other devices through at least (1) the docking station to acquire data from a portable monitor, (2) innovative universal medical connectors to acquire channel data, (3) serial data connectors, such as RJ ports to acquire output data, (4) Ethernet, USB, and nurse call ports, (5) Wireless devices to acquire data from a portable monitor, (6) other wired or wireless communication mechanisms known to an artisan. The universal medical connectors advantageously provide optional electrically isolated power and communications, are designed to be smaller in cross section than isolation requirements. The connectors and the hub communicate to advantageously translate or configure data from other devices to be usable and displayable for the hub. In an embodiment, a software developers kit (“SDK”) is provided to a device manufacturer to establish or define the behavior and meaning of the data output from their device. When the output is defined, the definition is programmed into a memory residing in the cable side of the universal medical connector and supplied as an original equipment manufacture (“OEM”) to the device provider. When the cable is connected between the device and the hub, the hub understands the data and can use it for display and processing purposes without necessitating software upgrades to the device or the hub. In an embodiment, the hub can negotiate the schema and even add additional compression and/or encryption. Through the use of the universal medical connectors, the hub organizes the measurement and treatment data into a single display and alarm system effectively and efficiently bringing order to the monitoring environment.


As the hub receives and tracks data from other devices according to a channel paradigm, the hub may advantageously provide processing to create virtual channels of patient measurement or treatment data. In an embodiment, a virtual channel may comprise a non-measured parameter that is, for example, the result of processing data from various measured or other parameters. An example of such a parameter includes a wellness indicator derived from various measured parameters that give an overall indication of the wellbeing of the monitored patient. An example of a wellness parameter is disclosed in U.S. patent application Ser. Nos. 13/269,296, 13/371,767 and 12/904,925, by the assignee of the present disclosure and incorporated by reference herein. By organizing data into channels and virtual channels, the hub may advantageously time-wise synchronize incoming data and virtual channel data.


The hub also receives serial data through serial communication ports, such as RJ connectors. The serial data is associated with the monitored patient and passed on to the multi-patient server systems and/or caregiver backend systems discussed above. Through receiving the serial data, the caregiver advantageously associates devices in the caregiver environment, often from varied manufactures, with a particular patient, avoiding a need to have each individual device associated with the patient and possible communicating with hospital systems. Such association is vital as it reduces caregiver time spent entering biographic and demographic information into each device about the patient. Moreover, in an embodiment, through the SDK the device manufacturer may advantageously provide information associated with any measurement delay of their device, thereby further allowing the hub to advantageously time-wise synchronize serial incoming data and other data associated with the patient.


In an embodiment, when a portable patient monitor is docked, and it includes its own display, the hub effectively increases its display real estate. For example, in an embodiment, the portable patient monitor may simply continue to display its measurement and/or treatment data, which may be now duplicated on the hub display, or the docked display may alter its display to provide additional information. In an embodiment, the docked display, when docked, presents anatomical graphical data of, for example, the heart, lungs, organs, the brain, or other body parts being measured and/or treated. The graphical data may advantageously animate similar to and in concert with the measurement data. For example, lungs may inflate in approximate correlation to the measured respiration rate and/or the determined inspiration/expiration portions of a respiration cycle, the heart may beat according to the pulse rate, may beat generally along understood actual heart contraction patterns, the brain may change color or activity based on varying depths of sedation, or the like. In an embodiment, when the measured parameters indicate a need to alert a caregiver, a changing severity in color may be associated with one or more displayed graphics, such as the heart, lungs, brain, organs, circulatory system or portions thereof, respiratory system or portions thereof, other body parts or the like. In still other embodiments, the body portions may include animations on where, when or how to attach measurement devices.


The hub may also advantageously overlap parameter displays to provide additional visual information to the caregiver. Such overlapping may be user definable and configurable. The display may also incorporate analog-appearing icons or graphical indicia.


In the interest of clarity, not all features of an actual implementation are described in this specification. An artisan will of course be appreciate that in the development of any such actual implementation (as in any development project), numerous implementation-specific decisions must be made to achieve a developers' specific goals and subgoals, such as compliance with system- and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of device engineering for those of ordinary skill having the benefit of this disclosure.


To facilitate a complete understanding of the disclosure, the remainder of the detailed description describes the disclosure with reference to the drawings, wherein like reference numbers are referenced with like numerals throughout.


II. Example Hub Embodiments



FIG. 1A illustrates a monitoring environment including a perspective view of an exemplary medical monitoring hub 100 with an exemplary docked portable patient monitor 102 according to an embodiment of the disclosure. The hub 100 includes a display 104, and a docking station 106, which in an embodiment is configured to mechanically and electrically mate with the portable patient monitor 102, each housed in a movable, mountable and portable housing 108. The housing 108 includes a generally upright inclined shape configured to rest on a horizontal flat surface, although the housing 108 can be affixed in a wide variety of positions and mountings and comprise a wide variety of shapes and sizes.


In an embodiment, the display 104 may present a wide variety of measurement and/or treatment data in numerical, graphical, waveform, or other display indicia 110. In an embodiment, the display 104 occupies much of a front face of the housing 108, although an artisan will appreciate the display 104 may comprise a tablet or tabletop horizontal configuration, a laptop-like configuration or the like. Other embodiments may include communicating display information and data to a table computer, smartphone, television, or any display system recognizable to an artisan. The upright inclined configuration of FIG. 1A presents display information to a caregiver in an easily viewable manner.



FIG. 1B shows a perspective side view of an embodiment of the hub 100 including the housing 108, the display 104, and the docking station 106 without a portable monitor docked. Also shown is a connector for noninvasive blood pressure.


In an embodiment, the housing 108 may also include pockets or indentations to hold additional medical devices, such as, for example, a blood pressure monitor or temperature sensor 112, such as that shown in FIG. 1C.


The portable patient monitor 102 of FIG. 1A may advantageously comprise an oximeter, co-oximeter, respiratory monitor, depth of sedation monitor, noninvasive blood pressure monitor, vital signs monitor or the like, such as those commercially available from Masimo Corporation of Irvine, CA, and/or disclosed in U.S. Pat. Pub. Nos. 2002/0140675, 2010/0274099, 2011/0213273, 2012/0226117, 2010/0030040; U.S. patent application Ser. Nos. 61/242,792, 61/387457, 61/645,570, 13/554,908 and U.S. Pat. Nos. 6,157,850, 6,334,065, and the like. The monitor 102 may communicate with a variety of noninvasive and/or minimally invasive devices such as optical sensors with light emission and detection circuitry, acoustic sensors, devices that measure blood parameters from a finger prick, cuffs, ventilators, and the like. The monitor 102 may include its own display 114 presenting its own display indicia 116, discussed below with reference to FIGS. 19A-19J. The display indicia may advantageously change based on a docking state of the monitor 102. When undocked, the display indicia may include parameter information and may alter orientation based on, for example, a gravity sensor or accelerometer.


In an embodiment, the docking station 106 of the hub 100 includes a mechanical latch 118, or mechanically releasable catch to ensure that movement of the hub 100 doesn't mechanically detach the monitor 102 in a manner that could damage the same.


Although disclosed with reference to particular portable patient monitors 102, an artisan will recognize from the disclosure herein a large number and wide variety of medical devices that may advantageously dock with the hub 100. Moreover, the docking station 106 may advantageously electrically and not mechanically connect with the monitor 102, and/or wirelessly communicate with the same.



FIG. 2 illustrates a simplified block diagram of an exemplary monitoring environment 200 including the hub 100 of FIG. 1, according to an embodiment of the disclosure. As shown in FIG. 2, the environment may include the portable patient monitor 102 communicating with one or more patient sensors 202, such as, for example, oximetry optical sensors, acoustic sensors, blood pressure sensors, respiration sensors or the like. In an embodiment, additional sensors, such as, for example, a NIBP sensor or system 211 and a temperature sensor or sensor system 213 may communicate directly with the hub 100. The sensors 202, 211 and 213 when in use are typically in proximity to the patient being monitored if not actually attached to the patient at a measurement site.


As disclosed, the portable patient monitor 102 communicates with the hub 100, in an embodiment, through the docking station 106 when docked and, in an embodiment, wirelessly when undocked, however, such undocked communication is not required. The hub 100 communicates with one or more multi-patient monitoring servers 204 or server systems, such as, for example, those disclosed with in U.S. Pat. Pub. Nos. 2011/0105854, 2011/0169644, and 2007/0180140. In general, the server 204 communicates with caregiver backend systems 206 such as EMR and/or ADT systems. The server 204 may advantageously obtain through push, pull or combination technologies patient information entered at patient admission, such as demographical information, billing information, and the like. The hub 100 accesses this information to seamlessly associate the monitored patient with the caregiver backend systems 206. Communication between the server 204 and the monitoring hub 100 may be any recognizable to an artisan from the disclosure herein, including wireless, wired, over mobile or other computing networks, or the like.



FIG. 2 also shows the hub 100 communicating through its serial data ports 210 and channel data ports 212. As disclosed in the forgoing, the serial data ports 210 may provide data from a wide variety of patient medical devices, including electronic patient bed systems 214, infusion pump systems 216 including closed loop control systems, ventilator systems 218, blood pressure or other vital sign measurement systems 220, or the like. Similarly, the channel data ports 212 may provide data from a wide variety of patient medical devices, including any of the foregoing, and other medical devices. For example, the channel data ports 212 may receive data from depth of consciousness monitors 222, such as those commercially available from SEDLine, brain or other organ oximeter devices 224, noninvasive blood pressure or acoustic devices 226, or the like. In an embodiment, channel device may include board-in-cable (“BIC”) solutions where the processing algorithms and the signal processing devices that accomplish those algorithms are mounted to a board housed in a cable or cable connector, which in some embodiments has no additional display technologies. The BIC solution outputs its measured parameter data to the channel port 212 to be displayed on the display 104 of hub 100. In an embodiment, the hub 100 may advantageously be entirely or partially formed as a BIC solution that communicates with other systems, such as, for example, tablets, smartphones, or other computing systems.


Although disclosed with reference to a single docking station 106, the environment 200 may include stacked docking stations where a subsequent docking station mechanically and electrically docks to a first docking station to change the form factor for a different portable patent monitor as discussed with reference to FIG. 5. Such stacking may include more than 2 docking stations, may reduce or increase the form fact for mechanical compliance with mating mechanical structures on a portable device.



FIG. 3 illustrates a simplified exemplary hardware block diagram of the hub 100 of FIG. 1, according to an embodiment of the disclosure. As shown in FIG. 3, the housing 108 of the hub 100 positions and/or encompasses an instrument board 302, the display 104, memory 304, and the various communication connections, including the serial ports 210, the channel ports 212, Ethernet ports 305, nurse call port 306, other communication ports 308 including standard USB or the like, and the docking station interface 310. The instrument board 302 comprises one or more substrates including communication interconnects, wiring, ports and the like to enable the communications and functions described herein, including inter-board communications. A core board 312 includes the main parameter, signal, and other processor(s) and memory, a portable monitor board (“RIB”) 314 includes patient electrical isolation for the monitor 102 and one or more processors, a channel board (“MID”) 316 controls the communication with the channel ports 212 including optional patient electrical isolation and power supply 318, and a radio board 320 includes components configured for wireless communications. Additionally, the instrument board 302 may advantageously include one or more processors and controllers, busses, all manner of communication connectivity and electronics, memory, memory readers including EPROM readers, and other electronics recognizable to an artisan from the disclosure herein. Each board comprises substrates for positioning and support, interconnect for communications, electronic components including controllers, logic devices, hardware/software combinations and the like to accomplish the tasks designated above and others.


An artisan will recognize from the disclosure herein that the instrument board 302 may comprise a large number of electronic components organized in a large number of ways. Using different boards such as those disclosed above advantageously provides organization and compartmentalization to the complex system.



FIG. 4 illustrates a perspective view of an exemplary removable docking station 400 of the hub 100 of FIG. 1, according to an embodiment of the disclosure. As shown in FIG. 4, the docking station 400 provides a mechanical mating to portable patient monitor 102 to provide secure mechanical support when the monitor 102 is docked. The docking station 400 includes a cavity 402 shaped similar to the periphery of a housing of the portable monitor 102. The station 400 also includes one or more electrical connectors 404 providing communication to the hub 100. Although shown as mounted with bolts, the docking station 400 may snap fit, may use movable tabs or catches, may magnetically attach, or may employ a wide variety or combination of attachment mechanisms know to an artisan from the disclosure herein. In an embodiment, the attachment of the docking station 400 should be sufficiently secure that when docked, the monitor 102 and docking station cannot be accidentally detached in a manner that could damage the instruments, such as, for example, if the hub 100 was accidently bumped or the like, the monitor 102 and docking station 400 should remain intact.


The housing 108 of the hub 100 also includes cavity 406 housing the docking station 400. To the extent a change to the form factor for the portable patient monitor 102 occurs, the docking station 400 is advantageously removable and replaceable. Similar to the docking station 400, the hub 100 includes within the cavity 406 of the housing 108 electrical connectors 408 providing electrical communication to the docking station 400. In an embodiment, the docking station 400 includes its own microcontroller and processing capabilities, such as those disclosed in U.S. Pat. Pub. No. 2002/0140675. In other embodiments, the docking station 400 passes communications through to the electrical connector 408.



FIG. 4 also shows the housing 108 including openings for channel ports 212 as universal medical connectors discussed in detail below.



FIG. 5 illustrates a perspective view of exemplary portable patient monitors 502 and 504 undocked from the hub 100 of FIG. 1, according to an embodiment of the disclosure. As shown in FIG. 5, the monitor 502 may be removed and other monitors, like monitor 504 may be provided. The docking station 106 includes an additional docking station 506 that mechanically mates with the original docking station 106 and presents a form factor mechanically matable with monitor 504. In an embodiment, the monitor 504 mechanically and electrically mates with the stacked docking stations 506 and 106 of hub 100. As can be readily appreciated by and artisan from the disclosure herein, the stackable function of the docking stations provides the hub 100 with an extremely flexible mechanism for charging, communicating, and interfacing with a wide variety of patient monitoring devices. As noted above, the docking stations may be stacked, or in other embodiments, removed and replaced.



FIG. 6 illustrates a simplified block diagram of traditional patient electrical isolation principles. As shown in FIG. 6, a host device 602 is generally associated with a patient device 604 through communication and power. As the patient device 604 often comprises electronics proximate or connected to a patient, such as sensors or the like, certain safety requirements dictate that electrical surges of energy from, for example, the power grid connected to the host device, should not find an electrical path to the patient. This is generally referred to a “patient isolation” which is a term known in the art and includes herein the removing of direct uninterrupted electrical paths between the host device 602 and the patient device 604. Such isolation is accomplished through, for example, isolation devices 606 on power conductors 608 and communication conductors 610. Isolation devices 606 can include transformers, optical devices that emit and detect optical energy, and the like. Use of isolation devices, especially on power conductors, can be expensive component wise, expensive size wise, and drain power. Traditionally, the isolation devices were incorporated into the patient device 604, however, the patient devices 604 are trending smaller and smaller and not all devices incorporate isolation.



FIG. 7A illustrates a simplified block diagram of an exemplary optional patient isolation system according to an embodiment of the disclosure. As shown in FIG. 7A, the host device 602 communicates with an isolated patient device 604 through isolation devices 606. However, a memory 702 associated with a particular patient device informs the host 602 whether that device needs isolated power. If a patient device 708 does not need isolated power, such as some types of cuffs, infusion pumps, ventilators, or the like, then the host 602 can provide non-isolated power through signal path 710. This power may be much higher that what can cost-effectively be provided through the isolated power conductor 608. In an embodiment, the non-isolated patient devices 708 receive isolated communication as such communication is typically at lower voltages and is not cost prohibitive. An artisan will recognize from the disclosure herein that communication could also be non-isolated. Thus, FIG. 7A shows a patient isolation system 700 that provides optional patient isolation between a host 602 and a wide variety of potential patient devices 604, 708. In an embodiment, the hub 100 includes the channel ports 212 incorporating similar optional patient isolation principles.



FIG. 7B adds an exemplary optional non-isolation power levels for the system of FIG. 7A according to an embodiment of the disclosure. As shown in FIG. 7B, once the host 602 understands that the patient device 604 comprises a self-isolated patient device 708, and thus does not need isolated power, the host 602 provides power through a separate conductor 710. Because the power is not isolated, the memory 702 may also provide power requirements to the host 602, which may select from two or more voltage or power levels. In FIG. 7B, the host 602 provides either high power, such as about 12 volts, but could have a wide range of voltages or very high power such as about 24 volts or more, but could have a wide range of voltages, to the patient device 708. An artisan will recognize that supply voltages can advantageously be altered to meet the specific needs of virtually any device 708 and/or the memory could supply information to the host 602 which provided a wide range of non-isolated power to the patient device 708.


Moreover, using the memory 702, the host 602 may determine to simply not enable any unused power supplies, whether that be the isolated power or one or more of the higher voltage non-isolated power supplies, thereby increasing the efficiency of the host.



FIG. 8 illustrates a simplified exemplary universal medical connector configuration process 800, according to an embodiment of the disclosure. As shown in FIG. 8, the process includes step 802, where a cable is attached to a universal medical connector incorporating optional patient isolation as disclosed in the foregoing. In step 804, the host device 602 or the hub 100, more specifically, the channel data board 316 or EPROM reader of the instrument board, reads the data stored in the memory 702 and in step 806, determines whether the connecting device requires isolated power. In step 808, when the isolated power is required, the hub 100 may advantageously enable isolated power and in step 810, enable isolated communications. In step 806, when isolated power is not needed, the hub 100 may simply in optional step 812 enable non-isolated power and in embodiments where communications remain isolated, step 810 enable isolated communications. In other optional embodiments, in step 806, when isolated power is not needed, the hub 100 in step 814 may use information from memory 702 to determine the amount of power needed for the patient device 708. When sufficient power is not available, because for example, other connected devices are also using connected power, in step 816 a message may be displayed indicating the same and power is not provided. When sufficient power is available, optional step 812 may enable non-isolated power. Alternatively, optional step 818 may determine whether memory 702 indicates higher or lower power is desired. When higher power is desired, the hub 100 may enable higher power in step 820 and when not, may enable lower power in step 822. The hub 100 in step 810 then enables isolated communication. In an embodiment, the hub 100 in step 818 may simply determine how much power is needed and provide at least sufficient power to the self-isolated device 708.


An artisan will recognize from the disclosure herein that hub 100 may not check to see if sufficient power is available or may provide one, two or many levels of non-isolated voltages based on information from the memory 702.



FIGS. 9A and 9B illustrate simplified block diagrams of exemplary universal medical connectors 900 having a size and shape smaller in cross section than tradition isolation requirements. In an embodiment, the connector 900 physically separates non-isolated signals on one side 910 from isolated signals on another side 920, although the sides could be reversed. The gap between such separations may be dictated at least in part by safety regulations governing patient isolation. In an embodiment, the distance between the sides 910 and 920 may appear to be too small.


As shown from a different perspective in FIG. 9B, the distance between connectors “x” appears small. However, the gap causes the distance to includes a non-direct path between conductors. For example, any short would have to travel path 904, and the distance of such path is within or beyond such safety regulations, in that the distance is greater than “x.” It is noteworthy that the non-straight line path 904 occurs throughout the connector, such as, for example, on the board connector side where solder connects various pins to a PCB board.



FIG. 10 illustrates a perspective view of a side of the hub 100 of FIG. 1, showing exemplary instrument-side channel inputs 1000 as exemplary universal medical connectors. As shown in FIG. 10, the inputs include the non-isolated side 910, the isolated side 920, and the gap. In an embodiment, the memory 710 communicates through pins on the non-isolated side.



FIGS. 11A-11K illustrate various views of exemplary male and mating female universal medical connectors, according to embodiments of the disclosure. For example, FIGS. 11G1 and 11G2 shows various preferred but not required sizing, and FIG. 11H shows incorporation of electronic components, such as the memory 702 into the connectors. FIGS. 11I-11K illustrate wiring diagrams and cabling specifics of the cable itself as it connects to the universal medical connectors.



FIG. 12 illustrates a simplified block diagram of a channel system for the hub of FIG. 1, according to an embodiment of the disclosure. As shown in FIG. 12, a male cable connector, such as those shown in FIG. 11 above, includes a memory such as an EPROM. The memory advantageously stores information describing the type of data the hub 100 can expect to receive, and how to receive the same. A controller of the hub 100 communicates with the EPROM to negotiate how to receive the data, and if possible, how to display the data on display 104, alarm when needed, and the like. For example, a medical device supplier may contact the hub provider and receive a software developers' kit (“SDK”) that guides the supplier through how to describe the type of data output from their device. After working with the SDK, a map, image, or other translation file may advantageously be loaded into the EPROM, as well as the power requirements and isolation requirements discussed above. When the channel cable is connected to the hub 100 through the channel port 212, the hub 100 reads the EPROM and the controller of the hub 100 negotiates how to handle incoming data.



FIG. 13 illustrates an exemplary logical channel configuration that may be stored in the EPROM of FIG. 12. As shown in FIG. 13, each incoming channel describes one or more parameters. Each parameter describes whatever the hub 100 should know about the incoming data. For example, the hub 100 may want to know whether the data is streaming data, waveform data, already determined parameter measurement data, ranges on the data, speed of data delivery, units of the data, steps of the units, colors for display, alarm parameters and thresholds, including complex algorithms for alarm computations, other events that are parameter value driven, combinations of the same or the like. Additionally, the parameter information may include device delay times to assist in data synchronization or approximations of data synchronization across parameters or other data received by the hub 100. In an embodiment, the SDK presents a schema to the device supplier which self-describes the type and order of incoming data. In an embodiment, the information advantageously negotiates with the hub 100 to determine whether to apply compression and/or encryption to the incoming data stream.


Such open architecture advantageously provides device manufacturers the ability to port the output of their device into the hub 100 for display, processing, and data management as disclosed in the foregoing. By implementation through the cable connector, the device manufacturer avoids any reprogramming of their original device; rather, they simply let the hub 100 know through the cable connector how the already existing output is formatted. Moreover, by describing the data in a language already understood by the hub 100, the hub 100 also avoids software upgrades to accommodate data from “new-to-the-hub” medical devices.



FIG. 14 illustrates a simplified exemplary process for configuring a channel according to an embodiment of the disclosure. As shown in FIG. 14, the hub provider provides a device manufacturer with an SDK in step 1402, who in turn uses the SDK to self-describe the output data channel from their device in step 1404. In an embodiment, the SDK is a series of questions that guide the development, in other embodiments, the SDK provides a language and schema to describe the behavior of the data.


Once the device provider describes the data, the hub provider creates a binary image or other file to store in a memory within a cable connector in step 1405; however, the SDK may create the image and simply communicated it to the hub provider. The cable connector is provided as an OEM part to the provider in step 1410, who constructs and manufactures the cable to mechanically and electrically mate with output ports on their devices in step 1412.


Once a caregiver has the appropriately manufactured cable, with one end matching the device provider's system and the other OEM'ed to match the hub 100 at its channel ports 212, in step 1452 the caregiver can connect the hub between the devices. In step 1454, the hub 100 reads the memory, provides isolated or non-isolated power, and the cable controller and the hub 100 negotiate a protocol or schema for data delivery. In an embodiment, a controller on the cable may negotiated the protocol, in an alternative embodiment, the controller of the hub 100 negotiates with other processors on the hub the particular protocol. Once the protocol is set, the hub 100 can use, display and otherwise process the incoming data stream in an intelligent manner.


Through the use of the universal medical connectors described herein, connection of a myriad of devices to the hub 100 is accomplished through straightforward programming of a cable connector as opposed to necessitating software upgrades to each device.



FIG. 15 illustrates a perspective view of the hub of FIG. 1 including an exemplary attached board-in-cable (“BIC”) to form an input channel according to an embodiment of the disclosure. As shown in FIG. 15, a SEDLine depth of consciousness board communicates data from an appropriate patient sensor to the hub 100 for display and caregiver review. As described, the provider of the board need only use the SDK to describe their data channel, and the hub 100 understands how to present the data to the caregiver.



FIG. 16 illustrates a perspective view of a back side of the hub 100 of FIG. 1, showing an exemplary serial data inputs. In an embodiment, the inputs include such as RJ 45 ports. As is understood in the art, these ports include a data ports similar to those found on computers, network routers, switches and hubs. In an embodiment, a plurality of these ports are used to associate data from various devices with the specific patient identified in the hub 100. FIG. 16 also shows a speaker, the nurse call connector, the Ethernet connector, the USBs, a power connector and a medical grounding lug.



FIG. 17A illustrates an exemplary monitoring environment with communication through the serial data connections of the hub 100 of FIG. 1, according to an embodiment of the disclosure. As shown and as discussed in the foregoing, the hub 100 may use the serial data ports 210 to gather data from various devices within the monitoring environment, including an electronic bed, infusion pumps, ventilators, vital sign monitors, and the like. The difference between the data received from these devices and that received through the channel ports 212 is that the hub 100 may not know the format or structure of this data. The hub 100 may not display information from this data or use this data in calculations or processing. However, porting the data through the hub 100 conveniently associates the data with the specifically monitored patient in the entire chain of caregiver systems, including the foregoing server 214 and backend systems 206. In an embodiment, the hub 100 may determine sufficient information about the incoming data to attempt to synchronize it with data from the hub 100.


In FIG. 17B, a control screen may provide information on the type of data being received. In an embodiment, a green light next to the data indicates connection to a device and on which serial input the connection occurs.



FIG. 18 illustrates a simplified exemplary patient data flow process, according to an embodiment of the disclosure. As shown, once a patient is admitted into the caregiver environment at step 1802, data about the patient is populated on the caregiver backend systems 206. The server 214 may advantageously acquire or receive this information in step 1804, and then make it accessible to the hub 100. When the caregiver at step 1806 assigns the hub 100 to the patient, the caregiver simply looks at the presently available patient data and selects the particular patient being currently monitored. The hub 100 at step 1808 then associates the measurement, monitoring and treatment data it receives and determines with that patient. The caregiver need not again associate another device with the patient so long as that device is communicating through the hub 100 by way of (1) the docking station, (2) the universal medical connectors, (3) the serial data connectors, or (4) other communication mechanisms known to an artisan. At step 1810, some or the entirety of the received, processed and/or determined data is passed to the server systems discussed above.



FIGS. 19A-19J illustrate exemplary displays of anatomical graphics for the portable patient monitor docked with the hub 100 of FIG. 1, according to embodiments of the disclosure. As shown in FIG. 19A, the heart, lungs and respiratory system are shown while the brain is not highlighted. Thus, a caregiver can readily determine that depth of consciousness monitoring or brain oximetry systems are not currently communicating with the hub 100 through the portable patient monitor connection or the channel data ports. However, it is likely that acoustic or other respiratory data and cardiac data is being communicated to or measured by the hub 100. Moreover, the caregiver can readily determine that the hub 100 is not receiving alarming data with respect to the emphasized body portions. In an embodiment, the emphasized portion may animate to show currently measured behavior or, alternatively, animate in a predetermined fashion.



FIG. 19B shows the addition of a virtual channel showing an indication of wellness. As shown in FIG. 19B, the indication is positive as it is a “34” on an increasingly severity scale to “100.” The wellness indication may also be shaded to show problems. In contrast to FIG. 19B, FIG. 19C shows a wellness number that is becoming or has become problematic and an alarming heart graphic. Thus, a caregiver responding to a patient alarm on the hub 100 or otherwise on another device or system monitoring or treating the patient can quickly determine that a review of vital signs and other parameters relating to heart function is needed to diagnose and/or treat the patient.



FIGS. 19D and 19E show the brain included in the emphasized body portions meaning that the hub 100 is receiving data relevant to brain functions, such as, for example, depth of sedation data or brain oximetry data. FIG. 19E additionally shows an alarming heart function similar to FIG. 19C.


In FIG. 19F, additional organs, such as the kidneys are being monitored, but the respiratory system is not. In FIG. 19G, an alarming hear function is shown, and in FIG. 19H, an alarming circulatory system is being shown. FIG. 19I shows the wellness indication along with lungs, heart, brain and kidneys. FIG. 19J shows alarming lungs, heart, and circulatory system as well as the wellness indication. Moreover, FIG. 19J shows a severity contrast, such as, for example, the heart alarming red for urgent while the circulatory system alarms yellow for caution. An artisan will recognize other color schemes that are appropriate from the disclosure herein.



FIGS. 20A-20C illustrate exemplary displays of measurement data showing data separation and data overlap, respectively, according embodiments of the disclosure. FIGS. 21A and 21B illustrate exemplary displays of measurement data also showing data separation and data overlap, respectively, according embodiments of the disclosure.


For example, acoustic data from an acoustic sensor may advantageously provide breath sound data, while the plethysmograph and ECG or other signals can also be presented in separate waveforms (FIG. 20A, top of the screen capture). The monitor may determine any of a variety of respiratory parameters of a patient, including respiratory rate, expiratory flow, tidal volume, minute volume, apnea duration, breath sounds, riles, rhonchi, stridor, and changes in breath sounds such as decreased volume or change in airflow. In addition, in some cases a system monitors other physiological sounds, such as heart rate to help with probe off detection, heart sounds (S1, S2, S3, S4, and murmurs), and change in heart sounds such as normal to murmur or split heart sounds indicating fluid overload.


Providing a visual correlation between multiple physiological signals can provide a number of valuable benefits where the signals have some observable physiological correlation. As one example of such a correlation, changes in morphology (e.g., envelope and/or baseline) of the plethysmographic signal can be indicative of patient blood or other fluid levels. And, these changes can be monitored to detect hypovolemia or other fluid-level related conditions. A pleth variability index may provide an indication of fluid levels, for example. And, changes in the morphology of the plethysmographic signal are correlated to respiration. For example, changes in the envelope and/or baseline of the plethysmographic signal are correlated to breathing. This is at least in part due to aspects of the human anatomical structure, such as the mechanical relationship and interaction between the heart and the lungs during respiration.


Thus, superimposing a plethysmographic signal and a respiratory signal (FIG. 20B) can give operators an indication of the validity of the plethysmographic signal or signals derived therefrom, such as a pleth variability index. For example, if bursts in the respiration signal indicative of inhalation and exhalation correlate with changes in peaks and valleys of the plethysmographic envelope, this gives monitoring personnel a visual indication that the plethysmographic changes are indeed due to respiration, and not some other extraneous factor. Similarly, if the bursts in the respiration signal line up with the peaks and valleys in the plethysmographic envelope, this provides monitoring personnel an indication that the bursts in the respiration signal are due to patient breathing sounds, and not some other non-targeted sounds (e.g., patient non-breathing sounds or non-patient sounds).


The monitor may also be configured to process the signals and determine whether there is a threshold level of correlation between the two signals, or otherwise assess the correlation. However, by additionally providing a visual indication of the correlation, such as by showing the signals superimposed with one another, the display provides operators a continuous, intuitive and readily observable gauge of the particular physiological correlation. For example, by viewing the superimposed signals, users can observe trends in the correlation over time, which may not be otherwise ascertainable.


The monitor can visually correlate a variety of other types of signals instead of, or in addition to plethysmographic and respiratory signals. For example, FIG. 20C depicts a screen shot of another example monitoring display. As shown in the upper right portion of FIG. 20C, the display superimposes a plethysmographic signal, an ECG signal, and a respiration signal. In other configurations, more than three different types of signals may be overlaid onto one another.


In one embodiment, the hub 100 provides an interface through which the user can move the signals together to overlay on one another. For example, the user may be able to drag the respiration signal down onto the plethysmographic signal using a touch screen interface. Conversely, the user may be able to separate the signals, also using the touch screen interface. In another embodiment, the monitor includes a button the user can press, or some other user interface allowing the user to overlay and separate the signals, as desired. FIGS. 21A and 21B show similar separation and joining of the signals.


In certain configurations, in addition to providing the visual correlation between the plethysmographic signal and the respiratory signal, the monitor is additionally configured to process the respiratory signal and the plethysmographic signal to determine a correlation between the two signals. For example, the monitor may process the signals to determine whether the peaks and valleys in the changes in the envelope and/or baseline of the plethysmographic signal correspond to bursts in the respiratory signal. And, in response to the determining that there is or is not a threshold level of correlation, the monitor may provide some indication to the user. For example, the monitor may provide a graphical indication (e.g., a change in color of pleth variability index indicator), an audible alarm, or some other indication. The monitor may employ one or more envelope detectors or other appropriate signal processing componentry in making the determination.


In certain embodiments, the system may further provide an audible indication of the patient's breathing sounds instead of, or in addition to the graphical indication. For example, the monitor may include a speaker, or an earpiece (e.g., a wireless earpiece) may be provided to the monitoring personnel providing an audible output of the patient sounds. Examples of sensors and monitors having such capability are described in U.S. Pat. Pub. No. 2011/0172561 and are incorporated by reference herein.


In addition to the above described benefits, providing both the acoustic and plethysmographic signals on the same display in the manner described can allow monitoring personnel to more readily detect respiratory pause events where there is an absence of breathing, high ambient noise that can degrade the acoustic signal, improper sensor placement, etc.



FIGS. 22A-22B illustrate exemplary analog display indicia, according to an embodiment of the disclosure. As shown in FIGS. 22A and 22B, the screen shots displays health indicators of various physiological parameters, in addition to other data. Each health indicator can include an analog indicator and/or a digital indicator. In embodiments where the health indicator includes an analog and a digital indicator, the analog and digital indicators can be positioned in any number of formations, such as side-by-side, above, below, transposed, etc. In the illustrated embodiment, the analog indicators are positioned above and to the sides of the digital indicators. As shown more clearly in FIG. 22B, the analog displays may include colored warning sections, dashes indicating position on the graph, and digital information designating quantitate information form the graph. In FIG. 22B, for example, the pulse rate PR graph shows that from about 50 to about 140 beats per minute, the graph is either neutral or beginning to be cautionary, whereas outside those numbers the graph is colored to indicate a severe condition. Thus, as the dash moves along the arc, a caregiver can readily see where in the range of acceptable, cautionary, and extreme the current measurements fall.


Each analog indicator of the health indicator can include a dial that moves about an arc based on measured levels of monitored physiological parameters. As the measured physiological parameter levels increase the dial can move clockwise, and as the measured physiological parameter levels decrease, the dial can move counter-clockwise, or vice versa. In this way, a user can quickly determine the patient's status by looking at the analog indicator. For example, if the dial is in the center of the arc, the observer can be assured that the current physiological parameter measurements are normal, and if the dial is skewed too far to the left or right, the observer can quickly assess the severity of the physiological parameter levels and take appropriate action. In other embodiments, normal parameter measurements can be indicated when the dial is to the right or left, etc.


In some embodiments, the dial can be implemented as a dot, dash, arrow, or the like, and the arc can be implemented as a circle, spiral, pyramid, or other shape, as desired. Furthermore, the entire arc can be lit up or only portions of the arc can be lit up based on the current physiological parameter measurement level. Furthermore, the arc can turn colors or be highlighted based on the current physiological parameter level. For example, as the dial approaches a threshold level, the arc and/or dial can turn from green, to yellow, to red, shine brighter, flash, be enlarged, move to the center of the display, or the like.


Different physiological parameters can have different thresholds indicating abnormal conditions. For example, some physiological parameters may upper a lower threshold levels, while others only have an upper threshold or a lower threshold. Accordingly, each health indicator can be adjusted based on the physiological parameter being monitored. For example, the SpO2 health indicator can have a lower threshold that when met activates an alarm, while the respiration rate health indicator can have both a lower and upper threshold, and when either is met an alarm is activated. The thresholds for each physiological parameter can be based on typical, expected thresholds and/or user-specified thresholds.


The digital indicator can provide a numerical representation of the current levels of the physiological parameter the digital indicator may indicate an actual level or a normalized level and can also be used to quickly assess the severity of a patient condition. In some embodiments, the display includes multiple health indicators for each monitored physiological parameter. In certain embodiments, the display includes fewer health indicators than the number of monitored physiological parameters. In such embodiments, the health indicators can cycle between different monitored physiological parameters.



FIGS. 23A-23F illustrate exemplary displays of measurement data showing, for example, data presentation in FIGS. 23A-23D when a depth of consciousness monitor is connected to a channel port of the hub of FIG. 1. As shown in FIGS. 23A-23C, the hub 100 advantageously roughly bifurcates its display 104 to show various information from the, for example, SEDLine device, commercially available from Masimo Corp. of Irvine, Calif. In FIG. 23D, the hub 100 includes an attached PhaseIn device, commercially available by PHASEIN AB of Sweden, providing, for example, information about the patient's respiration. The hub 100 also includes the SEDLine information, so the hub 100 has divided the display 104 appropriately. In FIG. 23E, temperature and blood pressure sensors communicate with the hub of FIG. 1 and the hub 100 creates display real estate appropriate for the same. In FIG. 23F, an acoustic sensor is also communicating with the hub of FIG. 1, as well as the forgoing blood pressure and temperature sensor. Accordingly, the hub 100 adjust the display real estate to accommodate the data from each attached device.


The term “and/or” herein has its broadest least limiting meaning which is the disclosure includes A alone, B alone, both A and B together, or A or B alternatively, but does not require both A and B or require one of A or one of B. As used herein, the phrase “at least one of” A, B, “and” C should be construed to mean a logical A or B or C, using a non-exclusive logical or.


The term “plethysmograph” includes it ordinary broad meaning known in the art which includes data responsive to changes in volume within an organ or whole body (usually resulting from fluctuations in the amount of blood or air it contains).


III. Additional Monitoring Environment Embodiments



FIG. 24 illustrates another embodiment of a monitoring environment 2000 including the hub 100 of FIG. 1. The monitoring environment 2000 may include all the features of the monitoring environment 200 of FIG. 2, as well as any of the other features described above. In addition, the monitoring environment 2000 depicts another embodiment of the multi-patient monitoring system 204, namely, the multi-patient monitoring system (MMS) 2004. The MMS 2004 includes a translation module 2005 that can receive serial data, translate the serial data into a format recognizable by the monitoring hub 100, and provide the serial data to the monitoring hub 100 (among possibly other devices). Also shown is an auxiliary device 2040 that may communicate with the MMS 2004, the monitoring hub 100, or the PPM 102, wired or wirelessly.


As described above, the hub 100 may receive serial data from a variety of medical equipment, including the patient's bed 214, infusion pumps 216, a ventilator 218, and other vital signs monitors 220. The hub 100 can pass serial data from these sources on to the MMS 2004. As described above, the MMS 2004 may then store the serial data in a caregiver backend system 206 such as an EMR system or ADT system.


The medical equipment providing this serial data may use a variety of different proprietary protocols, messaging infrastructure, and the like that may not be natively recognizable by the hub 100. Accordingly, the hub 100 may not have native capability to read parameter values or other data from this medical equipment, and as a result, may not have the capability to display parameter values or other data from these devices. Advantageously, however, the translation module 2005 at the MMS 2004 can receive serial data from these devices, translate the serial data into a format recognizable by the monitoring hub 100, and provide the serial data to the monitoring hub 100. The monitoring hub 100 can then read parameter values and other data from the translated information and output these values or data to a display, such as any of the displays described above.


In an embodiment, the translation module 2005 applies one or more translation rules to the serial data to translate or transform the serial data from one format to another format. The serial data may be formatted according to a Health Level Seven (“HL7”) protocol in one embodiment. The HL7 protocol has been developed to provide a messaging framework for the communication of clinical messages between medical computer systems and devices. However, the HL7 standard is quite flexible and merely provides a framework of guidelines. Consequently, medical devices or clinical computer systems that are all HL7-compliant may still be unable to communicate with each other. For example, the medical equipment 214-220 may each implement a version of the HL7 protocol, but these implementations may be different from an HL7 protocol implemented by the monitoring hub 100. Accordingly, the monitoring hub 100 may not be able to parse or read messages from the medical equipment 214-220, even though both use the HL7 standard. Further, the translation module 2005 may translate between different implementations of a common standard other than the HL7 protocol implemented by the hub 100 and medical equipment 214-220 in some embodiments.


In addition to translating between different implementations of a common electronic medical communication protocol (e.g., different formatting of HL7 messages), the translation module 2005 can also translate between input and output messages adhering to different communication protocols. In some embodiments, the translation module 2005 is capable of responding to and translating messages from, for example, one medical communication protocol to a separate medical communication protocol. For example, the translation module 2005 can facilitate communication between messages sent according to the HL7 protocol, the ISO 11073 protocol, other open protocols, or proprietary protocols. Accordingly, the translation module 2005 can translate an input message sent according to the HL7 protocol to an output message according to a different protocol, or vice-versa. In certain embodiments, the translation module 2005 can implement any of the translation features described below in greater detail under the section entitled “Translation Module Embodiments,” as well as further in U.S. application Ser. No. 14/032,132, filed Sep. 19, 2013, titled “Medical Monitoring System,” the disclosure of which is hereby incorporated by reference in its entirety.


Advantageously, in certain embodiments, the translation module 2005 can pass translated serial data back to the hub 100 or PPM 102. Since the translated data is in a format readable by the hub 100 or PPM 102, the hub 100 or PPM 102 can output the data from the medical equipment 214-220 on the display of the hub 100 or PPM 102. In addition, the translation module 2005 can provide the translated data to devices other than the hub 100, including clinician devices (such as cell phones, tablets, or pagers) and an auxiliary device 2040 that will be described below. Moreover, since the serial data provided by the medical equipment 214-220 may include alarm notifications, the translation module 2005 can pass these alarm notifications to the hub 100 or PPM 102. The hub 100 or PPM 102 can therefore generate visual or audible alarms responsive to these alarm notifications. Further, the translation module 2005 can provide the alarm notifications to clinician devices, e.g., over a hospital network or wide area network (such as the Internet). In addition, the translation module 2005 can provide the alarm notifications to the auxiliary device 2040.


The translation module 2005 is shown as implemented in the MMS 2004 because it may be beneficial to maintain and update the translation rules of the translation module 2005 in a single location. However, in other embodiments, the translation module 2005 may also be (or instead be) implemented in the hub 100 or PPM 102. Accordingly, the hub 100 or PPM 102 can access an internal translation module 2005 to translate serial data for output to the display of the hub 100 or PPM 102.


The auxiliary device 2040 can be a computing device having physical computer hardware, a display, and the like. For example, the auxiliary device 2040 may be a handheld computing device used by a clinician, such as a tablet, laptop, cellphone or smartphone, personal digital assistant (PDA), a wearable computer (such as a smart watch or glasses), or the like. The auxiliary device 2040 may also be simply a display device, such as a computer monitor or digital television. In an embodiment, the auxiliary device 2040 provides second screen functionality for the hub 100, PPM 102, or MMS 2004. As such, the auxiliary device 2040 can communicate wirelessly or through a wired connection with the hub 100, MMS 2004, or PPM 102.


As a second screen device, the auxiliary device 2040 can depict a copy of at least a portion of the display of the hub 100 (or the PPM 102) or a different version of the hub 100 (or the PPM 102) display. For instance, the auxiliary device 2040 can receive physiological parameter data, trend data, or waveforms from the hub 100, PPM 102, or MMS 2040 and display the parameter data, trend data, or waveforms. The auxiliary device 2040 can output any information available to the hub 100, PPM 102, or MMS 2004. One use of the auxiliary device 2040 is as a clinician device usable by a clinician to view data from the hub 100, PPM 102, or MMS 2004 while away from a patient's room (or even while in a patient's room). A clinician can use the auxiliary device 2040 to view more detailed information about physiological parameters than is displayed on the hub 100 or PPM 102 in an embodiment (see, e.g., FIG. 39). For instance, the auxiliary device 2040 may include zoom functionality or the like that enables a clinician to zoom into trends or waveforms to more closely inspect parameter activity.


One example reason for copying at least a portion of the display of the hub 100 or PPM 102 is to enable different clinicians to have the same view of the data during a surgical procedure. In some surgical procedures, for instance, two anesthesiologists monitor a patient, one anesthesiologist monitoring the brain function and brain oxygenation of the patient, while the other monitors peripheral oxygenation of the patient. A brain sensor, such as has been described above, may be attached to the patient and provide brain monitoring and oxygenation data that is output to the hub 100 or the PPM 102 for presentation to the first anesthesiologist. A finger or toe/foot optical sensor can also be attached to the patient and output data to the hub 100 or PPM 102. The hub 100 or PPM 102 can transmit this data to the auxiliary device 2040, which the second anesthesiologist can monitor to observe oxygenation in the patient's peripheral limbs. The second anesthesiologist may also need to know the oxygenation at the brain to help interpret the seriousness or lack thereof of poor peripheral oxygenation values. However, in many surgical procedures, a curtain or screen is placed over the patient as part of the procedure, blocking the second anesthesiologist's view of the hub 100 or PPM 102. Accordingly, the hub 100 or PPM 102 can output a copy of at least a portion of its display to the auxiliary device 2040 so that the second anesthesiologist can monitor brain function or oxygenation.


In one embodiment, the auxiliary device has a larger display area than the display of the hub 100. For instance, the hub 100 may have a relatively smaller display, such as about 10 inches, while the auxiliary device 2040 may be a television monitor or the like that has a 40 inch or larger display (although any size display may be used for the auxiliary device 2040). In an embodiment, the auxiliary device 2040 as a television can include a hardware module that includes a processor, memory, and a wireless or wired networking interface or the like. The processor can execute programs from the memory, including programs for displaying physiological parameters, trends, and waveforms on the display of the television. Since a television monitor is larger than embodiments of the hub 100, the television monitor version of the auxiliary device 2040 can display more fine detail of patient waveforms and trends in some embodiments (see, e.g., FIG. 39).


In another embodiment, the auxiliary device 2040 may display one portion of any of the displays described herein while the hub 100 displays another portion thereof. For instance, the auxiliary device 2040 may display any of the anatomical graphics described above with respect to FIGS. 19A-19J, while the hub 100 displays any of the parameter displays described above with respect to FIGS. 20A-23F (or vice versa). Likewise, the auxiliary device 2040 may display the translated data received from the translation module 2005 while the hub 100 displays channel data (or vice versa). In another embodiment, the auxiliary device 2040 can display both translated data and channel data (see., e.g., FIG. 38).


In still other embodiments, the auxiliary device 2040 can perform at least some processing of physiological parameters, including any of the functionality of the monitoring hub 100. For instance, the auxiliary device 2040 may include the translation module 2005 and perform the features thereof.



FIG. 25 illustrates an embodiment of a translation message handling process 2100. The process 2100 can be implemented by the translation module 2005 described above or by any other computing system. In an embodiment, at block 2502, the translation module 2005 receives a message from the hub 100 (or PPM 102) that includes a message from a medical device not natively compatible with the hub 100 (or PPM 102). At block 2504, the translation module 2005 translates the message based on one or more translation rules to produce a translated output message that can be processed by the hub 100 (or PPM 102). At block 2506, the translation module provides the translated output message to the hub 100 for display at the hub 100 (or PPM 102) or at an auxiliary device 2040. The hub 100 (or PPM 102) may route the translated data to the auxiliary device 2040, or the auxiliary device 2040 may receive the translated data directly from the translation module 2005.


For example, in one embodiment, a first medical device having digital logic circuitry receives a physiological signal associated with a patient from a physiological sensor, obtains a first physiological parameter value based on the physiological signal, and outputs the first physiological parameter value for display. The first medical device can also receive a second physiological parameter value from a second medical device other than the first medical device, where the second physiological parameter value is formatted according to a protocol not used by the first medical device, such that the first medical device is not able to process the second physiological parameter value to produce a displayable output value. The first medical device can pass the physiological parameter data from the first medical device to a separate translation module, receive translated parameter data from the translation module at the first medical device, where the translated parameter data is able to be processed for display by the first medical device, and output a second value from the translated parameter data for display. The first medical device may be, for example, the hub 100, PPM 102, or MMS 2004, and the second medical device may be the infusion pump 216 or ventilator 218 or the like.



FIGS. 26-38 and 46-71 illustrate additional example hub displays, including displays of measurement data. Each of these displays may be implemented by the auxiliary device 2040, although similar displays may also be output on the hub 100 (or PPM 102) directly. The example Figures shown are depicted as being implemented for a tablet computer that includes touchscreen functionality. Touchscreen functionality is optional and be replaced by other suitable input devices, such as keyboards, mice, track wheels, and the like.


Turning to FIG. 26, the user interface shown depicts a device connected to the auxiliary device 2040. The device shown is “Omar's Hawk,” which can be an embodiment of the monitoring hub 100. The auxiliary device 2040 is connected wirelessly to the hub 100 in this embodiment so as to receive data from the hub 100. The auxiliary device could also connect wirelessly to the MMS 2004 or PPM 102 in other embodiments.



FIG. 27 depicts a default parameter view on the auxiliary device 2040. Parameter values are shown together with waveforms in an upper portion of the display, and other parameters (such as SpHb, SpMet, PVI, etc.) are shown at the bottom of the display without their corresponding waveforms. Any of these parameters at the bottom of the display may be dragged and dropped onto the upper portion of the display to cause their waveforms to be shown. For instance, FIG. 28 depicts a similar display as in FIG. 27 except that the SpHb parameter has been dragged and dropped onto the upper portion of the display, causing the SpHb waveform and additional details on alarm limits (18 and 7) to be shown. Similarly, FIG. 29 shows the same display as FIG. 28 except that the SpMet parameter has been dragged and dropped on the upper portion of the display, causing its waveform and alarm limit (3) to be shown.


In each of the displays of FIGS. 27-29, a time window button is shown in the upper right corner. This time window button says “1 hr” in FIGS. 27-29 but may be selected by a user to change the time window, which can affect the window of trend or waveform data shown in the display. A user selection of this time window button and change to a 10 minute window is shown in FIG. 30. As can be seen, the waveforms in FIG. 30 are shown in a smaller window of time than in the previous Figures.



FIG. 31 shows another version of the display of FIG. 29 with stacked waveforms, including a stacked SpO2 and respiratory waveform, similar to other stacked waveforms described elsewhere herein. FIG. 32 shows a similar display to FIG. 29 with the pulse rate (PR) and SpMet (methemoglobin) parameters highlighted as being in alarm condition. The alarm condition can be represented as a red box around the parameter values and waveforms in an embodiment, or with red transparency coloring at least a portion of the box. The red box or transparency may also flash in an embodiment, and an audible alarm may sound. Other ways to represent an alarm condition are used in other embodiments.



FIG. 33 shows a popup interface that enables a user to adjust alarm limits for a parameter (in this embodiment, SpHb or total hemoglobin). The popup interface includes scroll wheels that allow a user to quickly scroll among and select possible parameter limit values.



FIGS. 34-38 show landscape display views in contrast to the portrait-oriented displays of FIGS. 26-33. These landscape display views may be accessed by rotating the auxiliary device 2040 (such as tablet etc.) to a landscape orientation. FIG. 34 shows a first set of parameters, while FIGS. 35 and 36 add additional drag-and-dropped parameters with their waveforms and additional alarm limit details, similar to those described above with respect to FIGS. 27-29. FIG. 37 depicts stacked parameter waveforms, stacking SpO2 and respiratory waveforms. FIG. 38 depicts both channel parameters (such as SpO2, PR (pulse rate), and RRa (acousticly-measured respiratory rate)) while also showing translated serial data parameters 2210, including parameters from a pump and a vent. These translated serial data parameters 2210 may have been received from the translation module 2005, either through the hub 100 or directly from the MMS 2004.


Referring again to FIG. 24, as described above, the hub 100 or PPM 102 can output a copy of at least a portion of the display to the auxiliary device 2040. In other embodiments, the hub 100 or PPM 102 can output data with respect to a subset of the full parameters shown on the hub 100 or PPM 102 to the auxiliary device 2040. For instance, the hub 100 or PPM 102 may provide functionality for a clinician to select one or more of the parameters displayed thereon to see just that one or more parameters displayed on the auxiliary device 2040. Doing so may allow the auxiliary device 2040 to show more detail about the selected one or more parameters because fewer parameters may be shown on the auxiliary device's 2040 display than on the hub 100 or PPM 102.



FIG. 39 depicts one example display of an auxiliary device 2040 that depicts data with respect to one parameter, respiratory rate. Unlike the main display of the hub 100 or PPM 102, the display shown in FIG. 39 includes more than just the current value 2215, a recent trend 2230, and small waveform of the respiratory rate. In addition, the display depicts a histogram 2220 of historical highs and lows (e.g., for the past several days) of the patient being monitored. In addition, a detailed waveform 2240 is shown, which may be larger than the waveforms shown on the main display of the hub 100 or PPM 102, which may give the user more detailed insight into the patient's respiratory condition. A user may choose to zoom into the waveform 2240 (or other aspects of the display), causing the waveform 2242 to be enlarged to fill the display in place of the other elements of the display, or the like. Other graphs, tables, waveforms, and data may be shown for the respiratory parameter on the auxiliary device display 2040. Of course, parameters other than respiratory rate may also be selected for detailed display on the auxiliary device 2040.


IV. Translation Module Embodiments


Any of the following features described with respect to FIGS. 40A through 45D can be implemented by the translation module 2005 of FIG. 24 or together with any of the devices described above with respect to FIG. 24.


Healthcare costs have been increasing and the demand for reasonably-priced, high-quality patient care is also on the rise. Health care costs can be reduced by increasing the effectiveness of hospital information systems. One factor which may affect the efficacy of a health institution is the extent to which the various clinical computer systems employed at the health institution can interact with one another to exchange information.


Hospitals, patient care facilities, and healthcare provider organizations typically include a wide variety of different clinical computer systems for the management of electronic healthcare information. Each of the clinical computer systems of the overall IT or management infrastructure can help fulfill a particular category or aspect of the patient care process. For example, a hospital can include patient monitoring systems, medical documentation and/or imaging systems, patient administration systems, electronic medical record systems, electronic practice management systems, business and financial systems (such as pharmacy and billing), and/or communications systems, etc.


The quality of care in a hospital or other patient care facility could be improved if each of the different clinical computer systems across the IT infrastructure (or even within the same hospital room; see, e.g., FIGS. 1 and 24) were able to effectively communicate with each other. This could allow for the exchange of patient data that is collected by one clinical computer system with another clinical computer system that could benefit from such patient data. For example, this may allow decisions relating to patient care to be made, and actions to be taken, based on a complete analysis of all the available information.


In current practice, individual clinical computer systems can be, and often are, provided by different vendors. As a result, individual clinical computer systems may be implemented using a proprietary network or communication infrastructure, proprietary communication protocols, etc.; the various clinical computer systems used in the hospital cannot always effectively communicate with each other.


Medical device and medical system vendors sometimes develop proprietary systems that cannot communicate effectively with medical devices and systems of other vendors in order to increase their market share and to upsell additional products, systems, and/or upgrades to the healthcare provider. Thus, healthcare providers are forced to make enterprise or system-wide purchase decisions, rather than selecting the best technology available for each type of individual clinical computer system in use.


One example where this occurs is in the area of life-saving technology available for patient monitoring. For example, many different bedside devices for monitoring various physiological parameters are available from different vendors or providers. One such provider may offer a best-in-class device for monitoring a particular physiological parameter, while another such provider may offer the best-in-class device for another physiological parameter. Accordingly, it may be desirable in some circumstances for a hospital to have the freedom to use monitoring devices from more than one manufacturer, but this may not be possible if devices from different manufacturers are incapable of interfacing and exchanging patient information. Accordingly, the ability to provide reasonably-priced, high-quality patient care can be compromised. In addition, since each hospital or patient care facility may also implement its own proprietary communication protocols for its clinical computer network environment, the exchange of information can be further hindered.


As described above, the Health Level Seven (“HL7”) protocol has been developed to provide a messaging framework for the communication of clinical messages between medical computer systems and devices. The HL7 communication protocol specifies a number of standards, guidelines, and methodologies which various HL7-compliant clinical computer systems can use to communicate with each other.


The HL7 communication protocol has been adopted by many medical device manufacturers. However, the HL7 standard is quite flexible, and merely provides a framework of guidelines (e.g., the high-level logical structure of the messages); consequently, each medical device or medical system manufacturer or vendor may implement the HL7 protocol somewhat differently while still remaining HL7-compliant. For example, the format of the HL7 messages can be different from implementation to implementation, as described more fully herein. In some cases, the HL7 messages of one implementation can also include information content that is not included in messages according to another HL7 implementation. Accordingly, medical devices or clinical computer systems that are all HL7-compliant still may be unable to communicate with each other.


Consequently, a translation module can be provided that can improve the communication of medical messages between medical devices or systems that use different allowed implementations of an established communication protocol (e.g., HL7), thereby increasing the quality of patient care through the integration of multiple clinical computer systems.



FIG. 40A illustrates a first medical device 2405 and a second medical device 2410 that communicate with one another via a translation module 2415. The first medical device 2405 is configured to transmit and receive messages according to a first allowed format or implementation of an accepted electronic medical communication protocol, while the second medical device 2410 is configured to transmit and receive messages according to a second allowed format or implementation of the electronic medical communication protocol. In some embodiments, the first and second protocol formats are different implementations of the HL7 communication protocol. Other electronic medical communication protocols besides HL7 can also be used.


The translation module 2415 receives input messages having the first protocol format from the first medical device 2405 and generates output messages to the second medical device 2410 having the second protocol format. The translation module 2415 also receives input messages having the second protocol format from the second medical device 2410 and generates output messages to the first medical device 2405 having the first protocol format. Thus, the translation module 2415 can enable the first and second medical devices 2405, 2410 to effectively and seamlessly communicate with one another without necessarily requiring modification to the communication equipment or protocol implemented by each device.


In certain embodiments, the translation module 2415 determines the protocol format expected by an intended recipient of the input message based on, for example, the information in the input message or by referencing a database that stores the protocol format used by various devices, and then generates the output message based on the protocol format used by the intended recipient device or system. The output message can be generated based upon a comparison with, and application of, a set of translation rules 2420 that are accessible by the translation module 2415.


The translation rules 2420 can include rules that govern how to handle possible variations between formatting implementations within a common protocol. Examples of variations in formatting implementation of an electronic medical communication protocol include, for example, the delimiter or separator characters that are used to separate data fields, whether a particular field is required or optional, the repeatability of portions of the message (e.g., segments, fields, components, sub-components), the sequence of portions of the message (e.g., the order of fields or components), whether a particular portion of a message is included, the length of the message or portions of the message, and the data type used for the various portions of the message.


In certain embodiments, the translation rules 2420 define additions, deletions, swappings, and/or modifications that should be performed in order to “translate” an input message that adheres to a first HL7 implementation into an output message that adheres to a second HL7 implementation. The output message can have, for example, different formatting than the input message, while maintaining all, or a portion of, the substance or content of the input message.


In addition to translating between different implementations of a common electronic medical communication protocol (e.g., different formatting of HL7 messages), the translation module 2415 can also translate between input and output messages adhering to different communication protocols. In some embodiments, the translation module 2415 is capable of responding to and translating messages from, for example, one medical communication protocol to a separate medical communication protocol. For example, the translation module 2415 can facilitate communication between messages sent according to the HL7 protocol, the ISO 11073 protocol, other open protocols, and/or proprietary protocols. Accordingly, an input message sent according to the HL7 protocol can be translated to an output message according to a different protocol, or vice-versa.


The operation of the translation module 2415 and the translation rules 2420 will be described in more detail below. Various embodiments of system architectures including the translation module 2415 will now be described.


In certain embodiments, the first medical device 2405, the second medical device 2410, and the translation module 2415 are communicatively coupled via connection to a common communications network or directly (via cables or wirelessly), for example, through the hub 100, PPM 102, and/or MMS 2004. In some embodiments, the translation module 2415 can be communicatively coupled between the first medical device 2405 and the second medical device 2410 (with or without a communications network) such that all messages between the first and second medical devices 2405, 2410 are routed through the translation module 2415. Other architectures are also possible.


The first and second medical devices 2405, 2410 and the translation module 2415 can be included in, for example, a portion of the monitoring environments of FIG. 1 or 24 described above. The first medical device 2405 may be, for example, the infusion pump(s) 216 or ventilator 218, while the second medical device 2410 may be, for example, the monitoring hub 100, PPM 102, MMS 2004, or auxiliary device 2040. The translation module 2415 is an example implementation of the translation module 2005.


In certain embodiments, the translation module 2415 can facilitate communication across multiple networks within a hospital environment. In other embodiments, the translation module 2415 can facilitate communication of messages across one or more networks extending outside of the hospital or clinical network environment. For example, the translation module 2415 can provide a communications interface with banking institutions, insurance providers, government institutions, outside pharmacies, other hospitals, nursing homes, or patient care facilities, doctors' offices, and the like.


In some embodiments, the translation module 2415 of FIG. 40 can be a component of, for example, the environment 2000 described above with respect to FIG. 24. For example, the translation module 2415 can be communicatively coupled with a hospital network or other networks or monitoring environments described above. In such embodiments, the translation module 2415 can facilitate the exchange of patient monitoring information, including, for example, physiological parameter measurements, physiological parameter trend information, and physiological parameter alarm conditions between bedside medical monitor devices, nurses' monitoring stations, a Hospital or Clinical Information System (which may store Electronic Medical Records), and/or many other medical devices and systems. The translation module 2415 can enable seamless communication between different medical devices and systems, each of which may use a different implementation of an electronic medical communication protocol such as, for example, the HL7 communication protocol, within a clinical or hospital network environment.


In certain embodiments, the translation module 2415 can also facilitate communication between a first medical device that is part of the patient monitoring sub-system and a second medical device that is not part of, or is external to, the patient monitoring system 200. As such, the translation module 2415 can be capable of responding to externally-generated medical messages (such as patient information update messages, status query messages, and the like from an HIS or CIS) and generating external reporting messages (such as event reporting messages, alarm notification messages, and the like from patient monitors or nurses' monitoring stations).


In another embodiment, first and second medical devices 2405, 2410 communicate with each other over a communication bus 2421. Communication bus 2421 can include any one or more of the communication networks, systems, and methods described above, including the Internet, a hospital WLAN, a LAN, a personal area network, etc. For example, any of the networks describe above can be used to facilitate communication between a plurality of medical devices, including first and second medical devices 2405, 2410, discussed above. One such embodiment is illustrated in FIG. 40B.


In FIG. 40B, first medical device 2405 provides a message to the communication bus 2421. The message is intended for receipt by the second medical device 2410; however, because first and second medical devices 2405, 2410 communicate according to different communication protocol format, second medical device 2410 is unable to process the message.


Translation module 2415 monitors the communication bus 2421 for such messages. Translation module receives the message and determines that first medical device 2405 is attempting to communicate with second medical device 2410. Translation module 2415 determines that message translation would facilitate communication between first and second medical devices 2405, 2410. Translation module 2415 therefore utilizes an appropriate translation rule stored in a translation module 2420. Translation module 2420 can include a memory, EPROM, RAM, ROM, etc.


The translation module 2415 translates the message from the first medical device 2405 according to any of the methods described herein. Once translated, the translation module 2415 delivers the translated message to the communication bus 2421. The second medical device 2410 receives the translated message and responds appropriately. For example, the second medical device may perform a function and/or attempt to communication with the first medical device 2405. The translation module 2415 facilitates communication from the second medical device 2410 to the first medical device 2405 in a similar manner.


The first medical device 2405 and the second medical device 2410 can be, for example, any of the medical devices or systems communicatively coupled to a hospital network or hub 100, PPM 102, and/or MMS 2004. These medical devices or systems can include, for example, point-of-care devices (such as bedside patient monitors), data storage units or patient record databases, hospital or clinical information systems, central monitoring stations (such as a nurses' monitoring station), and/or clinician devices (such as pagers, cell phones, smart phones, personal digital assistants (PDAs), laptops, tablet PCs, personal computers, pods, and the like).


In some embodiments, the first medical device 2405 is a patient monitor for communicatively coupling to a patient for tracking a physiological parameter (e.g., oxygen saturation, pulse rate, blood pressure, etc.), and the second medical device 2410 is a hospital information system (“HIS”) or clinical information system (“CIS”). In some embodiments, the patient monitor can communicate physiological parameter measurements, physiological parameter alarms, or other physiological parameter measurement information generated during the monitoring of a patient to the HIS or CIS for inclusion with the patient's electronic medical records maintained by the HIS or CIS.


In some embodiments, the first medical device 2405 is an HIS or CIS and the second medical device 2410 is a nurses' monitoring station, as described herein. However, the translation module 2415 can facilitate communication between a wide variety of medical devices and systems that are used in hospitals or other patient care facilities. For example, the translation module 2415 can facilitate communication between patient physiological parameter monitoring devices, between a monitoring device and a nurses' monitoring station, etc.


Using the translation module 2415, a patient monitoring sub-system, such as those described herein (e.g., physiological monitoring system 200), can push data to the HIS or pull data from the HIS even if the HIS uses a different implementation of the HL7 protocol, or some other electronic medical communication protocol.


In certain embodiments, the patient monitoring sub-system can be configured to push/pull data at predetermined intervals. For example, a patient monitor or clinician monitoring station can download patient data automatically from the HIS at periodic intervals so that the patient data is already available when a patient is connected to a patient monitor. The patient data sent from the HIS can include admit/discharge/transfer (“ADT”) information received upon registration of the patient. ADT messages can be initiated by a hospital information system to inform ancillary systems that, for example, a patient has been admitted, discharged, transferred or registered, that patient information has been updated or merged, or that a transfer or discharge has been canceled.


In other embodiments, the patient monitoring sub-system can be configured to push/pull data to/from the HIS only when the HIS is solicited by a query. For example, a clinician may make a request for information stored in a patient's electronic medical records on the HIS.


In still other embodiments, the patient monitoring sub-system can be configured to push/pull data to/from the HIS in response to an unsolicited event. For example, a physiological parameter of a patient being monitored can enter an alarm condition, which can automatically be transmitted to the HIS for storing in the patient's electronic medical records. In yet other embodiments, any combination of the above methods or alternative methods for determining when to communicate messages to and from the HIS can be employed.


Example system architectures and example triggers for the communication of messages involving the translation module 2415 have been described. Turning now to the operation of the translation module, FIGS. 25A-25D illustrate an example medical message at different phases or steps of a translation process. The translation process will be described in more detail below in connection with FIGS. 26, 27A and 27B.



FIG. 41A illustrates an example ADT input message 2505 received by the translation module 2415 from an HIS. The ADT input message 2505 is implemented according to the HL7 communication protocol and contains information related to the admission of a patient to a hospital. The ADT message 2505 includes multiple segments, including a message header segment 2506, an event segment, a patient identification segment, a patient visit segment, role segments, a diagnosis segment, and multiple custom segments.


In some embodiments, the message header (“MSH”) segment 2506 defines how the message is being sent, the field delimiters and encoding characters, the message type, the sender and receiver, etc. The first symbol or character after the MSH string can define the field delimiter or separator (in this message, a “caret” symbol). The next four symbols or characters can define the encoding characters. The first symbol defines the component delimiter (“˜”), the second symbol defines the repeatable delimiter (“|”), the third symbol defines the escape delimiter (“\”), and the fourth symbol defines the sub-component delimiter (“&”). All of these delimiters can vary between HL7 implementations.


In some embodiments, the example header segment 2506 further includes the sending application (“VAFC PIMS”), the receiving application (“NPTF-508”), the date/time of the message (“20091120104609-0600”), the message type (“ADT˜A01”), the message control ID (“58103”), the processing ID (“P”), and the country code (“USA”). As represented by the consecutive caret symbols, the header segment also contains multiple empty fields.



FIG. 41B illustrates the message header segment 2506 after it has been parsed into fields or elements based on an identified field delimiter (the caret symbol). In certain embodiments, the parsed input message comprises an XML message that is configured to be transformed according to extensible stylesheet language transformation (XSLT) rules.


In certain embodiment, the parsed input message can be encoded. FIG. 41C illustrates the parsed message header segment of the input message after being encoded (e.g., using a Unicode Transformation Format-8 (“UTF-8”) encoding scheme).


The encoded message header segment shows some of the various data types that can be used in the message. For example, the sending application (“VAFC PIMS”) of the third parsed field and the receiving application (“NPTF-508”) of the fifth parsed field are represented using a hierarchic designator (“HD”) name data type. The date/time field (the seventh parsed field) is represented using the time stamp (“TS”) data type. The processing ID field (the eleventh parsed field) is represented using the processing type (“PT”) data type. The fields that do not include a data type identifier are represented using the string (“ST”) data type. Other possible data types include, for example, coded element, structured numeric, timing quantity, text data, date, entry identifier, coded value, numeric, and sequence identification. The data types used for the various fields or attributes of the segments can vary between formatting implementations.



FIG. 41D illustrates an example output message 2510 from the translation module 2415 based on the example input message 2505 of FIG. 41A. The output message 2510 includes a message acknowledgement segment 2512.


Turning to the operation of the translation module, the translation module 2415 can, for example, create, generate, or produce an output message that is reflective of the input message based on an application of the set of translation rules 2420. In some embodiments, the translation module 2415 can, for example, translate, transform, convert, reformat, configure, change, rearrange, modify, adapt, alter, or adjust the input message based on a comparison with, and application of, the set of translation rules 2420 to form the output message. In some embodiments, the translation module 2415 can, for example, replace or substitute the input message with an output message that retains the content of the input message but has a new formatting implementation based upon a comparison with, and application of, the set of translation rules 2420.



FIG. 42 illustrates a translation process 2600 for generating an output message based on an input message and a comparison with the set of translation rules 2420 associated with the translation module 2415. The translation process 2600 starts at block 2602 where the translation module 2415 receives an input message from a first medical device.


At block 2604, the translation module 2415 determines the formatting implementation of the input message and the formatting implementation to be used for the output message. In certain embodiments, the input message can include one or more identifiers indicative of the formatting implementation. In some embodiments, the determination of the formatting implementation can be made, for example, by analyzing the message itself by identifying the delimiter or encoding characters used, the field order, the repeatability of segments, fields, or components, the data type of the fields, or other implementation variations. In certain embodiments, the translation module 2415 can separate or parse out the formatting from the content of the message (as shown in FIG. 41B) to aid in the determination of the formatting implementation. In some embodiments, the translation module 2415 determines the formatting implementation of the input message by referencing a database that stores the implementation used by each device with which the translation module 2415 has been configured to interface.


In certain embodiments, the determination of the formatting implementation used by the output message can also be determined from the input message. For example, the input message can include a field that identifies the intended recipient application, facility, system, device, and/or destination. The input message can alternatively include a field that identifies the type of message being sent (e.g., ADT message) and the translation module 2415 can determine the appropriate recipient from the type of message being sent and/or the sending application, device, or system. The translation module 2415 can then determine the formatting implementation required by the intended recipient of the input message.


At decision block 2605, the translation module 2415 determines whether a rule set has been configured for the translation from the identified formatting implementation of the input message to the identified formatting implementation to be used for the output message. The rule set may have been manually configured prior to installation of the translation module software or may have been automatically configured prior to receipt of the input message. If a rule set has already been configured, then the translation process 2600 continues to block 2606. If a rule set has not been configured, then a rule set is configured at block 2607. The configuration of the rule set can be performed as described below in connection with FIGS. 44 and 45A-2459D. The translation process 2600 then continues to block 2608.


At block 2606, the translation module 2415 identifies the pre-configured rules from the set of translation rules 2420 that govern translation between the determined formatting implementation of the input message and the formatting implementation of the output message. In some embodiments, the identification of the pre-configured rules can be made manually.


At block 2608, the translation module 2415 generates an output message based on the configured rule set(s) of the translation rules 2420. In certain embodiments, the output message retains all, or at least a portion of, the content of the input message but has the format expected and supported by the intended recipient of the input message.


The translation rules 2420 can include, for example, unidirectional rules and/or bidirectional rules. A unidirectional rule can be one, for example, that may be applied in the case of a message from a first medical device (e.g., 2405) to a second medical device (e.g., 2410) but is not applied in the case of a message from the second medical device to the first medical device. For example, a unidirectional rule could handle a difference in the delimiters used between fields for two different formatting implementations of, for example, the HL7 communication protocol. The translation module 2415 can apply a field delimiter rule to determine if the field delimiter is supported by the intended recipient of the input message. If the field delimiter of the input message is not supported by the intended recipient, the field delimiter rule can replace the field delimiter of the input message with a field delimiter supported by the intended recipient.


For example, an input message from an input medical device can include a formatting implementation that uses a “caret” symbol (“A”) as the field delimiter or separator. However, the formatting implementation recognized by the intended recipient medical device may use a “pipe” symbol (“I”) as the field delimiter. The translation module 2415 can identify the field delimiter symbol used in the formatting implementation recognized by the intended recipient medical device from the set of translation rules 2420 and generate an output message based on the input message that uses the pipe field delimiter symbol instead of the caret field delimiter symbol used in the input message. The rule to substitute a pipe symbol for a caret symbol would, in this case, only apply to messages that are sent to a recipient device that recognizes the pipe symbol as a field delimiter. This rule could be accompanied by a complementary rule that indicates that a caret symbol should be substituted for a pipe symbol in the case of a message that is intended for a recipient device that is known to recognize the caret symbol as the field delimiter.


Another unidirectional rule can handle the presence or absence of certain fields between different formatting implementations. For example, an input message from an input medical device can include fields that would not be recognized by the intended recipient medical device. The translation module 2415 can generate an output message that does not include the unrecognized or unsupported fields. In situations where an input message does not include fields expected by the intended recipient medical device, the set of translation rules 2420 can include a rule to insert null entries or empty “ ” strings in the fields expected by the intended recipient medical device and/or to alert the recipient device of the absence of the expected field. The sender device may also be notified by the translation module 2415 that the recipient device does not support certain portions of the message.


Other unidirectional rules can facilitate, for example, the conversion of one data type to another (for example, string (“ST”) to text data (“TX”) or structured numeric (“SN”) to numeric (“NM”)), and the increase or decrease in the length of various portions of the message. Unidirectional rules can also be used to handle variations in repeatability of portions of the message. For example, the translation module 2415 can apply a field repeatability rule to repeated instances of a segment, field, component, or sub-component of the message to determine how many such repeated instances are supported by the recipient device, if any, and deleting or adding any repeated instances if necessary. For example, a phone number field of a patient identification segment can be a repeatable field to allow for entry of home, work, and cell phone numbers.


Bidirectional rules can also be used. Such rules may apply equally to messages between first and second medical devices (e.g., 2405, 2410) regardless of which device is the sender and which is the recipient. A bidirectional rule can be used to handle changes in sequence, for example. In certain implementations, an input message from an input medical device can include a patient name field, or fields, in which a first name component appears before a last name component. However, the intended recipient medical device may be expecting an implementation where the last name component appears before the first name component. Accordingly, the set of translation rules 2420 can include a bidirectional rule to swap the order of the first and last name components when communicating between the two medical devices, or between the two formatting implementations. In general, field order rules can be applied to determine whether the fields, components, or sub-components are in the correct order for the intended recipient and rearranging them if necessary. Other bidirectional rules can be included to handle, for example, other sequential variations between formatting implementations or other types of variations.


The translation rules 2420 can also include compound rules. For example, a compound rule can include an if-then sequence of rules, wherein a rule can depend on the outcome of another rule. Some translation rules 2420 may employ computations and logic (e.g., Boolean logic or fuzzy logic), etc.


As discussed above, the messages communicated over the hospital-based communication network can employ the HL7 protocol. FIGS. 43A and 43B illustrate translation processes 2700A, 2700B in which HL7 messages are communicated between a HIS and a medical device over a hospital-based communications network or a clinical network. The translation processes 2700A, 2700B will be described with the assumption that the rules governing “translation” between the first and second HL7 formats have already been configured.



FIG. 43A illustrates a translation process 2700A in which the translation module 2415 facilitates communication of an HL7 message, such as the ADT message of FIG. 41A, from an HIS having a first HL7 format to an intended recipient medical device, such as a patient monitor or a clinician monitoring station, having a second HL7 format.


The translation process 2700A starts at block 2701, where the translation module 2415 receives an input message having a first HL7 format from the HIS. In certain embodiments, the input message includes information regarding, for example, the admission of a patient and/or patient identification and patient medical history information from an electronic medical records database.


At block 2703, the translation module 2415 determines the formatting implementation of the input message and the formatting implementation to be used for the output message. These determinations can be made in a similar manner to the determinations discussed above in connection with block 2604 of FIG. 42.


At block 2705, the translation module 2415 identifies the rules that govern translation between the determined HL7 format of the input message and the HL7 format of the output message and generates an output message having the second HL7 format based on the identified rules. In certain embodiments, the output message retains the content of the input message sent by the HIS but has the format expected and supported by the intended recipient of the input message.


At block 2707, the translation module 2415 can output the output message to the intended recipient over the hospital-based communications network. In certain embodiments, the intended recipient can transmit an acknowledgement message back to the hospital information system acknowledging successful receipt or reporting that an error occurred.



FIG. 43B illustrates a translation process 2700B in which the translation module 2415 facilitates communication of an HL7 message from a medical device, such as a patient monitor, having a first HL7 format to an HIS having a second HL7 format. For example, the patient monitor can transmit reporting event data m such as patient alarm data, to the HIS to store in the patient's electronic medical records.


The translation process 2700B starts at block 2702, where the translation module 2415 receives an input message having a first HL7 format from the medical device. In certain embodiments, the input message includes patient monitoring data or alarm data regarding one or more physiological parameters of the patient being monitored for storage in an electronic medical records database associated with the HIS.


At block 2704, the translation module 2415 determines the formatting implementation of the input message and the formatting implementation to be used for the output message. These determinations can be made in a similar manner to the determinations discussed above in connection with block 2604 of FIG. 42.


At block 2706, the translation module 2415 identifies the rules that govern translation between the determined HL7 format of the input message and the HL7 format of the output message and generates an output message having the second HL7 format based on the identified rules. In certain embodiments, the output message retains the content of the input message sent by the medical device but has the format expected and supported by the HIS.


At block 2708, the translation module 2415 can output the output message to the hospital information system over the hospital-based communications network. In certain embodiments, the HIS can transmit an acknowledgement message back to the medical device acknowledging successful receipt or reporting that an error occurred.



FIGS. 42, 43A and 43B described the operation of the translator module 2415. FIGS. 44 and 45A-45D will be used to illustrate the description of the configuration of the translation rules 2420.


The translation rules 2420 can be implemented as one or more stylesheets, hierarchical relationship data structures, tables, lists, other data structures, combinations of the same, and/or the like. In certain embodiments, the translation rules 2420 can be stored in local memory within the translation module 2415. In other embodiments, the translation rules 2420 can be stored in external memory or on a data storage device communicatively coupled to the translation module 2415.


The translation module 2415 can include a single rule set or multiple rule sets. For example, the translation module 2415 can include a separate rule set for each medical device/system and/or for each possible communication pair of medical devices/systems coupled to the network or capable of being coupled to the network. In some embodiments, the translation module 2415 can include a separate rule set for each possible pair of formatting implementations that are allowed under a medical communication protocol such as, for example, the HL7 protocol.


In certain embodiments, the translation rules 2420 can be manually inputted using, for example, the messaging implementation software tool 2800 illustrated in FIG. 44. For example, the software developer for a particular hospital network can determine the protocol message formats used by the devices and/or systems that are or can be coupled to the hospital network and then manually input rules to facilitate “translation” between the various protocol message formats supported or recognized by the devices and/or systems.



FIG. 44 illustrates an example screenshot from a messaging implementation software tool 2800 for manually configuring translation rules 2420 to be used by the translation module 2415. The screenshot from the messaging implementation software tool 2800 illustrates various parameters that may differ between formatting implementations of an electronic medical communication protocol, such as HL7. The screenshot also includes areas where a user can input information that defines, or is used to define, translation rules for converting between different HL7 implementations. In some embodiments, the messaging implementation software tool 2800 stores a variety of pre-configured rule sets based, for example, on known communication protocol implementations of various medical devices. In such embodiments, a user may configure one or more translation rules 2420 to be used in communications involving such devices by entering identification information, such as the device manufacturer, model number, etc. Based on this identification information, the messaging implementation tool 2800 can identify a pre-configured set of translation rules for communication with that device.


In other embodiments, the translation rules 2420 can be automatically generated. For example, the automatic generation of a new set, or multiple sets, of rules can be triggered by the detection of a newly recognized “communicating” medical device or system on a network. In certain embodiments, the automatic generation of a new set or multiple sets of rules can occur at the time a first message is received from or sent to a new “communicating” medical device or system coupled to the network. In still other embodiments, the automatic generation of rule sets includes updating or dynamically modifying a pre-existing set of rules.


The automatic generation of translation rule sets can be carried out in a variety of ways. For example, in some embodiments, the translation module 2415 can automatically initiate usage of a pre-configured set of translation rules 2420 based upon, for example, the make and model of a new device that is recognized on the network. In certain embodiments, the translation module 2415 can request one or more messages from the new device or system and then analyze the messages to determine the type of formatting being implemented, as illustrated by the automatic rule configuration process 2900A of FIG. 45A. The automatic rule configuration process 2900A starts at block 2901, where the translation module 2415 receives one or more messages from a detected medical device or system on the network. The messages can be received upon transmission to an intended recipient medical device or system or in response to a query sent by the translation module 2415 or another medical device or system coupled to the network.


At block 2903, the translation module 2415 determines the protocol of the one or more received messages by, for example, analyzing the message or by consulting a database that indicates what communication protocol/format is implemented by each medical device or system on the network. In certain embodiments, the translation module 2415 is configured to handle medical messages implemented using a single common protocol, such as HL7. Accordingly, if a determination is made that the received messages are implemented using a non-supported or non-recognized protocol, the translation module can ignore the messages received from the detected medical device or system, output an alert or warning, or allow the messages to be sent without being translated.


At block 2905, the translation module 2415 determines the formatting implementation of the received message(s). In certain embodiments, the received messages can include one or more identifiers indicative of the formatting implementation. In other embodiments, the determination of the formatting implementation can be made, for example, by analyzing the message itself by checking field order, the delimiter or encoding characters used, or other implementation variations. In certain embodiments, the translation module 2415 can separate or parse out the formatting from the content of the message to aid in the determination of the formatting implementation.


At block 2907, the translation module 2415 configures one or more rules or rule sets to handle messages received from and/or sent to the detected medical device or system. In certain embodiments, the configuration of the rules involves the creation or generation of new rules. In other embodiments, the configuration of the rules involves the alteration or updating of existing rules. The configured rules or rule sets can be included with the translation rules 2420. If a set of rules already exists for the formatting implementation used by the new device or system, then the configuration of new translation rules may not be required. Instead, existing translation rules can be associated with the new device or system for use in communication involving that device or system. In other embodiments, the translation module 2415 can create a new set of rules geared specifically for the new device or system or can modify an existing set of rules based on subtle formatting variations identified.


In other embodiments, the translation module 2415 can generate test message(s) that may be useful in identifying the communication protocol and implementation used by a device or system. For example, the translation module can generate test messages to cause the newly detected device or system to take a particular action (e.g., store information) and then query information regarding the action taken by the newly detected device to determine whether or how the test message was understood. This is illustrated by the automatic rule configuration process 2900B of FIG. 45B.


The automatic rule configuration process 2900B starts at block 2902, where the translation module 2415 transmits one or more test, or initialization, messages to a remote device or system detected on a network. The test messages can be configured, for example, to instruct the remote device or system to take a particular action (e.g., store patient information). In certain embodiments, the test messages can be configured to generate a response indicative of the type of formatting recognized or supported by the remote device or system. In other embodiments, the test messages can be configured such that only devices or systems supporting a particular formatting implementation will understand and properly act on the test messages.


At block 2904, the translation module 2415 queries the remote device or system to receive information regarding the action taken based on the test message sent to the remote device or system to determine whether the test message was understood. For example, if the test message instructed the remote device or system to store patient information in a particular location, the translation module 2415 can query the information from the location to determine whether the test message was understood. If the test message was not understood, the translation module 2415 can, for example, continue sending test messages of known formatting implementations until a determination is made that the test message has been understood.


At block 2906, the translation module 2415 determines the protocol and formatting implementation based on the information received. As an example, in certain embodiments, the test message can include an instruction to store patient name information. The test message can include a patient name field having a first name component followed by a surname component. The translation module 2415 can then query the remote device or system to return the patient surname. Depending on whether the patient surname or the first name is returned, this query can be useful in determining information about the order of fields in the formatting implementation being used by the remote device or system. As another example, the test messages can instruct the detected device or system to store repeated instances of a component. The translation module 2415 can then query the device or system to return the repeated instances to see which, if any, were stored. This repeatability information can also be useful in determining whether certain fields are allowed to be repeated in the formatting implementation being used by the remote device for system, and, if so, how many repeated instances are permitted.


At block 2908, the translation module 2415 configures one or more rules to handle messages received from and/or sent to the detected medical device or system. For example, the rules can convert messages from the message format used by a first medical device to that used by a second medical device, as described herein. In certain embodiments, the configuration of the rules involves the creation or generation of new rules. In other embodiments, the configuration of the rules involves the alteration or updating of existing rules. If a set of rules already exists for the formatting implementation used by the new device or system, then the configuration of new translation rules may not be required. Instead, existing translation rules can be associated with the new device or system for use in communication involving that device or system.



FIGS. 29C and 29D illustrate automatic rule configuration processes performed by the translation module 2415 for messages utilizing the HL7 protocol. The HL7 protocol can be used, for example, to communicate electronic messages to support administrative, logistical, financial, and clinical processes. For example, HL7 messages can include patient administration messages, such as ADT messages, used to exchange patient demographic and visit information across various healthcare systems.


The automatic rule configuration process 2900C illustrated in FIG. 45C is similar to the process 2900A illustrated in FIG. 45A. At block 2911, the translation module 2415 receives one or more messages from an HL7 medical device. At block 2915, the translation module 2415 determines the formatting implementation of the HL7 medical device from the one or more messages received. As discussed above, the determination of the formatting implementation can be made, for example, by checking field order or sequence, field delimiter characters, repeatability, cardinality, and other HL7 implementation variations.


At block 2917, the translation module 2415 configures one or more rules to handle messages received from and/or sent to the HL7 medical device. In certain embodiments, the configuration of the rules involves the creation or generation of new rules for the detected formatting implementation. In other embodiments, the configuration of the rules involves the dynamic alteration or updating of existing rules. If a set of rules already exists for the formatting implementation used by the new HL7 medical device, then the configuration of new translation rules may not be required. Instead, existing translation rules can be associated with the new HL7 medical device for use in communication involving that device.


The automatic rule configuration process 2900D illustrated in FIG. 45D is similar to the process 2900B illustrated in FIG. 45B. At block 2912, the translation module 2415 transmits one or more test, dummy, or initialization messages to an HL7 medical device. In other embodiments, the translation module 2415 can cause one or more test messages to be transmitted to the new HL7 medical device from another HL7 medical device. As described above, the test messages can include messages having known HL7 formats configured to determine whether the HL7 device understands the test messages. The test messages can include test ADT messages, for example.


At block 2914, the translation module 2415 queries the HL7 medical device to receive information regarding an action taken or information stored in response to the test message. At block 2916, the translation module 2415 determines the formatting implementation of the HL7 device based on the information received. In certain embodiments, the translation module 2415 can analyze the information received to determine whether the test message or messages were properly understood. If none of the test messages were properly understood, the translation module 2415 can send additional test messages having other known HL7 formats and repeat blocks 2914 and 2916.


At block 2918, the translation module 2415 configures one or more translation rules to handle messages received from and/or sent to the detected HL7 medical device. In certain embodiments, the configuration of the translation rules involves the creation or generation of new translation rules. In other embodiments, the configuration of the rules involves the alteration or updating of existing rules. If a set of translation rules already exists for the formatting implementation used by the new HL7 medical device, then the configuration of new translation rules may not be required. Instead, existing translation rules can be associated with the new HL7 medical device for use in communication involving that HL7 medical device.


The automatic rule configuration processes described above can be triggered by the detection of a network device or system by the translation module 2415. The medical devices referred to in FIGS. 45A-45D can include any of the devices or systems illustrated in FIG. 1 or 24.


In some embodiments, the automatic generation of translation rules can advantageously occur post-installation and post-compilation of the messaging sub-system software, which includes the translation module 2415. In certain embodiments, the automatic generation or dynamic modification of the translation rules 2420 can occur without having to recompile or rebuild the translation module software. This feature can be advantageous in terms of efficiently complying with U.S. Food and Drug Administration (“FDA”) requirements regarding validation of software used in healthcare environments.


Take, for example, a situation where a medical device manufacturer plans to use the translation module 2415 to facilitate communication between a particular medical device or system that is to be installed in a hospital (e.g., a patient monitoring system, as described herein), or other patient care facility, and other devices or systems that are already installed at the hospital (e.g., the HIS or CIS). Any software required for the operation of the new medical device to be installed may be at least partially validated for FDA compliance prior to installation at the hospital despite the fact that, for example, the HL7 implementations of other existing devices or systems at the hospital may still be unknown. For example, any aspects of the software for the new medical device that are dependent upon receiving messages from other hospital devices can be validated pre-installation as being capable of fully and correctly operating when the expected message format is received. Then, once the medical device is installed at the hospital, the validation of the software can be completed by showing that the translation module 2415 is able to provide messages of the expected format to the newly installed device. In this way, FDA validation tasks can be apportioned to a greater extent to the pre-installation timeframe where they can be more easily carried out in a controlled manner rather than in the field.


In addition, the translation module 2415 can further help streamline FDA validation, for example, when a medical device or system is expected to be installed at different hospitals whose existing devices use, for example, different implementations of the HL7 protocol. Normally, this type of situation could impose the requirement that the entire functionality of the software for the new medical device be completely validated at each hospital. However, if the translation module 2415 is used to interface between the new medical device and the hospital's existing devices, then much of the software functionality could possibly be validated a single time prior to installation, as just described. Then, once installed at each hospital, the software validation for the medical device can be completed by validating that correct message formats are received from the translation module (the translation rules for which are field-customizable). This may result in making on-site validation procedures significantly more efficient, which will advantageously enable more efficient FDA compliance in order to bring life-saving medical technology to patients more quickly by the use of field-customizable translation rules.


V. Example Embodiments


In certain embodiments, a system for providing medical data translation for output on a medical monitoring hub can include a portable physiological monitor comprising a processor that can: receive a physiological signal associated with a patient from a physiological sensor, calculate a physiological parameter based on the physiological signal, and provide a first value of the physiological parameter to a monitoring hub for display. The monitoring hub can include a docking station that can receive the portable physiological monitor. The monitoring hub can: receive the first value of the physiological parameter from the portable physiological monitor; output the first value of the physiological parameter for display; receive physiological parameter data from a medical device other than the portable physiological monitor, the physiological parameter data formatted according to a protocol other than a protocol natively readable or displayable by the monitoring hub; pass the physiological parameter data to a translation module; receive translated parameter data from the translation module, where the translated parameter data can be readable and displayable by the monitoring hub; and output a second value from the translated parameter data for display.


The system of the preceding paragraph can be combined with any subcombination of the following features: the monitoring hub is further configured to output the first value of the physiological parameter and the second value from the translated parameter data on separate displays; the monitoring hub is further configured to output the second value from the translated parameter data to an auxiliary device having a separate display from a display of the monitoring hub; the auxiliary device is selected from the group consisting of a television, a tablet, a phone, a wearable computer, and a laptop; the physiological parameter data comprises data from an infusion pump; the physiological parameter data comprises data from a ventilator; and the translation module is configured to translate the physiological parameter data from a first Health Level 7 (HL7) format to a second HL7 format.


In certain embodiments, a method of providing medical data translation for output on a medical monitoring hub can include: under the control of a first medical device comprising digital logic circuitry, receiving a physiological signal associated with a patient from a physiological sensor; obtaining a first physiological parameter value based on the physiological signal; outputting the first physiological parameter value for display; receiving a second physiological parameter value from a second medical device other than the first medical device, where the second physiological parameter value is formatted according to a protocol not used by the first medical device, such that the first medical device is not able to process the second physiological parameter value to produce a displayable output value; passing the physiological parameter data from the first medical device to a separate translation module; receiving translated parameter data from the translation module at the first medical device, the translated parameter data able to be processed for display by the first medical device; and outputting a second value from the translated parameter data for display.


The method of the preceding paragraph can be combined with any subcombination of the following features: further including translating the message by at least translating the message from a first Health Level 7 (HL7) format to a second HL7 format; the message can include data from a physiological monitor; the message can include data from an infusion pump or a ventilator; and the message can include data from a hospital bed.


In certain embodiments, a system for providing medical data translation for output on a medical monitoring hub can include a first medical device including electronic hardware that can: obtain a first physiological parameter value associated with a patient; output the first physiological parameter value for display; receive a second physiological parameter value from a second medical device other than the first medical device, the second physiological parameter value formatted according to a protocol not used by the first medical device, such that the first medical device is not able to process the second physiological parameter value to produce a displayable output value; pass the physiological parameter data from the first medical device to a translation module; receive translated parameter data from the translation module at the first medical device, the translated parameter data able to be processed for display by the first medical device; and output a second value from the translated parameter data for display.


The system of the preceding paragraph can be combined with any subcombination of the following features: the first medical device can also output the first value of the physiological parameter and the second value from the translated parameter data on the same display; the first medical device can also output the first value of the physiological parameter and the second value from the translated parameter data on separate displays; the first medical device can also output the second value from the translated parameter data to an auxiliary device; the auxiliary device can be a television monitor; the auxiliary device can be selected from the group consisting of a tablet, a phone, a wearable computer, and a laptop; the first medical device can include the translation module; the first medical device can also pass the physiological parameter data to the translation module over a network; and the physiological parameter data can include data from an infusion pump or a ventilator.


VI. Terminology


Many other variations than those described herein will be apparent from this disclosure. For example, depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially. In addition, different tasks or processes can be performed by different machines and/or computing systems that can function together.


It is to be understood that not necessarily all such advantages can be achieved in accordance with any particular embodiment of the embodiments disclosed herein. Thus, the embodiments disclosed herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.


The various illustrative logical blocks, modules, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.


The various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can include electrical circuitry or digital logic circuitry configured to process computer-executable instructions. In another embodiment, a processor includes an FPGA or other programmable device that performs logic operations without processing computer-executable instructions. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.


The steps of a method, process, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module stored in one or more memory devices and executed by one or more processors, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of non-transitory computer-readable storage medium, media, or physical computer storage known in the art. An example storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The storage medium can be volatile or nonvolatile. The processor and the storage medium can reside in an ASIC.


Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.


Disjunctive language such as the phrase “at least one of X, Y, or Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to present that an item, term, etc., may be either X, Y, or Z, or any combination thereof (e.g., X, Y, and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y, or at least one of Z to each be present.


Unless otherwise explicitly stated, articles such as “a” or “an” should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a processor configured to carry out recitations A, B and C” can include a first processor configured to carry out recitation A working in conjunction with a second processor configured to carry out recitations B and C.


While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments of the inventions described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.


Additionally, all publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.

Claims
  • 1. A method of displaying medical data, the method comprising: under the control of a first medical device comprising digital logic circuitry, receiving a physiological signal from a physiological sensor;determining, based on the physiological signal, a first physiological parameter value associated with a patient;outputting, in a first section of a first portion of a display, the first physiological parameter value for display together with a corresponding waveform of a first physiological parameter;receiving a second physiological parameter value associated with the patient;outputting, in a second portion of the display, the second physiological parameter value for display without a corresponding waveform of a second physiological parameter;in response to receiving a user input dragging the second physiological parameter value from the second portion of the display to the first portion of the display, causing the second physiological parameter value together with a corresponding waveform of the second physiological parameter to be displayed in a second section of the first portion of the display that is adjacent to the first section of the first portion of the display;in response to determining an alarm condition associated with the second physiological parameter, causing highlighting of the second section of the first portion of the display surrounding the displayed second physiological parameter value and the corresponding waveform of the second physiological parameter;outputting, in the first portion of the display, indications of respective alarm limits associated with each displayed physiological parameter including the first physiological parameter, wherein the indications of the alarm limits are displayed adjacent to the respective associated displayed values of the physiological parameters, and wherein the second physiological parameter value is displayed in the second portion of the display without indications of corresponding alarm limits; andfurther in response to receiving the user input dragging and dropping the second physiological parameter value from the second portion of the display to the first portion of the display, causing indications of alarm limits associated with the second physiological parameter to be displayed in the second section of the first portion of the display and adjacent to the second physiological parameter value.
  • 2. The method of claim 1, further comprising: obtaining from a second medical device other than the first medical device, a third physiological parameter value formatted according to a protocol not used by the first medical device, such that the first medical device is not able to process the third physiological parameter value to produce a displayable output value;passing the third physiological parameter value from the first medical device to a translation module;receiving translated parameter data from the translation module at the first medical device, the translated parameter data able to be processed for display by the first medical device; andoutputting the third physiological parameter value from the translated parameter data for display.
  • 3. The method of claim 2, further comprising: determining the translated parameter data by translating the third physiological parameter value from a first Health Level 7 (HL7) format to a second HL7 format.
  • 4. The method of claim 3, wherein the third physiological parameter value comprises data from at least one of: a physiological monitor, an infusion pump, a ventilator, or a hospital bed.
  • 5. The method of claim 2, further comprising: outputting the first physiological parameter value and the third physiological parameter value from the translated parameter data for display on the same display.
  • 6. The method of claim 2, further comprising: outputting the third physiological parameter value from the translated parameter data to an auxiliary device having a separate display from the display of the first medical device.
  • 7. The method of claim 6, wherein the auxiliary device is configured to: display, in the separate display, at least one of: a histogram of highs and lows for the past several days of the patient, or a detailed waveform that is larger than the waveforms shown on the display of the first medical device.
  • 8. The method of claim 7, wherein the auxiliary device is configured to: in response to receiving a user input, zooming the detailed waveform to cause the detailed waveform to be enlarged to fill the separate display in place of the other elements of the separate display.
  • 9. The method of claim 1, further comprising: displaying, in the display, a time window button selectable by a user to change a time window of displayed waveforms.
  • 10. The method of claim 1, wherein the alarm limits comprise adjustable alarm limits, and wherein the method further comprises: in response to receiving a second user input, causing display of a popup user interface adjacent to the waveform of the second physiological parameter in the first portion of the display and configured to receive adjustments to the alarm limits for the second physiological parameter.
  • 11. The method of claim 1, wherein the highlighting comprises a colored box surrounding the displayed second physiological parameter value and the corresponding waveform of the second physiological parameter.
  • 12. A system for displaying medical data, the system comprising: a first medical device comprising electronic hardware configured to: obtain a first physiological parameter value associated with a patient;output, in a first section of a first portion of a display, the first physiological parameter value for display together with a corresponding waveform of a first physiological parameter;receive a second physiological parameter value associated with the patient;output, in a second portion of the display, the second physiological parameter value for display without a corresponding waveform of a second physiological parameter;in response to receiving a user input dragging and dropping the second physiological parameter value from the second portion of display to the first portion of the display, cause the second physiological parameter value together with a corresponding waveform of the second physiological parameter to be displayed in a second section of the first portion of the display that is adjacent to the first section of the first portion of the display;in response to determining an alarm condition associated with the second physiological parameter, cause highlighting of the section of the first portion of the display surrounding the displayed second physiological parameter value and the corresponding waveform of the second physiological parameter;output, in the first portion of the display, indications of respective alarm limits associated with each displayed physiological parameter including the first physiological parameter, wherein the indications of the alarm limits are displayed adjacent to the respective associated displayed values of the physiological parameters, and wherein the second physiological parameter value is displayed in the second portion of the display without indications of corresponding alarm limits; andfurther in response to receiving the user input dragging and dropping the second physiological parameter value from the second portion of the display to the first portion of the display, cause indications of alarm limits associated with the second physiological parameter to be displayed in the second section of the first portion of the display and adjacent to the second physiological parameter value.
  • 13. The system of claim 12, wherein the first medical device is further configured to: obtain from a second medical device other than the first medical device, a third physiological parameter value formatted according to a protocol not used by the first medical device, such that the first medical device is not able to process the third physiological parameter value to produce a displayable output value;pass the third physiological parameter value from the first medical device to a translation module;receive translated parameter data from the translation module at the first medical device, the translated parameter data able to be processed for display by the first medical device; andoutput the third physiological parameter value from the translated parameter data for display.
  • 14. The system of claim 13, wherein the first medical device is further configured to: output the first physiological parameter value and the third physiological parameter value from the translated parameter data for display on the same display.
  • 15. The system of claim 13, wherein the first medical device is further configured to: output the first physiological parameter value and the third physiological parameter value from the translated parameter data for display on separate displays.
  • 16. The system of claim 15, wherein the first medical device is further configured to: output the third physiological parameter value from the translated parameter data to an auxiliary device having a separate display.
  • 17. The system of claim 16, wherein the auxiliary device comprises at least one of: a television monitor, a tablet, a phone, a wearable computer, and a laptop.
  • 18. The system of claim 16, wherein the auxiliary device is configured to: display, in the separate display, at least one of: a histogram of highs and lows for the past several days of the patient, or a detailed waveform that is larger than the waveforms shown on a display of the first medical device.
  • 19. The system of claim 18, wherein the auxiliary device is configured to: in response to receiving a user input, zooming the detailed waveform to cause the detailed waveform to be enlarged to fill the separate display in place of the other elements of the separate display.
  • 20. The system of claim 13, wherein the first medical device comprises the translation module.
  • 21. The system of claim 12, wherein the first medical device is further configured to: display, in the display, a time window button selectable by a user to change a time window of displayed waveforms.
  • 22. The system of claim 12, wherein the alarm limits comprise adjustable alarm limits, and wherein the first medical device is further configured to: in response to receiving a second user input, cause display of a popup user interface adjacent to the waveform of the second physiological parameter in the first portion of the display and configured to receive adjustments to the alarm limits for the second physiological parameter.
  • 23. The system of claim 12, wherein the highlighting comprises a colored box surrounding the displayed second physiological parameter value and the corresponding waveform of the second physiological parameter.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/919,792, filed Mar. 13, 2018, titled “System for Displaying Medical Monitoring Data,” which application is a continuation of U.S. application Ser. No. 14/512,237, filed Oct. 10, 2014, titled “System for Displaying Medical Monitoring Data,” which application is a non-provisional of U.S. Provisional Application No. 61/889,972, filed Oct. 11, 2013, titled “System for Displaying Medical Monitoring Data,” and is also a continuation-in-part of U.S. application Ser. No. 13/651,167, filed Oct. 12, 2012, titled “Medical Monitoring Hub,” which is a non-provisional of each of the following U.S. Provisional Patent Applications: Ser. No.DateTitle61/547,017,Oct. 13, 2011,Visual Correlation of PhysiologicalInformation,61/547,577,Oct. 14, 2011,Visual Correlation of PhysiologicalInformation,61/597,120,Feb. 9, 2012,Visual Correlation of PhysiologicalInformation,61/703,773,Sep. 20, 2012,Medical Monitoring Hub All of the above applications are incorporated by reference herein in their entirety.

US Referenced Citations (1895)
Number Name Date Kind
3646606 Buxton et al. Feb 1972 A
3690313 Weppner et al. Sep 1972 A
3810102 Parks, III et al. May 1974 A
3815583 Scheidt Jun 1974 A
3972320 Kalman Aug 1976 A
3978849 Geneen Sep 1976 A
4108166 Schmid Aug 1978 A
4231354 Kurtz et al. Nov 1980 A
4589415 Haag May 1986 A
4662378 Thomis May 1987 A
4838275 Lee Jun 1989 A
4852570 Levine Aug 1989 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5092340 Yamaguchi et al. Mar 1992 A
5140519 Friesdorf et al. Aug 1992 A
5159932 Zanetti et al. Nov 1992 A
5161539 Evans et al. Nov 1992 A
5163438 Gordon et al. Nov 1992 A
5262944 Weisner et al. Nov 1993 A
5277189 Jacobs Jan 1994 A
5278627 Aoyagi et al. Jan 1994 A
5282474 Valdes Sosa et al. Feb 1994 A
5296688 Hamilton et al. Mar 1994 A
5307263 Brown Apr 1994 A
5309918 Schraag May 1994 A
5318037 Evans et al. Jun 1994 A
5319355 Russek Jun 1994 A
5331549 Crawford, Jr. Jul 1994 A
5333106 Lanpher et al. Jul 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
5348008 Bornn et al. Sep 1994 A
5358519 Grandjean Oct 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5375599 Shimizu Dec 1994 A
5375604 Kelly et al. Dec 1994 A
5377676 Vari et al. Jan 1995 A
5390238 Kirk et al. Feb 1995 A
5400794 Gorman Mar 1995 A
5406952 Barnes et al. Apr 1995 A
D357982 Dahl et al. May 1995 S
5416695 Stutman et al. May 1995 A
5420606 Begum et al. May 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5434611 Tamura Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5477146 Jones Dec 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5483968 Adam et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494041 Wilk Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5503149 Beavin Apr 1996 A
5505202 Mogi et al. Apr 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5537289 Dahl Jul 1996 A
5544649 David et al. Aug 1996 A
5553609 Chen et al. Sep 1996 A
5558638 Evers et al. Sep 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5566676 Rosenfeldt et al. Oct 1996 A
5576952 Stutman et al. Nov 1996 A
5579001 Dempsey et al. Nov 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5619991 Sloane Apr 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5640953 Bishop et al. Jun 1997 A
5640967 Fine et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5651368 Napolitano Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
5685314 Geheb et al. Nov 1997 A
5687717 Halpern et al. Nov 1997 A
5687732 Inagaki Nov 1997 A
5694020 Lang et al. Dec 1997 A
5724580 Levin et al. Mar 1998 A
5724983 Selker et al. Mar 1998 A
5725308 Smith et al. Mar 1998 A
5726440 Kalkhoran et al. Mar 1998 A
5734739 Sheehan et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758079 Ludwig et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772585 Lavin et al. Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5782805 Meinzer Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5801637 Lomholt Sep 1998 A
5810734 Caro et al. Sep 1998 A
5813403 Seller et al. Sep 1998 A
5822544 Chaco et al. Oct 1998 A
5822546 George Oct 1998 A
5823950 Diab et al. Oct 1998 A
5829723 Brunner Nov 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5855550 Lai et al. Jan 1999 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5876351 Rohde Mar 1999 A
5885214 Monroe et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5895359 Peel, III Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5910139 Cochran et al. Jun 1999 A
5919134 Diab Jul 1999 A
5921920 Marshall et al. Jul 1999 A
5924074 Evans Jul 1999 A
5931160 Gilmore et al. Aug 1999 A
5931791 Saltzstein et al. Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5942986 Shabot et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5987519 Peifer et al. Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6006119 Seller et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014346 Malone Jan 2000 A
6018673 Chin et al. Jan 2000 A
6024699 Surwit et al. Feb 2000 A
6027452 Flaherty et al. Feb 2000 A
6032678 Rottem Mar 2000 A
6035230 Kang et al. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6036718 Ledford et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6045527 Appelbaum et al. Apr 2000 A
6057758 Dempsey et al. May 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6093146 Filangeri Jul 2000 A
6101478 Brown Aug 2000 A
6106463 Wilk Aug 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6132218 Benja-Athon Oct 2000 A
6139494 Cairnes Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6167258 Schmidt et al. Dec 2000 A
D437058 Gozani Jan 2001 S
6168563 Brown Jan 2001 B1
6171237 Avitall et al. Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6183417 Gehab et al. Feb 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6185448 Borovsky Feb 2001 B1
6195576 John Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6221012 Maschke et al. Apr 2001 B1
6224553 Nevo May 2001 B1
6229856 Diab et al. May 2001 B1
6230142 Benigno et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6241684 Amano et al. Jun 2001 B1
6251113 Appelbaum Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6267723 Matsumura et al. Jul 2001 B1
6269262 Kandori et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6304767 Seller et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6322502 Schoenberg et al. Nov 2001 B1
6325761 Jay Dec 2001 B1
6329139 Nova et al. Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6338039 Lonski et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6344025 Inagaki et al. Feb 2002 B1
6349228 Kiani et al. Feb 2002 B1
6352504 Ise Mar 2002 B1
6354235 Davies Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6364834 Reuss et al. Apr 2002 B1
6364839 Little et al. Apr 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6385476 Osadchy et al. May 2002 B1
6385589 Trusheim et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6407335 Franklin-Lees Jun 2002 B1
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6470893 Boesen Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6516289 David et al. Feb 2003 B2
6519487 Parker Feb 2003 B1
6524240 Thede Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6544173 West et al. Apr 2003 B2
6544174 West et al. Apr 2003 B2
6551243 Bocionek et al. Apr 2003 B2
6570592 Sajdak et al. May 2003 B1
6578428 Dromms et al. Jun 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6616606 Peterson et al. Sep 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6641533 Causey et al. Nov 2003 B2
6643530 Diab et al. Nov 2003 B2
6646556 Smith et al. Nov 2003 B1
6650917 Diab et al. Nov 2003 B2
6650939 Takpke, II et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
D483872 Cruz et al. Dec 2003 S
6658276 Kianl et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6663570 Mott et al. Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6694180 Boesen Feb 2004 B1
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6707476 Hochstedler Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6719694 Weng et al. Apr 2004 B2
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6725086 Marinello Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6745060 Diab et al. Jun 2004 B2
6746406 Lia et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6750463 Riley Jun 2004 B1
6751492 Ben-haim Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6766188 Soller Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6773396 Flach et al. Aug 2004 B2
6783492 Dominguez Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6790178 Mault et al. Sep 2004 B1
6792300 Diab et al. Sep 2004 B1
6795724 Hogan Sep 2004 B2
6796186 Lia et al. Sep 2004 B2
6804656 Rosenfeld Oct 2004 B1
6807050 Whitehorn et al. Oct 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816741 Diab Nov 2004 B2
6817979 Nihtila et al. Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6837848 Bonner et al. Jan 2005 B2
6841535 Divita et al. Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6855112 Kao et al. Feb 2005 B2
6860266 Blike Mar 2005 B2
6861639 Al-Ali Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6897788 Khair et al. May 2005 B2
6898452 Al-Ali et al. May 2005 B2
6907237 Dorenbosch et al. Jun 2005 B1
6915149 Ben-haim Jul 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6952340 Son et al. Oct 2005 B2
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6980419 Smith et al. Dec 2005 B2
6983179 Ben-haim Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6988989 Weiner et al. Jan 2006 B2
6990087 Rao et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6997884 Ulmsten Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7025729 De Chazal et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7033761 Shafer Apr 2006 B2
7035686 Hogan Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7044930 Stromberg May 2006 B2
7048687 Reuss et al. May 2006 B1
7059769 Potega Jun 2006 B1
7061428 Amir et al. Jun 2006 B1
7063666 Weng et al. Jun 2006 B2
7067893 Mills et al. Jun 2006 B2
7079035 Bock et al. Jul 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7188621 DeVries et al. Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7208119 Kurtock et al. Apr 2007 B1
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7229415 Schwartz Jun 2007 B2
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7241287 Shehada et al. Jul 2007 B2
7244251 Shehada et al. Jul 2007 B2
7245373 Soller et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7252659 Shehada et al. Aug 2007 B2
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7256708 Rosenfeld Aug 2007 B2
7261697 Berstein Aug 2007 B2
7264616 Shehada et al. Sep 2007 B2
7267671 Shehada et al. Sep 2007 B2
7272425 Al-Ali Sep 2007 B2
7273454 Raymond et al. Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7285090 Stivoric et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7294105 Islam Nov 2007 B1
7295866 Al-Ali Nov 2007 B2
7307543 Rosenfeld Dec 2007 B2
7312709 Kingston Dec 2007 B2
7313423 Griffin et al. Dec 2007 B2
7314446 Byrd et al. Jan 2008 B2
7315825 Rosenfeld Jan 2008 B2
7321862 Rosenfeld Jan 2008 B2
7322971 Shehada et al. Jan 2008 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356178 Ziel et al. Apr 2008 B2
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7374535 Schoenberg May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7378975 Smith et al. May 2008 B1
7382247 Welch et al. Jun 2008 B2
7383070 Diab et al. Jun 2008 B2
7390299 Weiner et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7395216 Rosenfeld Jul 2008 B2
7411509 Rosenfeld Aug 2008 B2
7413546 Agutter et al. Aug 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7419483 Shehada Sep 2008 B2
7428432 Ali et al. Sep 2008 B2
7433827 Rosenfeld Oct 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7439856 Weiner et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7454359 Rosenfeld Nov 2008 B2
7454360 Rosenfeld Nov 2008 B2
7462151 Childre et al. Dec 2008 B2
7467002 Weber et al. Dec 2008 B2
7467094 Rosenfeld Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7475019 Rosenfeld Jan 2009 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489250 Bock et al. Feb 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7497828 Wilk et al. Mar 2009 B1
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7515043 Welch et al. Apr 2009 B2
7515044 Welch et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7532919 Soyemi et al. May 2009 B2
7549961 Hwang Jun 2009 B1
7551717 Tome et al. Jun 2009 B2
7559520 Quijano et al. Jul 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7577475 Consentino et al. Aug 2009 B2
7590950 Collins et al. Sep 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7597665 Wilk et al. Oct 2009 B2
7606608 Blank et al. Oct 2009 B2
7612999 Clark et al. Nov 2009 B2
7616303 Yang et al. Nov 2009 B2
7618375 Flaherty Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7639145 Lawson et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
7650291 Rosenfeld Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
7654966 Westinskow et al. Feb 2010 B2
7684845 Juan Mar 2010 B2
7689437 Teller et al. Mar 2010 B1
RE41236 Seely Apr 2010 E
D614305 Al-Ali et al. Apr 2010 S
7693697 Westinskow et al. Apr 2010 B2
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7722542 Lia et al. May 2010 B2
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7736318 Consentino et al. Jun 2010 B2
7740590 Bernstein Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7763420 Strizker et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621515 Chua et al. Aug 2010 S
D621516 Kiani et al. Aug 2010 S
7766818 Iketani et al. Aug 2010 B2
7772799 Wu Aug 2010 B2
7774060 Westenskow et al. Aug 2010 B2
7778851 Schoenberg et al. Aug 2010 B2
7791155 Diab Sep 2010 B2
7794407 Rothenberg Sep 2010 B2
7801581 Diab Sep 2010 B2
7806830 Bernstein Oct 2010 B2
7820184 Strizker et al. Oct 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7831450 Schoenberg Nov 2010 B2
7841986 He et al. Nov 2010 B2
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7848935 Gotlib Dec 2010 B2
7858322 Tymianski et al. Dec 2010 B2
7865222 Weber et al. Jan 2011 B2
7865232 Krishnaswamy et al. Jan 2011 B1
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7881892 Soyemi et al. Feb 2011 B2
7884314 Hamada Feb 2011 B2
7890156 Ooi et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7907945 Deprun Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7914514 Calderon Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7963927 Kelleher et al. Jun 2011 B2
7967749 Hutchinson et al. Jun 2011 B2
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7988639 Starks Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Al-Ali et al. Aug 2011 B2
7991463 Kelleher et al. Aug 2011 B2
7991625 Rosenfeld Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8027846 Schoenberg Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8033996 Behar Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8036736 Snyder et al. Oct 2011 B2
8038625 Afonso et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
8068104 Rampersad Nov 2011 B2
8073707 Teller et al. Dec 2011 B2
8094013 Lee et al. Jan 2012 B1
8107397 Bagchi et al. Jan 2012 B1
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
D659836 Bensch et al. May 2012 S
8170887 Rosenfeld May 2012 B2
8175672 Parker May 2012 B2
8175895 Rosenfeld May 2012 B2
8180420 Diab et al. May 2012 B2
8182429 Mason May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8200308 Zhang et al. Jun 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8206312 Farquhar Jun 2012 B2
8214007 Baker et al. Jul 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8235907 Wilk et al. Aug 2012 B2
8239780 Manetta et al. Aug 2012 B2
8241213 Lynn et al. Aug 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8249815 Taylor Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8294588 Fisher et al. Oct 2012 B2
8294716 Lord et al. Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8311747 Taylor Nov 2012 B2
8311748 Taylor et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
8315812 Taylor Nov 2012 B2
8315813 Taylor et al. Nov 2012 B2
8315814 Taylor et al. Nov 2012 B2
8321150 Taylor Nov 2012 B2
RE43860 Parker Dec 2012 E
8326649 Rosenfeld Dec 2012 B2
8328793 Birkenbach et al. Dec 2012 B2
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8360936 Dibenedetto et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
D679018 Fullerton et al. Mar 2013 S
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8401874 Rosenfeld Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellot et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489167 Buxton et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8506480 Banet et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8514086 Harper et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8549600 Shedrinsky Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8565847 Buxton et al. Oct 2013 B2
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8578082 Medina et al. Nov 2013 B2
8579813 Causey, III et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8588924 Dion Nov 2013 B2
8597287 Benamou et al. Dec 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8600777 Schoenberg Dec 2013 B2
8606342 Diab Dec 2013 B2
8620678 Gotlib Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690771 Wekell et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8753274 Ziv et al. Jun 2014 B2
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8758020 Burdea et al. Jun 2014 B2
8761850 Lamego Jun 2014 B2
D709846 Oswaks Jul 2014 S
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8792950 Larsen et al. Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8818477 Soller Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8866620 Amir Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8873035 Yang et al. Oct 2014 B2
8878888 Rosenfeld Nov 2014 B2
8882666 Goldberg et al. Nov 2014 B1
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8907287 Vanderpohl Dec 2014 B2
8909310 Lamego et al. Dec 2014 B2
8909330 McCombie et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8951248 Messerly et al. Feb 2015 B2
8956292 Wekell et al. Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9057689 Soller Jun 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095291 Soller Aug 2015 B2
9095316 Welch et al. Aug 2015 B2
9104789 Gross et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9125578 Grunwald Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
D745167 Canas et al. Dec 2015 S
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9262586 Steiger et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-Ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9414784 Berme et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9529762 Gisler et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al-Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali et al. Dec 2017 B2
9848807 Lamego Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010031 Liu et al. Jul 2018 B1
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10123729 Dyell et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Al-Ali et al. Jan 2019 B1
10188348 Kiani et al. Jan 2019 B2
RE47218 Ali-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
10219706 Al-Ali Mar 2019 B2
10219746 McHale et al. Mar 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10226576 Kiani Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
10231676 Al-Ali et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10251585 Al-Ali et al. Apr 2019 B2
10251586 Lamego Apr 2019 B2
10255994 Sampath et al. Apr 2019 B2
10258265 Poeze et al. Apr 2019 B1
10258266 Poeze et al. Apr 2019 B1
10271748 Al-Ali Apr 2019 B2
10278626 Schurman et al. May 2019 B2
10278648 Al-Ali et al. May 2019 B2
10279247 Kiani May 2019 B2
10292628 Poeze et al. May 2019 B1
10292657 Abdul-Hafiz et al. May 2019 B2
10292664 Al-Ali May 2019 B2
10299708 Poeze et al. May 2019 B1
10299709 Perea et al. May 2019 B2
10299720 Brown et al. May 2019 B2
10305775 Lamego et al. May 2019 B2
10307111 Muhsin et al. Jun 2019 B2
10325681 Sampath et al. Jun 2019 B2
10327337 Triman et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10335033 Al-Ali Jul 2019 B2
10335068 Poeze et al. Jul 2019 B2
10335072 Al-Ali et al. Jul 2019 B2
10342470 Al-Ali et al. Jul 2019 B2
10342487 Al-Ali et al. Jul 2019 B2
10342497 Al-Ali et al. Jul 2019 B2
10349895 Telfort et al. Jul 2019 B2
10349898 Al-Ali et al. Jul 2019 B2
10354504 Kiani et al. Jul 2019 B2
10357206 Weber et al. Jul 2019 B2
10357209 Al-Ali Jul 2019 B2
10366787 Sampath et al. Jul 2019 B2
10368787 Reichgott et al. Aug 2019 B2
10376190 Poeze et al. Aug 2019 B1
10376191 Poeze et al. Aug 2019 B1
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
10398320 Kiani et al. Sep 2019 B2
10405804 Al-Ali et al. Sep 2019 B2
10413666 Al-Ali et al. Sep 2019 B2
10420493 Al-Ali et al. Sep 2019 B2
D864120 Forrest et al. Oct 2019 S
10433776 Al-Ali Oct 2019 B2
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10512436 Muhsin et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Sherim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf et al. Dec 2020 B2
10869602 Al-Ali Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
10912524 Al-Ali et al. Feb 2021 B2
10918281 Al-Ali et al. Feb 2021 B2
10925550 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10943450 Kiani et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11083397 Al-Ali et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
20010011355 Kawai Aug 2001 A1
20010028674 Edlis et al. Oct 2001 A1
20010031922 Weng et al. Oct 2001 A1
20010034477 Mansfield et al. Oct 2001 A1
20010039199 Shinzaki Nov 2001 A1
20010039483 Brand et al. Nov 2001 A1
20010046366 Susskind Nov 2001 A1
20010046862 Coppinger et al. Nov 2001 A1
20010055978 Herrod et al. Dec 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020032386 Sackner et al. Mar 2002 A1
20020038392 De La Huerga Mar 2002 A1
20020045836 Alkawwas Apr 2002 A1
20020052311 Solomon et al. May 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020063690 Chung et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20020140675 Ali et al. Oct 2002 A1
20020165462 Westbrook et al. Nov 2002 A1
20020177758 Schoenberg Nov 2002 A1
20020198445 Dominguez et al. Dec 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030027326 Ulmsten et al. Feb 2003 A1
20030052787 Zerhusen et al. Mar 2003 A1
20030058838 Wengrovitz Mar 2003 A1
20030083113 Chua et al. May 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030154108 Fletcher-Haynes et al. Aug 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030158466 Lynn et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20030216670 Beggs Nov 2003 A1
20040009787 Oh et al. Jan 2004 A1
20040013647 Solomon et al. Jan 2004 A1
20040029619 Liang et al. Feb 2004 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20040122787 Avinash et al. Jun 2004 A1
20040126007 Ziel et al. Jul 2004 A1
20040139571 Chang et al. Jul 2004 A1
20040147818 Levy et al. Jul 2004 A1
20040186357 Soderberg et al. Sep 2004 A1
20040230118 Shehada et al. Nov 2004 A1
20040230132 Shehada et al. Nov 2004 A1
20040230179 Shehada et al. Nov 2004 A1
20040243017 Causevic Dec 2004 A1
20040249291 Honda et al. Dec 2004 A1
20040249670 Noguchi et al. Dec 2004 A1
20040254431 Shehada et al. Dec 2004 A1
20040254432 Shehada et al. Dec 2004 A1
20040267103 Li et al. Dec 2004 A1
20050020918 Wilk et al. Jan 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050055276 Kiani et al. Mar 2005 A1
20050080336 Byrd et al. Apr 2005 A1
20050096542 Weng et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050124864 Mack et al. Jun 2005 A1
20050125256 Schoenberg Jun 2005 A1
20050164933 Tymianski et al. Jul 2005 A1
20050171444 Ono et al. Aug 2005 A1
20050188083 Biondi et al. Aug 2005 A1
20050191294 Arap et al. Sep 2005 A1
20050228297 Banet et al. Oct 2005 A1
20050234317 Kiani Oct 2005 A1
20050261598 Banet et al. Nov 2005 A1
20050268401 Dixon et al. Dec 2005 A1
20050277872 Colby, Jr. et al. Dec 2005 A1
20060047214 Fraden Mar 2006 A1
20060047215 Barnes et al. Mar 2006 A1
20060049936 Collins, Jr. et al. Mar 2006 A1
20060052718 Parnagian Mar 2006 A1
20060058647 Strommer et al. Mar 2006 A1
20060073719 Kiani Apr 2006 A1
20060087606 Munyon Apr 2006 A1
20060089543 Kim et al. Apr 2006 A1
20060094936 Russ May 2006 A1
20060122517 Banet et al. Jun 2006 A1
20060149393 Calderon Jul 2006 A1
20060154642 Scannell, Jr. Jul 2006 A1
20060155175 Ogino et al. Jul 2006 A1
20060161054 Reuss et al. Jul 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20060217684 Shehada et al. Sep 2006 A1
20060217685 Shehada et al. Sep 2006 A1
20060224413 Kim et al. Oct 2006 A1
20060235300 Weng et al. Oct 2006 A1
20060252418 Quinn et al. Nov 2006 A1
20060253042 Stahmann et al. Nov 2006 A1
20070000490 DeVries et al. Jan 2007 A1
20070002533 Kogan et al. Jan 2007 A1
20070021675 Childre et al. Jan 2007 A1
20070027368 Collins et al. Feb 2007 A1
20070030116 Feher Feb 2007 A1
20070032733 Burton et al. Feb 2007 A1
20070055116 Clark et al. Mar 2007 A1
20070055544 Jung et al. Mar 2007 A1
20070060798 Krupnik et al. Mar 2007 A1
20070073116 Kiani et al. Mar 2007 A1
20070079012 Walker Apr 2007 A1
20070088406 Bennett et al. Apr 2007 A1
20070096897 Weiner May 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070118399 Avinash et al. May 2007 A1
20070118853 Kreitzer et al. May 2007 A1
20070140475 Kurtock et al. Jun 2007 A1
20070156033 Causey et al. Jul 2007 A1
20070157285 Frank et al. Jul 2007 A1
20070159332 Koblasz Jul 2007 A1
20070163589 DeVries et al. Jul 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070185390 Perkins et al. Aug 2007 A1
20070197881 Wolf et al. Aug 2007 A1
20070232941 Rabinovich Oct 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070244724 Pendergast et al. Oct 2007 A1
20070254593 Jollota et al. Nov 2007 A1
20070255114 Ackermann et al. Nov 2007 A1
20070255116 Mehta et al. Nov 2007 A1
20070255250 Moberg et al. Nov 2007 A1
20070282212 Sierra et al. Dec 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20070293906 Cowan et al. Dec 2007 A1
20080000479 Elaz et al. Jan 2008 A1
20080003200 Arap et al. Jan 2008 A1
20080020799 Itamiya et al. Jan 2008 A1
20080021854 Jung et al. Jan 2008 A1
20080033661 Syroid et al. Feb 2008 A1
20080039701 Ali et al. Feb 2008 A1
20080053438 DeVries et al. Mar 2008 A1
20080058657 Schwartz et al. Mar 2008 A1
20080064965 Jay et al. Mar 2008 A1
20080076972 Dorogusker et al. Mar 2008 A1
20080090626 Griffin et al. Apr 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091090 Guillory et al. Apr 2008 A1
20080091471 Michon et al. Apr 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080097167 Yudkovitch et al. Apr 2008 A1
20080099366 Niemiec et al. May 2008 A1
20080108884 Kiani May 2008 A1
20080119412 Tymianski et al. May 2008 A1
20080138278 Scherz et al. Jun 2008 A1
20080169922 Issokson Jul 2008 A1
20080171919 Stivoric et al. Jul 2008 A1
20080188795 Katz et al. Aug 2008 A1
20080194918 Kulik et al. Aug 2008 A1
20080198822 Magnusson et al. Aug 2008 A1
20080208912 Garibaldi Aug 2008 A1
20080215627 Higgins et al. Sep 2008 A1
20080221396 Garces et al. Sep 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20080228045 Gao et al. Sep 2008 A1
20080228077 Wilk et al. Sep 2008 A1
20080275309 Stivoric et al. Nov 2008 A1
20080281167 Soderberg et al. Nov 2008 A1
20080281168 Gibson et al. Nov 2008 A1
20080281181 Manzione et al. Nov 2008 A1
20080287751 Stivoric et al. Nov 2008 A1
20080292172 Assmann et al. Nov 2008 A1
20080300020 Nishizawa et al. Dec 2008 A1
20080319275 Chiu et al. Dec 2008 A1
20080319354 Bell et al. Dec 2008 A1
20090005651 Ward et al. Jan 2009 A1
20090018808 Bronstein et al. Jan 2009 A1
20090024008 Brunner et al. Jan 2009 A1
20090036759 Ault et al. Feb 2009 A1
20090043172 Zagorchev et al. Feb 2009 A1
20090052623 Tome et al. Feb 2009 A1
20090054735 Higgins et al. Feb 2009 A1
20090062682 Bland et al. Mar 2009 A1
20090069642 Gao et al. Mar 2009 A1
20090081951 Erdmann et al. Mar 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090099480 Saigo et al. Apr 2009 A1
20090119330 Sampath et al. May 2009 A1
20090119843 Rodgers et al. May 2009 A1
20090124867 Hirsch et al. May 2009 A1
20090131759 Sims et al. May 2009 A1
20090143832 Saba Jun 2009 A1
20090154432 Hassan et al. Jun 2009 A1
20090157058 Ferren et al. Jun 2009 A1
20090171170 Li et al. Jul 2009 A1
20090171225 Gadodia et al. Jul 2009 A1
20090177090 Grunwald et al. Jul 2009 A1
20090182287 Kassab Jul 2009 A1
20090221887 Mannheimer et al. Sep 2009 A1
20090226372 Ruoslahti et al. Sep 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090264778 Markowitz et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20090281462 Heliot et al. Nov 2009 A1
20090299157 Telfort et al. Dec 2009 A1
20090309755 Williamson et al. Dec 2009 A1
20090322540 Richardson et al. Dec 2009 A1
20090326386 Sethi et al. Dec 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100030094 Lundback Feb 2010 A1
20100036209 Ferren et al. Feb 2010 A1
20100060747 Woodman Mar 2010 A1
20100069725 Al-Ali Mar 2010 A1
20100081895 Zand Apr 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100114254 Kornet May 2010 A1
20100125217 Kuo et al. May 2010 A1
20100144627 Vitek et al. Jun 2010 A1
20100145146 Melder Jun 2010 A1
20100177100 Carnes et al. Jul 2010 A1
20100182518 Kirmse et al. Jul 2010 A1
20100185101 Sakai et al. Jul 2010 A1
20100198622 Gajic et al. Aug 2010 A1
20100210958 Manwaring et al. Aug 2010 A1
20100234706 Gilland Sep 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100240945 Bikko Sep 2010 A1
20100241115 Benamou et al. Sep 2010 A1
20100249540 Lisogurski Sep 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20100298651 Moon et al. Nov 2010 A1
20100298657 McCombie et al. Nov 2010 A1
20100298659 McCombie et al. Nov 2010 A1
20100298661 McCombie et al. Nov 2010 A1
20100298742 Perlman et al. Nov 2010 A1
20100305412 Darrah et al. Dec 2010 A1
20100312103 Gorek et al. Dec 2010 A1
20100317936 Al-Ali et al. Dec 2010 A1
20100317951 Rutkowski et al. Dec 2010 A1
20110015533 Cox et al. Jan 2011 A1
20110021930 Mazzeo et al. Jan 2011 A1
20110023130 Gudgel et al. Jan 2011 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110046495 Osypka Feb 2011 A1
20110066051 Moon et al. Mar 2011 A1
20110077473 Lisogurski Mar 2011 A1
20110077487 Buxton et al. Mar 2011 A1
20110078596 Rawlins et al. Mar 2011 A1
20110080294 Tanishima et al. Apr 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110084850 Jiang et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110087083 Poeze et al. Apr 2011 A1
20110087084 Jeong et al. Apr 2011 A1
20110087117 Tremper et al. Apr 2011 A1
20110087756 Biondi Apr 2011 A1
20110098583 Pandia et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110105956 Hirth May 2011 A1
20110118561 Tari et al. May 2011 A1
20110118573 Mckenna May 2011 A1
20110118616 Vajdic et al. May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110148622 Judy et al. Jun 2011 A1
20110149871 Liu et al. Jun 2011 A1
20110152629 Eaton et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110172967 Al-Ali et al. Jul 2011 A1
20110184252 Archer et al. Jul 2011 A1
20110184253 Archer et al. Jul 2011 A1
20110193704 Harper Aug 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110208018 Kiani Aug 2011 A1
20110208073 Matsukawa et al. Aug 2011 A1
20110209915 Telfort et al. Sep 2011 A1
20110212090 Pedersen et al. Sep 2011 A1
20110212746 Sarkar et al. Sep 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110227739 Gilham et al. Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237911 Lamego et al. Sep 2011 A1
20110237969 Eckerbom et al. Sep 2011 A1
20110257544 Kaasinen et al. Oct 2011 A1
20110257554 Banet et al. Oct 2011 A1
20110263950 Larson et al. Oct 2011 A1
20110288383 Diab Nov 2011 A1
20110295094 Doyle et al. Dec 2011 A1
20110301444 Al-Ali Dec 2011 A1
20110307274 Thompson et al. Dec 2011 A1
20120004579 Luo et al. Jan 2012 A1
20120029300 Paquet Feb 2012 A1
20120029879 Sing et al. Feb 2012 A1
20120041316 Al-Ali et al. Feb 2012 A1
20120046557 Kiani Feb 2012 A1
20120059230 Teller et al. Mar 2012 A1
20120059267 Lamego et al. Mar 2012 A1
20120071771 Behar Mar 2012 A1
20120075464 Derenne et al. Mar 2012 A1
20120088984 Al-Ali et al. Apr 2012 A1
20120101353 Reggiardo et al. Apr 2012 A1
20120102455 Ambat et al. Apr 2012 A1
20120116175 Al-Ali et al. May 2012 A1
20120123231 O'Reilly May 2012 A1
20120123799 Nolen et al. May 2012 A1
20120127103 Qualey et al. May 2012 A1
20120136221 Killen et al. May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120179006 Jansen et al. Jul 2012 A1
20120184120 Basta et al. Jul 2012 A1
20120197619 Namer Yelin et al. Aug 2012 A1
20120198341 Pekarske et al. Aug 2012 A1
20120203078 Sze et al. Aug 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120221634 Treu et al. Aug 2012 A1
20120224694 Lu et al. Sep 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120226160 Kudoh Sep 2012 A1
20120227739 Kiani Sep 2012 A1
20120239434 Breslow et al. Sep 2012 A1
20120242501 Tran et al. Sep 2012 A1
20120265039 Kiani Oct 2012 A1
20120275392 Haddad Nov 2012 A1
20120282583 Thaler et al. Nov 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120284053 Rosenfeld Nov 2012 A1
20120286955 Welch et al. Nov 2012 A1
20120294801 Scherz et al. Nov 2012 A1
20120296178 Lamego et al. Nov 2012 A1
20120302894 Diab et al. Nov 2012 A1
20120303476 Krzyzanowski et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20120330112 Lamego et al. Dec 2012 A1
20130006131 Narayan et al. Jan 2013 A1
20130006151 Main et al. Jan 2013 A1
20130023775 Lamego et al. Jan 2013 A1
20130035603 Jarausch et al. Feb 2013 A1
20130041591 Lamego Feb 2013 A1
20130046197 Dlugos, Jr. et al. Feb 2013 A1
20130046204 Lamego et al. Feb 2013 A1
20130060108 Schurman et al. Mar 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130079610 Al-Ali Mar 2013 A1
20130092805 Funk et al. Apr 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130109929 Menzel May 2013 A1
20130109935 Al-Ali et al. May 2013 A1
20130123616 Merritt et al. May 2013 A1
20130162433 Muhsin et al. Jun 2013 A1
20130178718 Tran et al. Jul 2013 A1
20130178749 Lamego Jul 2013 A1
20130190581 Al-Ali et al. Jul 2013 A1
20130191513 Kamen et al. Jul 2013 A1
20130197328 Diab et al. Aug 2013 A1
20130197364 Han Aug 2013 A1
20130211214 Olsen Aug 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130261494 Bloom et al. Oct 2013 A1
20130267793 Meador et al. Oct 2013 A1
20130267804 Al-Ali Oct 2013 A1
20130274571 Diab et al. Oct 2013 A1
20130274572 Al-Ali et al. Oct 2013 A1
20130279109 Lindblad et al. Oct 2013 A1
20130286853 Shi et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130317327 Al-Ali et al. Nov 2013 A1
20130317370 Dalvi et al. Nov 2013 A1
20130317393 Weiss et al. Nov 2013 A1
20130324804 McKeown et al. Dec 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130324817 Diab Dec 2013 A1
20130331054 Kodali Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20130331670 Kiani Dec 2013 A1
20130332011 Ziarno Dec 2013 A1
20130338461 Lamego et al. Dec 2013 A1
20130340176 Stevens et al. Dec 2013 A1
20130344872 Nukala et al. Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140022081 Ribble et al. Jan 2014 A1
20140025306 Weber et al. Jan 2014 A1
20140031650 Weber et al. Jan 2014 A1
20140034353 Al-Ali et al. Feb 2014 A1
20140046674 Rosenfeld Feb 2014 A1
20140051952 Reichgott et al. Feb 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140051954 Al-Ali et al. Feb 2014 A1
20140058230 Abdul-Hafiz et al. Feb 2014 A1
20140066783 Kiani et al. Mar 2014 A1
20140073167 Al-Ali et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140081097 Al-Ali et al. Mar 2014 A1
20140081100 Muhsin et al. Mar 2014 A1
20140081175 Telfort Mar 2014 A1
20140094667 Schurman et al. Apr 2014 A1
20140100434 Diab et al. Apr 2014 A1
20140114199 Lamego et al. Apr 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140121483 Kiani May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140128696 Al-Ali May 2014 A1
20140128699 Al-Ali et al. May 2014 A1
20140129702 Lamego et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140142399 Al-Ali et al. May 2014 A1
20140142401 Al-Ali et al. May 2014 A1
20140142402 Al-Ali et al. May 2014 A1
20140152673 Lynn et al. Jun 2014 A1
20140155712 Lamego et al. Jun 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140188516 Kamen Jul 2014 A1
20140194709 Al-Ali et al. Jul 2014 A1
20140194711 Al-Ali Jul 2014 A1
20140194766 Al-Ali et al. Jul 2014 A1
20140200422 Weber et al. Jul 2014 A1
20140206963 Al-Ali Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140243627 Diab et al. Aug 2014 A1
20140257057 Reis Cunha et al. Sep 2014 A1
20140266787 Tran Sep 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140275881 Lamego et al. Sep 2014 A1
20140276115 Dalvi et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140296664 Bruinsma et al. Oct 2014 A1
20140303520 Telfort et al. Oct 2014 A1
20140309506 Lamego et al. Oct 2014 A1
20140309559 Telfort et al. Oct 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140333440 Kiani Nov 2014 A1
20140336481 Shakespeare et al. Nov 2014 A1
20140343436 Kiani Nov 2014 A1
20140343889 Ben Shalom et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20140371548 Al-Ali et al. Dec 2014 A1
20140371632 Al-Ali et al. Dec 2014 A1
20140378784 Kiani et al. Dec 2014 A1
20150001302 Gelay et al. Jan 2015 A1
20150005600 Blank et al. Jan 2015 A1
20150006089 Pagels Jan 2015 A1
20150007075 Choi et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150012231 Poeze et al. Jan 2015 A1
20150018650 Al-Ali et al. Jan 2015 A1
20150025406 Al-Ali Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150045637 Dalvi Feb 2015 A1
20150051462 Olsen Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150094618 Russell et al. Apr 2015 A1
20150097701 Al-Ali et al. Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150099951 Al-Ali et al. Apr 2015 A1
20150099955 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150116076 Al-Ali et al. Apr 2015 A1
20150126830 Schurman et al. May 2015 A1
20150133755 Smith et al. May 2015 A1
20150140863 Al-Ali et al. May 2015 A1
20150141781 Weber et al. May 2015 A1
20150165312 Kiani Jun 2015 A1
20150196237 Lamego Jul 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150201874 Diab Jul 2015 A1
20150208966 Al-Ali Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150230755 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150264506 Balabanis et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150358314 Glik et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366472 Kiani Dec 2015 A1
20150366507 Blank et al. Dec 2015 A1
20150374298 Al-Ali et al. Dec 2015 A1
20150380875 Coverston et al. Dec 2015 A1
20160000362 Diab et al. Jan 2016 A1
20160007930 Weber et al. Jan 2016 A1
20160029932 Al-Ali Feb 2016 A1
20160029933 Al-Ali et al. Feb 2016 A1
20160045118 Kiani Feb 2016 A1
20160051205 Al-Ali et al. Feb 2016 A1
20160058338 Schurman et al. Mar 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066823 Al-Ali et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160066879 Telfort et al. Mar 2016 A1
20160072429 Kiani et al. Mar 2016 A1
20160073967 Lamego et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160113527 Al-Ali Apr 2016 A1
20160143548 Al-Ali May 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160166188 Bruinsma et al. Jun 2016 A1
20160166210 Al-Ali Jun 2016 A1
20160192869 Kiani et al. Jul 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160216117 Bandyopadhyay et al. Jul 2016 A9
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Triman et al. Aug 2016 A1
20160246781 Cabot Aug 2016 A1
20160270717 Luna et al. Sep 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160271445 Kolloff Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324486 Al-Ali et al. Nov 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055851 Al-Ali et al. Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali et al. Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311851 Schurman et al. Nov 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325728 Al-Ali et al. Nov 2017 A1
20170332976 Al-Ali et al. Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani et al. Dec 2017 A1
20170367632 Al-Ali et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180013562 Haider et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180055385 Al-Ali Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180069776 Lamego et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180110478 Al-Ali Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180125445 Telfort et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180132770 Lamego May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153447 Al-Ali et al. Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180161499 Al-Ali et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180174679 Sampath et al. Jun 2018 A1
20180174680 Sampath et al. Jun 2018 A1
20180182484 Sampath et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192924 Al-Ali Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180192955 Al-Ali et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214031 Kiani et al. Aug 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180216370 Ishiguro et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242921 Muhsin et al. Aug 2018 A1
20180242923 Al-Ali et al. Aug 2018 A1
20180242924 Barker et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249933 Schurman et al. Sep 2018 A1
20180253947 Muhsin et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289325 Poeze et al. Oct 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin Nov 2018 A1
20180317841 Novak, Jr. Nov 2018 A1
20180333055 Lamego et al. Nov 2018 A1
20180333087 Al-Ali Nov 2018 A1
20190000317 Muhsin et al. Jan 2019 A1
20190000362 Kiani et al. Jan 2019 A1
20190015023 Monfre Jan 2019 A1
20190021638 Al-Ali et al. Jan 2019 A1
20190029574 Schurman et al. Jan 2019 A1
20190029578 Al-Ali et al. Jan 2019 A1
20190038143 Al-Ali Feb 2019 A1
20190053286 Cho et al. Feb 2019 A1
20190058280 Al-Ali et al. Feb 2019 A1
20190058281 Al-Ali et al. Feb 2019 A1
20190069813 Al-Ali Mar 2019 A1
20190069814 Al-Ali Mar 2019 A1
20190076028 Al-Ali et al. Mar 2019 A1
20190082979 Al-Ali et al. Mar 2019 A1
20190090748 Al-Ali Mar 2019 A1
20190090760 Kinast et al. Mar 2019 A1
20190090764 Al-Ali Mar 2019 A1
20190104973 Poeze et al. Apr 2019 A1
20190110719 Poeze et al. Apr 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190117139 Al-Ali et al. Apr 2019 A1
20190117140 Al-Ali et al. Apr 2019 A1
20190117141 Al-Ali Apr 2019 A1
20190117930 Al-Ali Apr 2019 A1
20190122763 Sampath et al. Apr 2019 A1
20190133525 Al-Ali et al. May 2019 A1
20190142283 Lamego et al. May 2019 A1
20190142344 Telfort et al. May 2019 A1
20190150856 Kiani et al. May 2019 A1
20190167161 Al-Ali et al. Jun 2019 A1
20190175019 Al-Ali et al. Jun 2019 A1
20190192076 McHale et al. Jun 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190201623 Kiani Jul 2019 A1
20190209025 Al-Ali Jul 2019 A1
20190214778 Scruggs et al. Jul 2019 A1
20190216319 Poeze et al. Jul 2019 A1
20190216379 Al-Ali et al. Jul 2019 A1
20190221966 Kiani et al. Jul 2019 A1
20190223804 Blank et al. Jul 2019 A1
20190231199 Al-Ali et al. Aug 2019 A1
20190231241 Al-Ali et al. Aug 2019 A1
20190231270 Abdul-Hafiz et al. Aug 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190239824 Muhsin et al. Aug 2019 A1
20190254578 Lamego Aug 2019 A1
20190261857 Al-Ali Aug 2019 A1
20190269370 Al-Ali et al. Sep 2019 A1
20190274606 Kiani et al. Sep 2019 A1
20190274627 Al-Ali et al. Sep 2019 A1
20190274635 Al-Ali et al. Sep 2019 A1
20190290136 Dalvi et al. Sep 2019 A1
20190298270 Al-Ali et al. Oct 2019 A1
20190304601 Sampath et al. Oct 2019 A1
20190304605 Al-Ali Oct 2019 A1
20190307377 Perea et al. Oct 2019 A1
20190320906 Olsen Oct 2019 A1
20190320959 Al-Ali Oct 2019 A1
20190320988 Ahmed et al. Oct 2019 A1
20190325722 Kiani Oct 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374173 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
Foreign Referenced Citations (57)
Number Date Country
0 735 499 Oct 1996 EP
1 110 503 Jun 2001 EP
2 144 181 Jan 2010 EP
2 335 569 Jun 2011 EP
02-050694 Feb 1990 JP
09-187428 Jul 1997 JP
10-336064 Dec 1998 JP
2000-312668 Nov 2000 JP
2002-513602 May 2002 JP
2002-165764 Jun 2002 JP
2002-172096 Jun 2002 JP
2002-233512 Aug 2002 JP
2002-535026 Oct 2002 JP
2002-542493 Dec 2002 JP
2004-513732 May 2004 JP
2004-321603 Nov 2004 JP
2005-038417 Feb 2005 JP
2005-065721 Mar 2005 JP
2008-067931 Mar 2005 JP
2005-218036 Aug 2005 JP
2005-295375 Oct 2005 JP
2005-532849 Nov 2005 JP
2007-021213 Feb 2007 JP
2007-095365 Apr 2007 JP
2007-174051 Jul 2007 JP
2008-080136 Apr 2008 JP
2008-519635 Jun 2008 JP
2008-541045 Nov 2008 JP
2009-017959 Jan 2009 JP
2009-207836 Sep 2009 JP
2010-500051 Jan 2010 JP
2010-503134 Jan 2010 JP
2010-093543 Apr 2010 JP
2010-524510 Jul 2010 JP
2011-519607 Jul 2011 JP
2011-519684 Jul 2011 JP
2011-152261 Aug 2011 JP
2012-519547 Aug 2012 JP
2008-0091089 Oct 2008 KR
WO 98029790 Jul 1998 WO
WO 99013766 Mar 1999 WO
WO 99056613 Nov 1999 WO
WO 00063713 Oct 2000 WO
WO 2004056266 Jul 2004 WO
WO 2004059551 Jul 2004 WO
WO 2006051461 May 2006 WO
WO 2007143626 Dec 2007 WO
WO 2009134724 Nov 2009 WO
WO 2010054409 May 2010 WO
WO 2011001302 Jan 2011 WO
WO 2011002904 Jan 2011 WO
WO 2011021948 Feb 2011 WO
WO 2011025549 Mar 2011 WO
WO 2011041017 Apr 2011 WO
WO 2013056160 Apr 2013 WO
WO 2013119982 Aug 2013 WO
WO 2015054665 Apr 2015 WO
Non-Patent Literature Citations (32)
Entry
US 8,845,543 B2, 09/2014, Diab et al. (withdrawn)
U.S. Appl. No. 14/815,232, Physiological Measurement Communications Adapter, filed Jul. 31, 2015.
U.S. Appl. No. 15/878,172, Arm Mountable Portable Patient Monitor, filed Jan. 23, 2018.
U.S. Appl. No. 16/411,689, Physiological Measurement Device, filed May 14, 2019.
U.S. Appl. No. 14/464,560, Modular Patient Monitor, filed Aug. 20, 2014.
U.S. Appl. No. 12/973,392, Modular Patient Monitor, filed Dec. 20, 2010.
U.S. Appl. No. 16/432,240, Modular Patient Monitor, filed Jun. 5, 2019.
U.S. Appl. No. 16/182,427, Wireless Patient Monitoring Device, filed Nov. 6, 2018.
U.S. Appl. No. 16/182,457, Wireless Patient Monitoring Device, filed Nov. 6, 2018.
U.S. Appl. No. 15/968,392, Medical Monitoring Hub, filed May 1, 2018.
U.S. Appl. No. 15/214,276, Medical Monitoring Hub, filed Jul. 19, 2016.
U.S. Appl. No. 15/919,792, System for Displaying Medical Monitoring Data, filed Mar. 3, 2018.
Capuano et al., “Remote Telemetry—New Twists for Old Technology”, Nursing Management, Jul. 1995, vol. 26, No. 7, pp. 26-32.
Elmer-Dewitt, Philip, “Apple's iWatch: The killer apps may be in hospitals, not health clubs”, Fortune.com, Feb. 3, 2014, http://fortune.com/2014/02/03/apples-iwatch-the-killer-apps-may-be-in-hospitals-not-health-clubs/, 4 pages.
Grundy et al., “Telemedicine in Critical Care: An Experiment in Health Care Delivery”, JACEP, Oct. 1977, vol. 6, No. 10, pp. 439-444.
Grundy et al., “Telemedicine in Critical Care: Problems in Design, Implementation and Assessment”, Jul. 1982, vol. 10, No. 7, pp. 471-475.
International Preliminary Report on Patentability & Written Opinion in PCT Application No. PCT/US2013/025384, dated Aug. 21, 2014.
International Preliminary Report on Patentability & Written Opinion in PCT Application No. PCT/US2014/060177, dated Apr. 21, 2016.
International Preliminary Reporton Patentability in PCT Application No. PCT/US2012/060109, dated Apr. 24, 2014.
International Search Report & Written Opinion in PCT Application No. PCT/US2012/060109, dated Jun. 5, 2013.
International Search Report & Written Opinion in PCT Application No. PCT/US2013/025384, dated Aug. 6, 2013.
International Search Report & Written Opinion in PCT Application No. PCT/US2014/060177, dated Dec. 19, 2014.
Rysavy, Peter, “Making the Call with Two-Way Paging”, Network Computing, Published Jan. 15, 1997, www.rysavy.com/Articles/twoway.htm, pp. 5.
Wachter et al., “The Employment of an Iterative Design Process to Develop a Pulmonary Graphical Display”, Journal of the American Medical Informatics Association, vol. 10, No. 4, Jul./Aug. 2003, pp. 363-372.
U.S. Appl. No. 12/840,209, Wireless Patient Monitoring System, filed Jul. 20, 2010.
U.S. Appl. No. 13/010,653, Wireless Patient Monitoring System, filed Jan. 20, 2011.
U.S. Appl. No. 17/141,732, Modular Patient Monitor, filed Jan. 5, 2021.
U.S. Appl. No. 17/138,595, Wireless Patient Monitoring System, filed Dec. 30, 2020.
U.S. Appl. No. 17/126,567, Modular Patient Monitor, filed Dec. 18, 2020.
Liu, Chun-Hung, “A Source Coding and Modulation Method for Power Saving and Interference Reduction in DS-CDMA Sensor Network Systems”, Proceedings of the American Control Conference Anchorage, AK May 8-10, 2002, pp. 3003-3008.
U.S. Appl. No. 17/305,155, Wireless Device Patient Monitoring, filed Jun. 30, 2021.
Hudson, T.L., “Maximizing a Transport Platform Through Computer Technology”, Computers, Informatics, Nursing: Mar.-Apr. 2003, vol. 21, No. 2, pp. 72-79.
Related Publications (1)
Number Date Country
20200060629 A1 Feb 2020 US
Provisional Applications (5)
Number Date Country
61889972 Oct 2013 US
61703773 Sep 2012 US
61597120 Feb 2012 US
61547577 Oct 2011 US
61547017 Oct 2011 US
Continuations (2)
Number Date Country
Parent 15919792 Mar 2018 US
Child 16670051 US
Parent 14512237 Oct 2014 US
Child 15919792 US
Continuation in Parts (1)
Number Date Country
Parent 13651167 Oct 2012 US
Child 14512237 US