The present invention relates generally to agricultural implements, and in particular, to a chemical concentration detection system for use with agricultural field sprayers.
Field sprayers, as known in the art, are typically attached to, or towed by, an agricultural implement, such as a tractor or other vehicle, or are a dedicated self-propelled sprayer vehicle. Such sprayers generally include a fluid holding tank supported by a frame. The fluid holding tank typically stores a crop protection fluid, such as pesticides or liquid fertilizer, which often consists of a carrier fluid such as water) mixed with a chemical at a predetermined concentration. The fluid holding tank, in turn, is fluidly coupled to a series of spray nozzles spaced apart from one another along booms extending outwardly from the frame. Accordingly, the crop protection fluid may be dispensed through the spray nozzles onto the farm field, preferably in an even distribution spray pattern, so that the fluid is applied consistently across the farm field.
When spraying or otherwise depositing fluids onto the field, it is important that the concentration of the chemical with respect to the carrier fluid be known and maintained. If there is too little chemical in the carrier fluid, then the resulting crop protection fluid might not provide the protection of the farm field desired. Conversely, if there is too much chemical in the carrier fluid, then the resulting crop protection fluid might harm the crops in the farm field,
What is needed is an improved system for spraying in which the concentration of the chemical with respect to the carrier fluid may be known and maintained, thereby achieving an effective level of protection for crops in the farm field.
The inventors have recognized that light transmission may be used to measure chemical concentrations of a crop protection fluid so that chemical concentrations may be determined and more effectively maintained during spray applications. A closed loop control system may be implemented to adjust the amount of chemical being metered based on the amount of light transmitted through the fluid such that an effective concentration may be continuously maintained without operator intervention.
A direct injection system may be used in which a carrier fluid (which may be water) from a first tank is mixed with a chemical fluid from a second tank in a mixing chamber of each nozzle body or some other point between the carrier fluid tank and the nozzle body. The chemical fluid being injected into the mixing chamber may be controlled, though not necessarily at a constant rate, and the carrier fluid may be varied for variable application rates, turn compensation or other reasons. Alternatively, the carrier fluid may be controlled, though not necessarily at a constant rate, and the chemical fluid being injected into the mixing chamber may be varied for variable application rates, turn compensation or other reasons. As a result, a chemical application rate may be controlled to a desired target, and a record of the amount of chemical applied (based on the concentration of the solution) may be known.
In one aspect, the absorbance, reflection, or refraction level of light emitted from a light emitting diode (LED) may be sensed by a corresponding photodiode by corresponding reduction in transmission intensity, The reduced transmission level may then be correlated to the concentration rate of the chemical, such as in a nozzle body pre chamber. In another aspect, reflectance sensors could be provided in which a transmitter and a receiver are adjacent to one another and a measurement of energy reflected by the liquid is obtained.
Specifically then, one aspect of the present invention provides a concentration detection system for use with an agricultural sprayer including: a spray nozzle assembly providing first and second inlets for receiving first and second fluids, respectively, a mixing chamber for mixing the first and second fluids to provide a mixed fluid, and an outlet for spraying the mixed fluid; a light source connected to the spray nozzle assembly; and a light sensitive receiver connected to the spray nozzle assembly, the light sensitive receiver being operable to generate an electrical signal indicating an amount of light received by the light sensitive receiver. The light source may transmit light through the mixed fluid in the spray nozzle assembly to the light sensitive receiver, and the light sensitive receiver may generate the electrical signal indicating the amount of light received.
A controller may be operable to receive the electrical signal. The controller may be configured to determine a concentration of at least one of the first and second fluids with respect to the mixed fluid according to the electrical signal.
A metering system may meter at least one of the first and second fluids to the spray nozzle assembly. The metering system may be in communication with the controller, and the controller may adjust the metering system based on the determined concentration in order to reach a target concentration in a closed loop system.
Other aspects, objects, features, and advantages of the invention will become apparent to those skilled in the art from the following detailed description and accompanying drawings. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
Preferred exemplary embodiments of the invention are illustrated in the accompanying drawings in which like reference numerals represent like parts throughout.
Referring generally to the drawings, and more particularly to
Primary distribution lines 30 are flow coupled between the primary fluid tank 16 and the spray nozzle assemblies 26. The primary fluid tank 16 may typically store a carrier fluid such as water. The primary distribution lines 30 may provide flow of the carrier fluid to the spray nozzle assemblies 26 directly or indirectly, such as via one or more charge pumps, accumulators, control valves, pressure relief valves, manifolds and/or supplemental distribution lines in the path as understood in the art for effecting various flow rates, pressures and control for sprayer configurations.
Secondary distribution lines, which could be provided as illustrated by reference numeral 32, may be flow coupled between one or more of the secondary fluid tanks 24 and the spray nozzle assemblies 26. The secondary fluid tanks 24 may typically store a chemical fluid, such as a liquid fertilizer, pesticide, herbicide, or the like. The secondary distribution lines 32 may provide flow of the chemical fluid to the spray nozzle assemblies 26 directly or indirectly, such as via one or more charge pumps, accumulators, control valves, pressure relief valves, headers, manifolds and/or supplemental distribution lines in the path as understood in the art for effecting various flow rates, pressures and control for sprayer configurations. Accordingly, the carrier fluid and the chemical fluid may be stored in different tanks and subsequently mixed at each of the spray nozzle assemblies 26 thereby providing improved distribution in the field. The secondary fluid tanks 24 are typically smaller than the primary fluid tank 16.
Referring now to
The nozzle body 40 includes a nozzle outlet 46 (orifice) for spraying a mixed fluid which will typically consist of a carrier fluid (such as water) mixed with a chemical fluid at some concentration. The nozzle body 40 may also include a nozzle body inlet 48 for receiving the carrier fluid. The carrier fluid may come from the primary fluid tank 16 via the primary distribution lines 30.
The mixing body 42 may include a mixing body inlet 50 for receiving the chemical fluid (such as a liquid fertilizer, pesticide, herbicide, or the like). The chemical fluid may come from either of the secondary fluid tanks 24 via the secondary distribution lines 32. Within the mixing body 42, a flow control mechanism (shown in
The control valve 44 operates to stop the mixed fluid from flowing to the nozzle outlet 46, or to allow the mixed fluid to flow to the nozzle outlet 46 for spraying. The control valve 44 could be a passive check valve, as shown in
Still referring to
The light sensitive receiver 54 may be any circuit element or device for receiving light in the mixing body and generating an electrical signal indicating an amount of light received by the light sensitive receiver 54. The light sensitive receiver 54 may preferably be a photodiode. In particular, the light sensitive receiver 54 may receive light from the light source 52 (passing through the mixed fluid) within the mixing body 42. First and second light sensitive receiver signals 60 and 62, respectively, may interface with other control systems or circuitry of the field spraying system 10 and may allow for sending an electrical signal indicating the amount of light received by the light sensitive receiver 54, biasing, and/or controlling the wavelength of light to which the light sensitive receiver 54 may be sensitive.
In sending the electrical signal indicating the amount of light received, one of the first and second light sensitive receiver signals 60 and 62, respectively, could be used to provide an analog voltage having a magnitude in proportion to the amount of light received by the light sensitive receiver 54, while the other of the first and second light sensitive receiver signals 60 and 62, respectively, could provide a reference level. In an alternative aspect, digital circuitry could be employed in the light sensitive receiver 54 so that the first and/or second light sensitive receiver signals 60 and/or 62, respectively, provide a digital representation of the magnitude of light received.
Referring now to
Also in this aspect, the control valve 74 is an actively controlled solenoid valve. Accordingly, mixed fluid is stopped from flowing or allowed to flow depending on a control signal provided, via wiring/interconnect 75, to a solenoid which controls the valve. The wiring/interconnect 75 may interface with other control systems or circuitry of the field spraying system 10 for control of spraying applications in the field. The control valve 74 may be coupled to the mixing body 42, for example, via mixing body threading 53. It will be appreciated that with this configuration, if desired, the mixing body 42 could be removed, and the control valve 74 coupled directly to the nozzle body 70, via nozzle body threading 79, to revert to a de-featured implementation.
Also in this aspect, the mixing body 42 of
Within the mixing body 42, a flow control mechanism 90 may be provided for directing fluid flow within the spray nozzle assembly 76. With additional reference to 4A, fluid flow is depicted by way of arrows reference characters. In particular, arrows with the reference character “A” denote flow of the carrier fluid; arrows with the reference character “B” denote flow of the chemical fluid; and arrows with the reference character “C” denote flow of the mixed fluid.
In operation, the carrier fluid A is received via the first and second nozzle body inlets 78a and 78b, respectively, of the nozzle body 70. The carrier fluid A is directed through a first interior opening 92 (which may be a plurality of openings) in the flow control mechanism 90, leading to a mixing chamber 94. The mixing chamber 94 may be defined by a cavity formed by exterior walls of the flow control mechanism 90 and interior walls of the mixing body 42.
The chemical fluid B is received via the mixing body inlet 50 of the mixing body 42. The chemical fluid B is directed to the mixing chamber 94, thereby mixing in the nozzle to form the mixed fluid C. The mixed fluid C, in turn, is directed through a second interior opening 96 (which may be a plurality of openings) in the flow control mechanism 90, leading to the control valve 74.
Upon sufficient pressure of the mixed fluid C, such as with a check valve, or upon actuation of the control valve 74, such as with the solenoid valve, the mixed fluid C will then flow through the control valve 74 and exit via a control valve outlet 98. The control valve outlet 98 is fluidly coupled with an interior channel 100 of the flow control mechanism 90 and may be fluid sealed with a sealing member 99. The mixed fluid C may then, in turn, travel through the interior channel 100 to an orifice 102 proximal to the nozzle outlet 72 of the nozzle body 70 for spraying.
Still referring to
Referring now to
A predetermined tracer dye may also be added to the chemical fluid for improved results. The presence or absence of tracer dye in the chemical fluid, and the amount of the tracer dye being used may vary depending on the type of chemical fluid being used. Accordingly, a calibration measurement may be recorded for each fluid mixture to reflect a target concentration of the mixed fluid.
The lens 112 may be coupled to the light source 52 via the light source housing 114 and may be operable to focus light in the direction of the light sensitive receiver 54. Similarly, the lens 118 may be coupled to the light sensitive receiver 54 and may also be operable to focus light in the direction of the light sensitive receiver 54.
Referring now to
With a concentration of zero chemical in mixed fluid, the light sensitive receiver 54 may receive full light and provide a full, strength output of 100% (which may be a peak voltage level for the electrical signal 61). This may also define a calibration point in the concentration detection system. As the concentration of chemical in the mixed fluid rises, the light sensitive receiver 54 may receive less light and provide an output of decreasing strength (which may be less than the peak voltage level for the electrical signal 61). As the concentration of chemical in the mixed fluid approaches an exceedingly high quantity, the light sensitive receiver 54 may receive limited light and provide a weak output (which may be a low voltage level for the electrical signal 61). Depending on the tracer dye or chemical fluid, it may be possible to reach a concentration of chemical in the mixed fluid such that the light sensitive receiver 54 receives no light and, as a result, provides no electrical output.
Accordingly, an increasing amount of chemical fluid, as indicated by tracer dye, in the mixed fluid may increasingly inhibit light from transmitting through the mixed fluid to the light sensitive receiver 54. Conversely, a decreasing amount of chemical fluid, as indicated by tracer dye, may decreasingly inhibit the amount of light transmitting through the mixed fluid to the light sensitive receiver 54.
Referring now to
The controller 140 may receive a target concentration for the chemical fluid. The controller 140 may then implement a closed loop system in order to reach the target concentration. For example, the controller 140 may iteratively adjust the metering system 142, and receive feedback via the electrical signals 61 from each of the spray nozzle assemblies 1144 reflecting spray nozzle concentrations, in order to reach and maintain the target concentration. The controller may also implement any portion of Proportional-Integral-Derivative (PID) control in the closed loop system, collectively or individually for the spray nozzle assemblies 144, in order to reach the target concentration. The controller 140 may also communicate with a database 150 for storing, among other things, calibration data, predetermined concentrations for chemical fluids, and the like.
In another aspect, the controller 140 may be configured to turn on or off the spray nozzle assemblies 144, such as via solenoid control valves. The controller 140 could turn off the spray nozzle assemblies 144 if a target concentration is unable to be achieved in the spray nozzle assemblies 144 within a predetermined amount of time. The controller 140 could also turn on or off the spray nozzle assemblies 144 according to a current position of the field spraying system 10, as detected by a Global Positioning System (GPS) or other locating system, with respect to a field map which may be stored in the database 150. For example, the controller 140 could turn off the spray nozzle assemblies 144 upon determining that the field spraying system 10 has left the treatment area, and/or turn on the spray nozzle assemblies 144 upon determining that the field spraying system 10 has returned to the treatment area.
In another aspect, the controller 140 may be configured to send an audible and/or visual alert to the operator in the cab 14 in accordance with one of the foregoing conditions. For example, the controller 140 could generate an audible and/or visual alert to the operator in the cab 14 if a target concentration is unable to be achieved in the spray nozzle assemblies 144 within a predetermined amount of time.
Referring now to
Although the best mode contemplated by the inventors of carrying out the present invention is disclosed above, practice of the above invention is not limited thereto. It will be manifest that various additions, modifications and rearrangements of the features of the present invention may be made without deviating from the spirit and the scope of the underlying inventive concept.
By way of example, although described in the context of sprayers applying a crop protection fluid, it will be appreciated that many other types of mixtures and applications may he made within the scope of the present invention. Also, although described generally in the context of a nozzle body receiving a carrier fluid and a mixing body receiving a chemical fluid, it will be appreciated that many other configurations may be possible, such as the nozzle body receiving the chemical fluid or both fluids, the mixing body receiving the carrier fluid or both fluids, multiple inlets in the nozzle body and the mixing body for either type of fluid, and/or greater integration between the nozzle body and the mixing body.
This is a non-provisional application based upon U.S. provisional patent application Ser. No 62/219,941. entitled “System for Measuring Concentration for a Chemical Fluid in Sprayer,” filed Sep. 17, 2015, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62219941 | Sep 2015 | US |