System for reducing vibrations in a pressure pumping fleet

Information

  • Patent Grant
  • 10934824
  • Patent Number
    10,934,824
  • Date Filed
    Friday, October 12, 2018
    6 years ago
  • Date Issued
    Tuesday, March 2, 2021
    3 years ago
Abstract
The present technology provides an electrically powered hydraulic fracturing system having pumps for pressurizing fracturing fluid, piping for carrying fracturing fluid, and vibration reducing equipment for use with the piping. The vibration reducing equipment includes helical coils that support the piping. The coils are made of a wire rope made of strands of steel cable twisted together. Grooved fittings are provided on some piping connections, and which allow pivoting between adjacent fluid conveyance members. Swivel joints are strategically located in the piping which allow rotational flexing between adjacent sections of the piping; thereby attenuating vibration in the piping but without stressing the piping.
Description
BACKGROUND OF THE INVENTION
1. Field of Invention

The present disclosure relates to hydraulic fracturing of subterranean formations. In particular, the present disclosure relates to methods and devices for reducing vibration during hydraulic fracturing of a subterranean formation.


2. Description of Prior Art

Hydraulic fracturing is a technique used to stimulate production from some hydrocarbon producing wells. The technique usually involves injecting fluid into a wellbore at a pressure sufficient to generate fissures in the formation surrounding the wellbore. Typically the pressurized fluid is injected into a portion of the wellbore that is pressure isolated from the remaining length of the wellbore so that fracturing is limited to a designated portion of the formation. The fracturing fluid slurry, whose primary component is usually water, includes proppant (such as sand or ceramic) that migrate into the fractures with the fracturing fluid slurry and remain to prop open the fractures after pressure is no longer applied to the wellbore. Sometimes, nitrogen, carbon dioxide, foam, diesel, or other fluids are used as the primary component instead of water. A typical hydraulic fracturing fleet may include a data van unit, blender unit, hydration unit, chemical additive unit, hydraulic fracturing pump unit, sand equipment, wireline, and other equipment.


Traditionally, the fracturing fluid slurry has been pressurized on surface by high pressure pumps powered by diesel engines. To produce the pressures required for hydraulic fracturing, the pumps and associated engines have substantial volume and mass. Heavy duty trailers, skids, or trucks are required for transporting the large and heavy pumps and engines to sites where wellbores are being fractured. Each hydraulic fracturing pump usually includes power and fluid ends, seats, valves, springs, and keepers internally. These parts allow the pump to draw in low pressure fluid (approximately 100 psi) and discharge the same fluid at high pressures (up to 15,000 psi or more). The diesel engines and transmission which power hydraulic fracturing units typically generate large amounts of vibrations of both high and low frequencies. These vibrations are generated by the diesel engine, the transmission, the hydraulic fracturing pump as well as the large cooling fan and radiator needed to cool the engine and transmission. Low frequency vibrations and harshness are greatly increased by the large cooling fans and radiator required to cool the diesel engine and transmission. In addition, the diesel engine and transmission are coupled to the hydraulic fracturing pump through a u-joint drive shaft, which requires a three degree offset from the horizontal output of the transmission to the horizontal input of the hydraulic fracturing pump. Diesel powered hydraulic fracturing units are known to jack and jump while operating in the field from the large amounts of vibrations. The vibrations may contribute to fatigue failures of many differed parts of a hydraulic fracturing unit. Recently electrical motors have been introduced to replace the diesel motors, which greatly reduce the noise generated by the equipment during operation. Because of the high pressures generated by the pumps, and that the pumps used for pressurizing the fracturing fluid are reciprocating pumps, a significant amount of vibration is created when pressurizing the fracturing fluid. The vibration transmits to the piping that carries the fracturing fluid and its associated equipment, thereby increasing probabilities of mechanical failure for the piping and equipment, and also shortening their useful operational time.


SUMMARY OF THE INVENTION

Disclosed herein is an example of a hydraulic fracturing system for fracturing a subterranean formation, and which includes an electrically powered fracturing pump having a suction side and a discharge side, a suction branch of piping having fracturing fluid therein, a discharge branch of piping having therein pressurized fracturing fluid supplied from the fracturing pump, a tubular suction lead having an end mounted to the suction side and an opposite end coupled to an end of the suction branch by a grooved connection, and which is pivotal with respect to the suction branch, swivel connections strategically located in the discharge branch of piping, so that when pressurized fracturing fluid flows through the discharge branch of piping, a section of the discharge branch of piping is axially rotatable with an adjacent section of the discharge branch of piping, and helical coils supporting suction and discharge branches of piping at strategically located positions. In one embodiment; engines, transmissions, large cooling fans, and u-joint drive shafts are intentionally not included to minimize both high and low frequency vibrations. At least one of the helical coils can have an axis that is disposed oblique with an axis of an adjacent amount of piping. Optionally included is a pulsation dampener in fluid communication with the suction branch and adjacent the suction lead. In one example the fracturing pump is a first fracturing pump, wherein the suction and discharge branches respectively intersect with suction and discharge piping that are in fluid communication with a second fracturing pump, and wherein the suction and discharge branch intersections are at locations that are each spaced away from a surface on which the first fracturing pump is supported. The surface on which the first fracturing pump is supported can be a trailer, truck, skid, or other platform. In one example, the hydraulic fracturing pump unit has two fracturing pumps where the suction piping for the first pump and the suction piping for the second pump are separate and distinct. This allows for a much simpler fluid dynamic flow that reduces turbulence and vibrations. In another example, the discharge piping for the first pump and the discharge piping for the second pump are separate and distinct from the pump to the edge of the unit. This allows for a simpler fluid dynamic flow that reduces turbulence and vibrations. The hydraulic fracturing system can further include a turbo-generator or other power source and power distribution equipment for generating and distributing electricity used for powering the fracturing pump.


Also disclosed herein is an example of a method of hydraulically fracturing a subterranean formation, and which includes pressurizing fracturing fluid with a hydraulic fracturing system that comprises an electrically powered fracturing pump, a tubular suction branch, and a tubular discharge branch, drawing the fracturing fluid into the fracturing pump through the suction branch, discharging the fracturing fluid from the fracturing pump through the discharge branch, introducing the fracturing fluid to the formation to create a fracture in the formation, and reducing vibration in the hydraulic fracturing system by, strategically locating swivel joints in the suction and discharge branches, so that designated sections of the suction and discharge branches are moveable with respect to other sections of the suction and discharge branches, providing a grooved connection in the suction branch, so that piping supplying fracturing fluid to the fracturing pump is pivotable with respect to the fracturing pump, maintaining portions of the suction and discharge branches that are supported on a surface that supports the fracturing pump from other suction and discharge branches, and resting the suction and discharge branches on helical coils. The method can further include providing an elastomeric yoke with the helical coils. Optionally, some of the fluid in the suction branch can be routed to an accumulator. The method can further include powering the fracturing pump with electricity generated by a turbo-generator or other power supply.


An alternate example of a method of hydraulically fracturing a subterranean formation includes pressurizing fracturing fluid with a hydraulic fracturing system that includes an electrically powered fracturing pump and piping coupled with the fracturing pump, discharging pressurized fracturing fluid for delivery to a wellbore that intersects the formation so that the pressurized fracturing fluid fractures the formation, and reducing vibration in the hydraulic fracturing system by providing joints in the piping at strategic locations so that adjacent sections of the piping pivot and/or swivel. The joints can include a swiveling joint that allows relative rotational movement between adjacent sections of the piping. The joints are made up of a grooved connection joint that allows pivoting between adjacent sections of the piping. The method can further include maintaining the piping separate from piping that is in fluid communication with another fracturing pump. In one example, the traditional engine and transmission are replaced by a variable frequency drive (“VFD”) and an electric motor. Then the traditional u-joint drive line, which requires at least a three degree offset from the horizontal output of the transmission with the horizontal input of the hydraulic fracturing pump, is replaced by a direct coupling to reduce or eliminate the vibrations caused by the required misalignment that the traditional u-joint drive shaft requires.





BRIEF DESCRIPTION OF DRAWINGS

Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a schematic of an example of a hydraulic fracturing system.



FIG. 2 is schematic of an example of piping of the hydraulic fracturing system of FIG. 1 having vibration reducing equipment.



FIG. 3 is a schematic of an example of a pipe coupling for use with the hydraulic fracturing system of FIG. 1.



FIG. 4 is a side perspective view of an example of a cable coil assembly for use with the hydraulic fracturing system of FIG. 1.



FIG. 5 is a side view of an example of a swivel assembly for use with piping in the hydraulic fracturing system of FIG. 1.



FIG. 6 is a side perspective view of an example of pump suction and discharge piping having vibration reducing equipment.



FIG. 7 is a side perspective view of an alternate example of a cable coil assembly.



FIGS. 8A and 8B are graphs having plots representing measured values of vibration of hydraulic fracturing units without and with vibration reducing equipment, respectively.





While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION OF INVENTION

The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout. In an embodiment, usage of the term “about” includes +/−5% of the cited magnitude. In an embodiment, usage of the term “substantially” includes +/−5% of the cited magnitude.


It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.



FIG. 1 is a schematic example of a hydraulic fracturing system 10 that is used for pressurizing a wellbore 12 to create fractures 14 in a subterranean formation 16 that surrounds the wellbore 12. Included with the system 10 is a hydration unit 18 that receives fluid from a fluid source 20 via line 22, and also selectively receives additives from an additive source 24 via line 26. Additive source 24 can be separate from the hydration unit 18 as a stand-alone unit, or can be included as part of the same unit as the hydration unit 18. The fluid, which in one example is water, is mixed inside of the hydration unit 18 with the additives. In an embodiment, the fluid and additives are mixed over a period of time to allow for uniform distribution of the additives within the fluid. In the example of FIG. 1, the fluid and additive mixture is transferred to a blender 28 via line 30. A proppant source 32 contains proppant, which is delivered to the blender 28 as represented by line 34, where line 34 can be a conveyer. Inside the blender 28, the proppant and fluid/additive mixture are combined to form a fracturing slurry, which is then transferred to a fracturing pump 36 via line 38; thus fluid in line 38 includes the discharge of blender unit 28 which is the suction (or boost) for the fracturing pump system 36. Blender 28 can have an onboard chemical additive system, such as with chemical pumps and augers. Optionally, additive source 24 can provide chemicals to blender 28; or a separate and standalone chemical additive system (not shown) can be provided for delivering chemicals to the blender 28. In an example, the pressure of the slurry in line 38 ranges from around 80 psi to around 100 psi. The pressure of the slurry can be increased up to around 15,000 psi by pump 36. A motor 39, which connects to pump 36 via connection 40, drives pump 36 so that it can pressurize the slurry. In one example, the connection 40 is a direct coupling between an electric motor 39 and a hydraulic fracturing pump 36. In another example, the connection 40 is more than one direct coupling (one on each end of the motor) (not shown) and two hydraulic fracturing pumps. Each of these hydraulic fracturing pumps 36 may be decoupled independently from the main electric motor 39. In one example, the motor 39 is controlled by a variable frequency drive (“VFD”). After being discharged from pump 36, slurry is injected into a wellhead assembly 41; discharge piping 42 connects discharge of pump 36 with wellhead assembly 41 and provides a conduit for the slurry between the pump 36 and the wellhead assembly 41. In an alternative, hoses or other connections can be used to provide a conduit for the slurry between the pump 36 and the wellhead assembly 41. Optionally, any type of fluid can be pressurized by the fracturing pump 36 to form a fracturing fluid that is then pumped into the wellbore 12 for fracturing the formation 14, and is not limited to fluids having chemicals or proppant. Examples also exist wherein the system 10 includes the ability to pump down equipment, instrumentation, or other retrievable items through the slurry into the wellbore.


An example of a turbine 44 is provided in the example of FIG. 1 and which receives a combustible fuel from a fuel source 46 via a feed line 48. In one example, the combustible fuel is natural gas, and the fuel source 46 can be a container of natural gas or a well (not shown) proximate the turbine 44. Combustion of the fuel in the turbine 44 in turn powers a generator 50 that produces electricity. Shaft 52 connects generator 50 to turbine 44. The combination of the turbine 44, generator 50, and shaft 52 define a turbine generator 53. In another example, gearing can also be used to connect the turbine 44 and generator 50. An example of a micro-grid 54 is further illustrated in FIG. 1, and which distributes electricity generated by the turbine generator 53. Included with the micro-grid 54 is a transformer 56 for stepping down voltage of the electricity generated by the generator 50 to a voltage more compatible for use by electrical powered devices in the hydraulic fracturing system 10. In another example, the power generated by the turbine generator and the power utilized by the electrical powered devices in the hydraulic fracturing system 10 are of the same voltage, such as 4160 V so that main power transformers are not needed. In one embodiment, multiple 3500 kVA dry cast coil transformers are utilized. Electricity generated in generator 50 is conveyed to transformer 56 via line 58. In one example, transformer 56 steps the voltage down from 13.8 kV to around 600 V. Other step down voltages can include 4,160 V, 480 V, or other voltages. The output or low voltage side of the transformer 56 connects to a power bus 60, lines 62, 64, 66, 68, 70, and 72 connect to power bus 60 and deliver electricity to electrically powered end users in the system 10. More specifically, line 62 connects fluid source 20 to bus 60, line 64 connects additive source 24 to bus 60, line 66 connects hydration unit 18 to bus 60, line 68 connects proppant source 32 to bus 60, line 70 connects blender 28 to bus 60, and line 72 connects motor 39 to bus 60. In an example, additive source 24 contains ten or more chemical pumps for supplementing the existing chemical pumps on the hydration unit 18 and blender 28. Chemicals from the additive source 24 can be delivered via lines 26 to either the hydration unit 18 and/or the blender 28.



FIG. 2 shows in a schematic form an embodiment where multiple pumps 361-n are used in the system 10 of FIG. 1 for pressurizing fracturing fluid. In this example, fracturing fluid flows to pump 361 via suction branch 74; where an end of suction branch 74 distal from pump 361 connects to a suction manifold 76. Fracturing fluid is fed to the manifold 76 via line 38, and fracturing fluid can be delivered to the remaining pumps in 362-n via the suction manifold 76. A discharge end of pump 361 connects to a discharge branch 78, which carries fracturing fluid pressurized by pump 361, from pump 361, and for delivery into the wellbore 12 (FIG. 1). An end of discharge branch 78 distal from pump 361 connects to a discharge manifold 80, that provides fluid communication between discharge branch 78 and discharge piping 42 (FIG. 1). Discharge manifold 80 is also shown providing fluid communication to discharge piping 42 from pumps 362-n. It should be pointed out that the suction and discharge branches 74, 78 each respectively connect to suction and discharge manifolds 76, 80 outside of a support platform 81 (schematically illustrated by the dashed line). Thus the suction and discharge branches 74, 78 are kept separate from other piping while on the support platform 81. In one example, more than one pump 36 may be installed on the same platform. The suction piping 74 for each pump 36 can be separate while on the unit to minimize vibrations caused by turbulent flow. In another example, more than one pump 36 may be installed on the same platform. The discharge piping 78 in this example is separate for each pump 36 while on the unit to minimize vibrations caused by turbulent flow. Examples of support surfaces 81 include skids, trailers, and any other frame or structure used for mounting the pump 361 and its associated hardware during operation. Keeping the suction and discharge branches 74, 78 separate from one another helps reduce vibration in the system 10. An example of a pulsation dampener 82 is shown connected to suction branch 74, and which can account for pressure or flow surges within suction branch 74 to help reduce vibration within the hydraulic fracturing system 10 (FIG. 1).


An additional vibration reducing component includes a groove to connection joint 84, which provides a fluid type connection between the suction branch 74 and suction lead 86 on the suction side of pump 361. In one example, the suction lead 86 includes a suction manifold to help ensure sufficient flow to the hydraulic fracturing pump and eliminate cavitation, which causes violent vibrations. Referring now to FIG. 3, a schematic example of one embodiment of a grooved connection joint 84 is provided in an exploded view. Here, the connection joint 84 includes a pair of semi-circular clamp members 88, 90 that are joined to one another by a nut 92 and bolt 94. Flange portions 96, 98 on respective clamp members 88, 90 include openings through which bolt 94 can be inserted and for attachment with nut 92 to hold together the clamp members 88, 90. Opposing ends of the clamp members 88, 90 may also include flange members that can be attached by a nut bolt arrangement as shown. The inner surfaces of clamp members 88, 90 are complementarily formed to engage grooves 100, 102 shown formed respectively along the outer circumferences of the suction branch 74 and suction lead 86. An advantage of the grooved connection joint 84 is that the suction branch 74 and suction lead 86 are pivotable with respect to one another, while still maintaining a fluid type communication across the connection joint 84. One example of a pivotable motion is where the suction branch 74 and/or suction lead 86 are reoriented so that they are no longer coaxial with one another. Facilitating relative pivoting movement between the suction branch 74 and suction lead 86 across the grooved connection joint 84 provides another way of reducing vibration within the system 10 (FIG. 1). One non-limiting example of a grooved connection joint 84 is referred to as a rigid coupling and may be obtained from Victaulic, 1833 North Promenade Boulevard, Stafford, Tex. 77477, 1-800-PICK-VIC.


Referring back to FIG. 2, additional means for reducing vibration in the system 10 (FIG. 1) includes strategically locating cable coil assemblies 104 along the suction and discharge branches 74, 78. As its name implies, the cable coil assembly 104 is made up of strands of elastic material wound into a generally helical configuration. One example of a cable coil assembly 104 shown in a side perspective view in FIG. 4 and which includes a coil 106, shown formed from a wire rope coiled into a helix, and lower and upper mounting bars 108, 104 anchoring each half turn of the coil 106. The bars 108, 110 are elongate members with rectangular cross sections that respectively couple with lower and upper plates 112, 114. The elements of the coil assembly 104 of FIG. 4 provide an example of a cohesive mounting arrangement for supporting the associated suction branch 74. In this example, a U-bolt 116 is shown affixing the upper plate 114 to suction branch 74; and a semi-circular grommet 118 is provided between the U-bolt 116 and the suction branch 74. An alternate embodiment of the cable coil assembly 104A is also illustrated in FIG. 4 and which is coupled with discharge branch 78. Cable coil assembly 104A includes a yoke 120 mounted to upper plate 114A. In one example, yoke 120 is formed from an elastomeric material.


Referring back to FIG. 2, swivel assemblies 1221-3 are shown included at strategic locations within the discharge branch 78. The swivel assemblies 1221-3 allow adjacent sections of the piping to swivel, i.e. rotate with respect to one another. By strategically locating swivel assemblies 1221-3 in portions of a piping run that includes turns or elbows, entire segments of the piping run can be moveable with respect to other pipe segments. Moreover, as the adjacent sections of piping are coupled by a swivel assembly, the relative motion can take place without introducing stress or strain into the pipe itself. Thus implementation of the swivel assemblies can absorb vibrational motion through stress free flexing thereby further reducing and attenuating vibration in the system 10. It should be pointed out that the number of swivel assemblies 1221-3 shown is merely illustrative, and that any number of swivel assemblies can be included. FIG. 5 shows one example of a swivel assembly 122 and which includes sections of pipe 124, 126 that are joined to one another by a swivel joint 128. Swivel joint 128 sealingly couples together the sections of pipe 124, 126 and yet allows relative rotation of the pipes 124, 126 as illustrated by arrows A1, A2. In one embodiment, strategically locating assemblies 122 within the discharge branch 78 (FIG. 2) for entire sections of discharge branch 78 to move along an arc with respect to other sections of the discharge branch 78. Further included in this example of the swivel assembly of FIG. 5 are fittings 130, 132 shown on the ends of pipes 124, 126 that are distal from the swivel joint 128. The fittings 130, 132 allow for connection to lines 134, 136 where lines make up piping within the discharge branch 78 of FIG. 2. In one embodiment, fittings 130, 132 are hammer unions, which are female threaded wings with three large lugs on the outside which are struck with sledge hammers to ensure that they are tight. An example of a hammer wing is visible in FIG. 6 where pipe 122A connects with pump 36. An example swivel assembly 122 for use herein may be acquired from FMC Technologies, 187 North Sam Houston Parkway West, Houston, Tex. 77086, 281.591.4000.



FIG. 6 shows in a perspective view examples of portions of a suction branch 74 and discharge branch 78 coupled with a pump 36. Included in the example of the discharge branch 78 is an alternate example of a swivel assembly 122A which includes sections of piping, and more than one swivel joint 128A, accordingly, multiple examples of the swivel joint 122 can be incorporated in the disclosure herein. Further illustrated is an example of the pulsation dampener 82 and which couples with the suction branch 74 via grooved connection joints 84. Moreover, the downstream end of the “T” fitting connects to the actual intake of pump 36 with the grooved connection joint 84.



FIG. 7 shows a side perspective view and an alternate example of the cable coil assembly in 104B, wherein multiple coils 106B are included with the coil assembly 104B. Further, it should be pointed out that examples of the cable coil assembly 104 exists wherein an axis of the helix of the coil 106 is oriented at angles that vary from an axis of the associated piping supported by the cable coil assembly 104. Changing the direction of the axis of the helix of the coil 106 can provide for different frame constant values thereby effecting continuation of vibration in different manners.



FIGS. 8A and 8B include graphs whose ordinate represent gravitational forces and abscissa represents values of time. In one example, shown in FIG. 8A, gravitational forces were measured in three coordinate axes from a hydraulic fracturing system during its operation. Plots 140, 142, 144 represent gravitational forces measure along those axes over time. Similarly, as shown in FIG. 8B, graph includes plots 148, 150, 152, which represent measured gravitational forces along those same axes over time, and were obtained from a hydraulic fracturing system having the vibrational reducing elements described herein. As can be seen from comparing the graphs of FIGS. 8A and 8B, the gravitational forces were significantly and unexpectedly reduced by implementation by the vibration reducing forces. Sensors 154 (FIG. 1) are shown mounted to the wellhead, and which can be used to measure the gravitational forces. In another example, multiple sensors 154 may be mounted to multiple parts of the hydraulic fracturing fleet. In one example one or more sensors are mounted on each hydraulic fracturing fluid end as well as the power end. In another example a sensor is mounted near the blender discharge pump. Optionally, information sensed by sensors 154 is transmitted to an information handling system (“IHS”) 156. The IHS 156 may also be used to store recorded data as well as processing the data into a readable format. The IHS 156 may include a processor, memory accessible by the processor, nonvolatile storage area accessible by the processor, and logic algorithms for performing each of the steps above described. Information is transmitted to IHS 156 from sensor 154 via communication means 158, which can be hardwired, wireless, pneumatic, or any other way of transmitting information. Further, IHS 156 communicates to a controller 160 via communication means 162, which can be similar to communication means 158. In an example of operation, controller 160 can be used for sending control commands for operation of the system 10, and thus can utilize vibration information from sensors 154 to adjust control commands. In one example, the IHS 156 communicates with the World Wide Web to allow for remote reviewing of the information. In one example, the IHS 156 system also receives information from a VFD. In another example, the IHS 156 system receives information such as fluid rate, boost pressure, discharge pressure, and other information to coordinate with the vibration data.


The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.

Claims
  • 1. A hydraulic fracturing system for fracturing a subterranean formation comprising: an electrically powered fracturing pump having a discharge side;a discharge branch of piping having therein pressurized fracturing fluid supplied from the fracturing pump; andswivel connections strategically located in the discharge branch of piping, so that when pressurized fracturing fluid flows through the discharge branch of piping, a section of the discharge branch of piping is axially rotatable with an adjacent section of the discharge branch of piping.
  • 2. The hydraulic fracturing system of claim 1, further comprising at least one helical coil supporting discharge branches of piping at a strategically located position.
  • 3. The hydraulic fracturing system of claim 1, wherein at least one of the helical coils has an axis that is disposed oblique with an axis of an adjacent amount of piping.
  • 4. The hydraulic fracturing system of claim 1, wherein the fracturing pump is a first fracturing pump, wherein the discharge branches intersect with discharge piping that are in fluid communication with a second fracturing pump, and wherein the discharge branch intersections are at locations that are each spaced away from a surface on which the first fracturing pump is supported.
  • 5. The hydraulic fracturing system of claim 4, wherein the surface on which the first fracturing pump is supported comprises a trailer, truck, or skid.
  • 6. The hydraulic fracturing system of claim 1, further comprising a generator for generating electricity used for powering the fracturing pump.
  • 7. The hydraulic fracturing system of claim 1, further comprising a controller that uses vibration data to monitor and/or adjust control commands of the system.
  • 8. A hydraulic fracturing system for fracturing a subterranean formation comprising: an electrically powered fracturing pump having a suction side;a suction branch of piping having fracturing fluid therein; anda tubular suction lead having an end mounted to the suction side and an opposite end coupled to an end of the suction branch by a grooved connection, and which is pivotal with respect to the suction branch; anda discharge branch of piping having therein the pressurized fracturing fluid supplied from the fracturing pump; andswivel connections strategically located in the discharge branch of piping, so that when the pressurized fracturing fluid flows through the discharge branch of piping, a section of the discharge branch of piping is axially rotatable with an adjacent section of the discharge branch of piping.
  • 9. The hydraulic fracturing system of claim 8, further comprising helical coils supporting suction branches of piping at strategically located positions.
  • 10. The hydraulic fracturing system of claim 8, wherein at least one of the helical coils has an axis that is disposed oblique with an axis of an adjacent amount of piping.
  • 11. The hydraulic fracturing system of claim 8, further comprising a pulsation dampener in fluid communication with the suction branch and adjacent the section lead.
  • 12. The hydraulic fracturing system of claim 8, wherein the fracturing pump is a first fracturing pump, wherein the suction branches intersect with suction piping that are in fluid communication with a second fracturing pump, and wherein the suction branch intersections are at locations that are each spaced away from a surface on which the first fracturing pump is supported.
  • 13. The hydraulic fracturing system of claim 12, wherein the surface on which the first fracturing pump is supported comprises a trailer, truck, or skid.
  • 14. The hydraulic fracturing system of claim 8, further comprising a generator for generating electricity used for powering the fracturing pump.
  • 15. The hydraulic fracturing system of claim 8, further comprising a controller that uses vibration data to monitor and/or adjust control commands of the system.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims priority to and the benefit of, co-pending U.S. patent application Ser. No. 15/145,414, filed May 3, 2016, which is a continuation of, and claims priority to and the benefit of, U.S. Provisional Application Ser. No. 62/156,306, filed May 3, 2015 and is a continuation-in-part of, and claims priority to and the benefit of co-pending U.S. patent application Ser. No. 13/679,689, filed Nov. 16, 2012, the full disclosures of which are hereby incorporated by reference herein for all purposes.

US Referenced Citations (525)
Number Name Date Kind
1656861 Leonard Jan 1928 A
1671436 Melott May 1928 A
2004077 McCartney Jun 1935 A
2183364 Bailey Dec 1939 A
2220622 Aitken Nov 1940 A
2248051 Armstrong Jul 1941 A
2389328 Stilwell Nov 1945 A
2407796 Page Sep 1946 A
2416848 Rothery Mar 1947 A
2610741 Schmid Sep 1952 A
2753940 Bonner Jul 1956 A
3055682 Bacher Sep 1962 A
3061039 Peters Oct 1962 A
3066503 Fleming Dec 1962 A
3302069 Webster Jan 1967 A
3334495 Jensen Aug 1967 A
3601198 Ahearn Aug 1971 A
3722595 Kiel Mar 1973 A
3764233 Strickland Oct 1973 A
3773140 Mahajan Nov 1973 A
3837179 Barth Sep 1974 A
3849662 Blaskowski Nov 1974 A
3881551 Terry May 1975 A
3978877 Cox Sep 1976 A
4037431 Sugimoto Jul 1977 A
4066869 Apaloo Jan 1978 A
4100822 Rosman Jul 1978 A
4151575 Hogue Apr 1979 A
4226299 Hansen Oct 1980 A
4265266 Kierbow et al. May 1981 A
4421975 Stein Dec 1983 A
4432064 Barker Feb 1984 A
4442665 Fick et al. Apr 1984 A
4456092 Kubozuka Jun 1984 A
4506982 Smithers et al. Mar 1985 A
4512387 Rodriguez Apr 1985 A
4529887 Johnson Jul 1985 A
4538916 Zimmerman Sep 1985 A
4676063 Goebel et al. Jun 1987 A
4759674 Schroder Jul 1988 A
4793386 Sloan Dec 1988 A
4845981 Pearson Jul 1989 A
4877956 Priest Oct 1989 A
4922463 Del Zotto et al. May 1990 A
5004400 Handke Apr 1991 A
5006044 Walker, Sr. Apr 1991 A
5025861 Huber Jun 1991 A
5050673 Baldridge Sep 1991 A
5130628 Owen Jul 1992 A
5131472 Dees et al. Jul 1992 A
5134328 Johnatakis Jul 1992 A
5172009 Mohan Dec 1992 A
5189388 Mosley Feb 1993 A
5230366 Marandi Jul 1993 A
5334898 Skybyk Aug 1994 A
5366324 Arlt Nov 1994 A
5422550 McClanahan Jun 1995 A
5433243 Griswold Jul 1995 A
5517593 Nenniger May 1996 A
5517822 Haws et al. May 1996 A
5548093 Sato Aug 1996 A
5590976 Kilheffer et al. Jan 1997 A
5655361 Kishi Aug 1997 A
5712802 Kumar Jan 1998 A
5736838 Dove et al. Apr 1998 A
5755096 Holleyman May 1998 A
5790972 Kohlenberger Aug 1998 A
5865247 Paterson Feb 1999 A
5879137 Yie Mar 1999 A
5894888 Wiemers Apr 1999 A
5907970 Havlovick et al. Jun 1999 A
6007227 Carlson Dec 1999 A
6059539 Nyilas May 2000 A
6116040 Stark Sep 2000 A
6138764 Scarsdale et al. Oct 2000 A
6142878 Barin Nov 2000 A
6164910 Mayleben Dec 2000 A
6167965 Bearden Jan 2001 B1
6202702 Ohira Mar 2001 B1
6208098 Kume Mar 2001 B1
6254462 Kelton Jul 2001 B1
6271637 Kushion Aug 2001 B1
6273193 Hermann Aug 2001 B1
6315523 Mills Nov 2001 B1
6321860 Reddoch Nov 2001 B1
6477852 Dodo Nov 2002 B2
6484490 Olsen Nov 2002 B1
6491098 Dallas Dec 2002 B1
6529135 Bowers et al. Mar 2003 B1
6626646 Rajewski Sep 2003 B2
6719900 Hawkins Apr 2004 B2
6765304 Baten et al. Jul 2004 B2
6776227 Beida Aug 2004 B2
6786051 Kristich Sep 2004 B2
6802690 Han Oct 2004 B2
6808303 Fisher Oct 2004 B2
6857486 Chitwood Feb 2005 B2
6931310 Shimizu et al. Aug 2005 B2
6936947 Leijon Aug 2005 B1
6985750 Vicknair Jan 2006 B1
7006792 Wilson Feb 2006 B2
7011152 Soelvik Mar 2006 B2
7082993 Ayoub Aug 2006 B2
7104233 Ryczek et al. Sep 2006 B2
7170262 Pettigrew Jan 2007 B2
7173399 Sihler Feb 2007 B2
7308933 Mayfield Dec 2007 B1
7312593 Streicher et al. Dec 2007 B1
7336514 Amarillas Feb 2008 B2
7445041 O'Brien Nov 2008 B2
7494263 Dykstra et al. Feb 2009 B2
7500642 Cunningham Mar 2009 B2
7525264 Dodge Apr 2009 B2
7563076 Brunet Jul 2009 B2
7581379 Yoshida Sep 2009 B2
7660648 Dykstra Feb 2010 B2
7675189 Grenier Mar 2010 B2
7683499 Saucier Mar 2010 B2
7717193 Egilsson et al. May 2010 B2
7755310 West et al. Jul 2010 B2
7807048 Collette Oct 2010 B2
7835140 Mori Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
7901314 Salvaire Mar 2011 B2
7926562 Poitzsch Apr 2011 B2
7949483 Discenzo May 2011 B2
7894757 Keast Jul 2011 B2
7971650 Yuratich Jul 2011 B2
7977824 Halen et al. Jul 2011 B2
3037936 Neuroth Oct 2011 A1
8054084 Schulz et al. Nov 2011 B2
3069710 Dodd Dec 2011 A1
8083504 Williams Dec 2011 B2
8091928 Carrier Jan 2012 B2
8096354 Poitzsch Jan 2012 B2
8096891 Lochtefeld Jan 2012 B2
8139383 Efraimsson Mar 2012 B2
8146665 Neal Apr 2012 B2
8154419 Daussin et al. Apr 2012 B2
8174853 Kane May 2012 B2
8232892 Overholt et al. Jul 2012 B2
8261528 Chillar Sep 2012 B2
8272439 Strickland Sep 2012 B2
8310272 Quarto Nov 2012 B2
8354817 Yeh et al. Jan 2013 B2
8379424 Grbovic Feb 2013 B2
3469097 Gray Jun 2013 A1
8474521 Kajaria Jul 2013 B2
3506267 Gambier Aug 2013 A1
8503180 Nojima Aug 2013 B2
8506267 Gambier et al. Aug 2013 B2
8534235 Chandler Sep 2013 B2
8534366 Fielder Sep 2013 B2
8573303 Kerfoot Nov 2013 B2
8596056 Woodmansee Dec 2013 B2
8616005 Cousino Dec 2013 B1
8616274 Belcher et al. Dec 2013 B2
8622128 Hegeman Jan 2014 B2
8628627 Sales Jan 2014 B2
8646521 Bowen Feb 2014 B2
8692408 Zhang et al. Apr 2014 B2
8727068 Bruin May 2014 B2
8727737 Seiner May 2014 B2
8727783 Chen May 2014 B2
8760657 Pope Jun 2014 B2
8763387 Schmidt Jul 2014 B2
8774972 Rusnak Jul 2014 B2
8789601 Broussard Jul 2014 B2
8789609 Smith Jul 2014 B2
8795525 McGinnis et al. Aug 2014 B2
8800652 Bartko Aug 2014 B2
8807960 Stephenson Aug 2014 B2
8838341 Kumano Sep 2014 B2
8851860 Mail Oct 2014 B1
8857506 Stone, Jr. Oct 2014 B2
8874383 Gambier Oct 2014 B2
8899940 Laugemors Dec 2014 B2
8905056 Kendrick Dec 2014 B2
8905138 Lundstedt et al. Dec 2014 B2
8997904 Cryer Apr 2015 B2
9018881 Mao et al. Apr 2015 B2
9051822 Ayan Jun 2015 B2
9051923 Kuo Jun 2015 B2
9061223 Winborn Jun 2015 B2
9067182 Nichols Jun 2015 B2
9080412 Wetzel Jul 2015 B2
9103193 Coll Aug 2015 B2
9119326 McDonnell Aug 2015 B2
9121257 Coli Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9160168 Chapel Oct 2015 B2
9175554 Watson Nov 2015 B1
9206684 Parra Dec 2015 B2
9260253 Naizer Feb 2016 B2
9322239 Angeles Boza et al. Apr 2016 B2
9324049 Thomeer Apr 2016 B2
9340353 Oren May 2016 B2
9366114 Coli et al. Jun 2016 B2
9410410 Broussard et al. Aug 2016 B2
9450385 Kristensen Sep 2016 B2
9458687 Hallundbaek Oct 2016 B2
9475020 Coli et al. Oct 2016 B2
9475021 Coli et al. Oct 2016 B2
9482086 Richardson et al. Nov 2016 B2
9499335 McIver Nov 2016 B2
9513055 Seal Dec 2016 B1
9534473 Morris et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9611728 Oehring Apr 2017 B2
9650871 Oehring et al. May 2017 B2
9650879 Broussard et al. May 2017 B2
9706185 Ellis Jul 2017 B2
9728354 Skolozdra Aug 2017 B2
9738461 DeGaray Aug 2017 B2
9739546 Bertilsson et al. Aug 2017 B2
9745840 Oehring et al. Aug 2017 B2
9822631 Ravi Nov 2017 B2
9840897 Larson Dec 2017 B2
9840901 Oehring et al. Dec 2017 B2
9841026 Stinessen Dec 2017 B2
9863228 Shampine et al. Jan 2018 B2
RE46725 Case Feb 2018 E
9893500 Oehring Feb 2018 B2
9909398 Pham Mar 2018 B2
9915128 Hunter Mar 2018 B2
9932799 Symchuk Apr 2018 B2
9963961 Hardin May 2018 B2
9970278 Broussard May 2018 B2
9976351 Randall May 2018 B2
9995218 Oehring Jun 2018 B2
10008880 Vicknair Jun 2018 B2
10020711 Oehring Jul 2018 B2
10036238 Oehring Jul 2018 B2
10107086 Oehring Oct 2018 B2
10119381 Oehring Nov 2018 B2
10167863 Cook Jan 2019 B1
10184465 Enis et al. Jan 2019 B2
10196878 Hunter Feb 2019 B2
10227854 Glass Mar 2019 B2
10232332 Oehring Mar 2019 B2
10246984 Payne Apr 2019 B2
10254732 Oehring Apr 2019 B2
10260327 Kajaria Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287873 Filas May 2019 B2
10302079 Kendrick May 2019 B2
10309205 Randall Jun 2019 B2
10337308 Broussard Jul 2019 B2
10371012 Davis Aug 2019 B2
10378326 Morris Aug 2019 B2
10393108 Chong Aug 2019 B2
10407990 Oehring Sep 2019 B2
10415332 Morris Sep 2019 B2
10436026 Ounadjela Oct 2019 B2
10443660 Harris Oct 2019 B2
10627003 Dale et al. Apr 2020 B2
10669471 Schmidt et al. Jun 2020 B2
10669804 Kotrla Jun 2020 B2
10695950 Igo et al. Jun 2020 B2
10711576 Bishop Jul 2020 B2
20020169523 Ross et al. Nov 2002 A1
20030056514 Lohn Mar 2003 A1
20030079875 Weng May 2003 A1
20030138327 Jones et al. Jul 2003 A1
20040040746 Niedermayr Mar 2004 A1
20040102109 Crafty et al. May 2004 A1
20040167738 Miller Aug 2004 A1
20050061548 Hooper Mar 2005 A1
20050116541 Seiver Jun 2005 A1
20050274508 Folk Dec 2005 A1
20060052903 Bassett Mar 2006 A1
20060065319 Csitari Mar 2006 A1
20060260331 Andreychuk Nov 2006 A1
20070125544 Robinson Jun 2007 A1
20070131410 Hill Jun 2007 A1
20070151731 Butler Jul 2007 A1
20070187163 Cone Aug 2007 A1
20070201305 Heilman et al. Aug 2007 A1
20070204991 Loree Sep 2007 A1
20070226089 DeGaray et al. Sep 2007 A1
20070277982 Shampine Dec 2007 A1
20070278140 Mallet et al. Dec 2007 A1
20080017369 Sarada Jan 2008 A1
20080041596 Blount Feb 2008 A1
20080066911 Luharuka Mar 2008 A1
20080095644 Mantel et al. Apr 2008 A1
20080112802 Orlando May 2008 A1
20080137266 Jensen Jun 2008 A1
20080187444 Molotkov Aug 2008 A1
20080208478 Ella et al. Aug 2008 A1
20080217024 Moore Sep 2008 A1
20080236818 Dykstra Oct 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264640 Eslinger Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20080303469 Nojima Dec 2008 A1
20090045782 Datta Feb 2009 A1
20090065299 Vito Mar 2009 A1
20090078410 Krenek et al. Mar 2009 A1
20090090504 Weightman Apr 2009 A1
20090093317 Kajiwara et al. Apr 2009 A1
20090095482 Surjaatmadja Apr 2009 A1
20090101410 Egilsson Apr 2009 A1
20090145611 Pallini, Jr. Jun 2009 A1
20090153354 Daussin et al. Jun 2009 A1
20090188181 Forbis Jul 2009 A1
20090194273 Surjaatmadja Aug 2009 A1
20090200035 Bjerkreim et al. Aug 2009 A1
20090260826 Sherwood Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20100000508 Chandler Jan 2010 A1
20100019574 Baldassarre et al. Jan 2010 A1
20100038077 Heilman Feb 2010 A1
20100038907 Hunt Feb 2010 A1
20100045109 Arnold Feb 2010 A1
20100051272 Loree et al. Mar 2010 A1
20100101785 Khvoshchev Apr 2010 A1
20100132949 DeFosse et al. Jun 2010 A1
20100146981 Motakef Jun 2010 A1
20100172202 Borgstadt Jul 2010 A1
20100200224 Nguete Aug 2010 A1
20100250139 Hobbs et al. Sep 2010 A1
20100293973 Erickson Nov 2010 A1
20100300683 Looper Dec 2010 A1
20100303655 Scekic Dec 2010 A1
20100310384 Stephenson Dec 2010 A1
20100322802 Kugelev Dec 2010 A1
20110005757 Hebert Jan 2011 A1
20110017468 Birch et al. Jan 2011 A1
20110052423 Gambier Mar 2011 A1
20110061855 Case et al. Mar 2011 A1
20110079302 Hawes Apr 2011 A1
20110085924 Shampine Apr 2011 A1
20110166046 Weaver Jul 2011 A1
20110194256 De Rijck Aug 2011 A1
20110247831 Smith Oct 2011 A1
20110247878 Rasheed Oct 2011 A1
20110272158 Neal Nov 2011 A1
20120018016 Gibson Jan 2012 A1
20120049625 Hopwood Mar 2012 A1
20120067582 Fincher Mar 2012 A1
20120085541 Love Apr 2012 A1
20120127635 Grindeland May 2012 A1
20120152549 Koroteev Jun 2012 A1
20120152716 Kikukawa et al. Jun 2012 A1
20120205112 Pettigrew Aug 2012 A1
20120205119 Wentworth Aug 2012 A1
20120205301 McGuire et al. Aug 2012 A1
20120205400 DeGaray et al. Aug 2012 A1
20120222865 Larson Sep 2012 A1
20120232728 Karimi et al. Sep 2012 A1
20120247783 Berner, Jr. Oct 2012 A1
20120255734 Coli Oct 2012 A1
20130009469 Gillett Jan 2013 A1
20130025706 DeGaray et al. Jan 2013 A1
20130064528 Bigex Mar 2013 A1
20130175038 Conrad Jul 2013 A1
20130175039 Guidry Jul 2013 A1
20130180722 Olarte Caro Jul 2013 A1
20130189629 Chandler Jul 2013 A1
20130199617 DeGaray et al. Aug 2013 A1
20130233542 Shampine Sep 2013 A1
20130242688 Kageler Sep 2013 A1
20130255271 Yu et al. Oct 2013 A1
20130278183 Liang Oct 2013 A1
20130284278 Winborn Oct 2013 A1
20130299167 Fordyce Nov 2013 A1
20130306322 Sanborn Nov 2013 A1
20130317750 Hunter Nov 2013 A1
20130341029 Roberts et al. Dec 2013 A1
20130343858 Flusche Dec 2013 A1
20140000899 Nevison Jan 2014 A1
20140010671 Cryer et al. Jan 2014 A1
20140041730 Naizer Feb 2014 A1
20140054965 Jain Feb 2014 A1
20140060658 Hains Mar 2014 A1
20140095114 Thomeer Apr 2014 A1
20140096974 Coli Apr 2014 A1
20140124162 Leavitt May 2014 A1
20140127036 Buckley May 2014 A1
20140138079 Broussard May 2014 A1
20140147310 Hunt May 2014 A1
20140174717 Broussard et al. Jun 2014 A1
20140205475 Dale Jul 2014 A1
20140219824 Burnette Aug 2014 A1
20140238683 Korach Aug 2014 A1
20140246211 Guidry Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140255214 Burnette Sep 2014 A1
20140277772 Lopez Sep 2014 A1
20140290768 Randle Oct 2014 A1
20140332199 Gilstad Nov 2014 A1
20140379300 Devine et al. Dec 2014 A1
20150027712 Vicknair Jan 2015 A1
20150053426 Smith Feb 2015 A1
20150068724 Coli et al. Mar 2015 A1
20150068754 Coli et al. Mar 2015 A1
20150075778 Walters Mar 2015 A1
20150078924 Zhang Mar 2015 A1
20150083426 Lesko Mar 2015 A1
20150097504 Lamascus Apr 2015 A1
20150114652 Lestz Apr 2015 A1
20150136043 Shaaban May 2015 A1
20150144336 Hardin et al. May 2015 A1
20150159911 Holt Jun 2015 A1
20150175013 Cryer et al. Jun 2015 A1
20150176386 Castillo et al. Jun 2015 A1
20150211512 Wiegman Jul 2015 A1
20150211524 Broussard Jul 2015 A1
20150217672 Shampine Aug 2015 A1
20150225113 Lungu Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150300145 Coli et al. Oct 2015 A1
20150300336 Hernandez et al. Oct 2015 A1
20150314225 Coli et al. Nov 2015 A1
20150330172 Allmaras Nov 2015 A1
20150354322 Vicknair Dec 2015 A1
20160032703 Broussard et al. Feb 2016 A1
20160102537 Lopez Apr 2016 A1
20160105022 Oehring Apr 2016 A1
20160208592 Oehring Apr 2016 A1
20160160889 Hoffman et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177678 Morris Jun 2016 A1
20160186531 Harkless et al. Jun 2016 A1
20160208593 Coli et al. Jul 2016 A1
20160208594 Coli et al. Jul 2016 A1
20160208595 Tang Jul 2016 A1
20160221220 Paige Aug 2016 A1
20160230524 Dumoit Aug 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160258267 Payne Sep 2016 A1
20160265457 Stephenson Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160273456 Zhang Sep 2016 A1
20160281484 Lestz Sep 2016 A1
20160290114 Oehring Oct 2016 A1
20160290563 Diggins Oct 2016 A1
20160312108 Lestz et al. Oct 2016 A1
20160319650 Oehring Nov 2016 A1
20160326854 Broussard Nov 2016 A1
20160326855 Coli et al. Nov 2016 A1
20160341281 Brunvold et al. Nov 2016 A1
20160348479 Oehring Dec 2016 A1
20160349728 Oehring Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170016433 Chong Jan 2017 A1
20170021318 McIver et al. Jan 2017 A1
20170022788 Oehring et al. Jan 2017 A1
20170022807 Dursun Jan 2017 A1
20170028368 Oehring et al. Feb 2017 A1
20170030177 Oehring Feb 2017 A1
20170030178 Oehring et al. Feb 2017 A1
20170036178 Coli et al. Feb 2017 A1
20170036872 Wallace Feb 2017 A1
20170037717 Oehring Feb 2017 A1
20170037718 Coli et al. Feb 2017 A1
20170043280 Vankouwenberg Feb 2017 A1
20170051732 Hemandez et al. Feb 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170096885 Oehring Apr 2017 A1
20170104389 Morris et al. Apr 2017 A1
20170114625 Norris Apr 2017 A1
20170130743 Anderson May 2017 A1
20170138171 Richards et al. May 2017 A1
20170145918 Oehring May 2017 A1
20170146189 Herman May 2017 A1
20170159570 Bickert Jun 2017 A1
20170159654 Kendrick Jun 2017 A1
20170175516 Eslinger Jun 2017 A1
20170218727 Oehring Aug 2017 A1
20170218843 Oehring Aug 2017 A1
20170222409 Oehring Aug 2017 A1
20170226838 Ciezobka Aug 2017 A1
20170226839 Broussard Aug 2017 A1
20170226842 Omont et al. Aug 2017 A1
20170234250 Janik Aug 2017 A1
20170241221 Seshadri Aug 2017 A1
20170259227 Morris et al. Sep 2017 A1
20170292513 Haddad Oct 2017 A1
20170313499 Hughes et al. Nov 2017 A1
20170314380 Oehring Nov 2017 A1
20170314979 Ye et al. Nov 2017 A1
20170328179 Dykstra Nov 2017 A1
20170369258 DeGaray Dec 2017 A1
20180028992 Stegemoeller Feb 2018 A1
20180038216 Zhang Feb 2018 A1
20180045331 Lopez Feb 2018 A1
20180156210 Oehring Jun 2018 A1
20180183219 Oehring Jun 2018 A1
20180216455 Andreychuk Aug 2018 A1
20180238147 Shahri Aug 2018 A1
20180245428 Richards Aug 2018 A1
20180258746 Broussard Sep 2018 A1
20180266412 Stokkevag Sep 2018 A1
20180274446 Oehring Sep 2018 A1
20180291713 Jeanson Oct 2018 A1
20180320483 Zhang Nov 2018 A1
20180343125 Clish Nov 2018 A1
20180363437 Coli Dec 2018 A1
20190003329 Morris Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190055827 Coli Feb 2019 A1
20190063309 Davis Feb 2019 A1
20190100989 Stewart Apr 2019 A1
20190112910 Oehring Apr 2019 A1
20190119096 Haile Apr 2019 A1
20190120024 Oehring Apr 2019 A1
20190128080 Ross May 2019 A1
20190162061 Stephenson May 2019 A1
20190169971 Oehring Jun 2019 A1
20190178057 Hunter Jun 2019 A1
20190178235 Coskrey Jun 2019 A1
20190203567 Ross Jul 2019 A1
20190203572 Morris Jul 2019 A1
20190211661 Reckels Jul 2019 A1
20190226317 Payne Jul 2019 A1
20190245348 Hinderliter Aug 2019 A1
20190292866 Ross Sep 2019 A1
20190292891 Kajaria Sep 2019 A1
20190316447 Oehring Oct 2019 A1
20200047141 Oehring et al. Feb 2020 A1
20200088152 Allion et al. Mar 2020 A1
20200232454 Chretien Jul 2020 A1
Foreign Referenced Citations (62)
Number Date Country
2007340913 Jul 2008 AU
2011203353 Jul 2011 AU
2158637 Sep 1994 CA
2406801 Nov 2001 CA
2653069 Dec 2007 CA
2707269 Dec 2010 CA
2482943 May 2011 CA
3050131 Nov 2011 CA
2773843 Oct 2012 CA
2845347 Oct 2012 CA
2955706 Oct 2012 CA
2966672 Oct 2012 CA
3000322 Apr 2013 CA
2787814 Feb 2014 CA
2833711 May 2014 CA
2978706 Sep 2016 CA
2944980 Feb 2017 CA
3006422 Jun 2017 CA
3018485 Aug 2017 CA
2964593 Oct 2017 CA
2849825 Jul 2018 CA
3067854 Jan 2019 CA
2919649 Feb 2019 CA
2919666 Jul 2019 CA
2797081 Sep 2019 CA
2945579 Oct 2019 CA
101639059 Feb 2010 CN
201687513 Dec 2010 CN
101977016 Feb 2011 CN
201730812 Feb 2011 CN
201819992 May 2011 CN
201925157 Aug 2011 CN
202023547 Nov 2011 CN
202157824 Mar 2012 CN
102602322 Jul 2012 CN
202406331 Aug 2012 CN
202463670 Oct 2012 CN
202500735 Oct 2012 CN
202545207 Nov 2012 CN
103095209 May 2013 CN
102758604 Dec 2014 CN
205986303 Feb 2017 CN
108049999 May 2018 CN
3453827 Mar 2019 EP
3456915 Mar 2019 EP
2004264589 Sep 2004 JP
3626363 Mar 2005 JP
2008263774 Oct 2008 JP
2012-117371 Jun 2012 JP
20100028462 Mar 2010 KR
48205 Sep 2005 RU
98193 Oct 2010 RU
2421605 Jun 2011 RU
9320328 Oct 1993 WO
9853182 Nov 1998 WO
2008136883 Nov 2008 WO
2009023042 Feb 2009 WO
2011127305 Oct 2011 WO
2012122636 Sep 2012 WO
2012137068 Oct 2012 WO
2016144939 Sep 2016 WO
2016160458 Oct 2016 WO
Non-Patent Literature Citations (150)
Entry
International Search Report and Written Opinion dated Jul. 9, 2019 in corresponding PCT Application No. PCT/US2019/027584.
Office Action dated Jun. 11, 2019 in corresponding U.S. Appl. No. 16/210,749.
Office Action dated May 10, 2019 in corresponding U.S. Appl. No. 16/268,030.
Canadian Office Action dated May 30, 2019 in corresponding CA Application No. 2,833,711.
Canadian Office Action dated Jun. 20, 2019 in corresponding CA Application No. 2,964,597.
Office Action dated Jun. 7, 2019 in corresponding U.S. Appl. No. 16/268,030.
International Search Report and Written Opinion dated Sep. 11, 2019 in related PCT Application No. PCT/US2019/037493.
Office Action dated Aug. 19, 2019 in related U.S. Appl. No. 15/356,436.
Office Action dated Oct. 2, 2019 in related U.S. Appl. No. 16/152,732.
Office Action dated Sep. 11, 2019 in related U.S. Appl. No. 16/268,030.
Office Action dated Oct. 11, 2019 in related U.S. Appl. No. 16/385,070.
Office Action dated Sep. 3, 2019 in related U.S. Appl. No. 15/994,772.
Office Action dated Sep. 20, 2019 in related U.S. Appl. No. 16/443,273.
Danadian Office Action dated Oct. 1, 2019 in related Canadian Patent Application No. 2,936,997.
International Search Report and Written Opinion dated Apr. 10, 2019 in corresponding PCT Application No. PCT/US2019/016635.
Notice of Allowance dated Apr. 23, 2019 in corresponding U.S. Appl. No. 15/635,028.
Schlumberger, “Jet Manual 23, Fracturing Pump Units, SPF/SPS-343, Version 1.0,” Jan. 31, 2007, 68 pages.
Stewart & Stevenson, “Stimulation Systems,” 2007, 20 pages.
Luis Gamboa, “Variable Frequency Drives in Oil and Gas Pumping Systems,” Dec. 17, 2011, 5 pages.
“Griswold Model 811 Pumps: Installation, Operation and Maintenance Manual, ANSI Process Pump,” 2010, 60 pages.
Non-Final Office Action issued in U.S. Appl. No. 14/881,535 dated May 20, 2020.
Non-Final Office Action issued in U.S. Appl. No. 15/145,443 dated May 8, 2020.
Non-Final Office Action issued in U.S. Appl. No. 16/458,696 dated May 22, 2020.
International Search Report and Written Opinion issued in PCT/US2020/023809 dated Jun. 2, 2020.
Karin, “Duel Fuel Diesel Engines,” (2015), Taylor & Francis, pp. 62-63, Retrieved from https://app.knovel.com/hotlink/toc/id:kpDFDE0001/dual-fueal-diesel-engines/duel-fuel-diesel-engines (Year 2015).
Goodwin, “High-voltage auxilliary switchgear for power stations,” Power Engineering Journal, 1989, 10 pg. (Year 1989).
Office Action dated Dec. 12, 2018 in related U.S. Appl. No. 16/160,708.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54542.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54548.
International Search Report and Written Opinion dated Dec. 31, 2018 in related PCT Patent Application No. PCT/US18/55913.
International Search Report and Written Opinion dated Jan. 4, 2019 in related PCT Patent Application No. PCT/US18/57539.
International Search Report and Written Opinion dated Jan. 2, 2020 in related PCT Application No. PCT/US19/55325.
Notice of Allowance dated Jan. 9, 2020 in related U.S. Appl. No. 16/570,331.
Non-Final Office Action dated Dec. 23, 2019 in related U.S. Appl. No. 16/597,008.
Non-Final Office Action dated Jan. 10, 2020 in related U.S. Appl. No. 16/597,014.
Non-Final Office Action dated Dec. 6, 2019 in related U.S. Appl. No. 16/564,186.
International Search Report and Written Opinion dated Nov. 26, 2019 in related PCT Application No. PCT/US19/51018.
International Search Report and Written Opinion dated Feb. 11, 2020 in related PCT Application No. PCT/US2019/055323.
UK Power Networks—Transformers to Supply Heat to Tate Modern—from Press Releases May 16, 2013.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/293,681 dated Feb. 16, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Mar. 14, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Jan. 20, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,443 dated Feb. 7, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 15/217,040 dated Mar. 28, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 14/622,532 dated Mar. 27, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/291,842 dated Jan. 6, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 7, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated May 17, 2016.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 21, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Aug. 5, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 12, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/217,040 dated Nov. 29, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/235,788 dated Dec. 14, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated May 15, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/486,970 dated Jun. 22, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,656 dated Jun. 23, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,694 dated Jun. 26, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Jul. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/884,363 dated Sep. 5, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/881,535 dated Oct. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,414 dated Nov. 29, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/644,487 dated Nov. 13, 2017.
Canadian Office Action dated Mar. 2, 2018 in related Canadian Patent Application No. 2,833,711.
Office Action dated Apr. 10, 2018 in related U.S. Appl. No. 15/294,349.
Office Action dated Apr. 2, 2018 in related U.S. Appl. No. 15/183,387.
Office Action dated May 29, 2018 in related U.S. Appl. No. 15/235,716.
Candian Office Action dated Apr. 18, 2018 in related Canadian Patent Application No. 2,928,711.
Canadian Office Action dated Jun. 22, 2018 in related Canadian Patent Application No. 2,886,697.
Office Action dated Jul. 25, 2018 in related U.S. Appl. No. 15/644,487.
Office Action dated Oct. 4, 2018 in related U.S. Appl. No. 15/217,081.
International Search Report and Written Opinion dated Sep. 19, 2018 in related PCT Patent Application No. PCT/US2018/040683.
Canadian Office Action dated Sep. 28, 2018 in related Canadian Patent Application No. 2,945,281.
Non-Final Office Action dated Feb. 12, 2019 in related U.S. Appl. No. 16/170,695.
International Search Report and Written Opinion dated Feb. 15, 2019 in related PCT Application No. PCT/US18/63977.
Non-Final Office Action dated Feb. 25, 2019 in related U.S. Appl. No. 16/210,749.
International Search Report and Written Opinion dated Mar. 5, 2019 in related PCT Application No. PCT/US18/63970.
Non-Final Office Action dated Mar. 6, 2019 in related U.S. Appl. No. 15/183,387.
Office Action dated Mar. 1, 2019 in related Canadian Patent Application No. 2,943,275.
Office Action dated Jan. 30, 2019 in related Canadian Patent Application No. 2,936,997.
Non-Final Office Action dated Mar. 31, 2020 in U.S. Appl. No. 15/356,436.
Final Office Action dated Mar. 3, 2020 in U.S. Appl. No. 16/152,695.
International Search Report and Written Opinion dated Jun. 2, 2020 in corresponding PCT Application No. PCT/ US20/23809.
International Search Report and Written Opinion dated Jun. 23, 2020 in corresponding PCT Application No. PCT/US20/23912.
International Search Report and Written Opinion dated Jul. 22, 2020 in corresponding PCT Application No. PCT/US20/00017.
Office Action dated Aug. 4, 2020 in related U.S. Appl. No. 16/385,070.
Office Action dated Jun. 29, 2020 in related U.S. Appl. No. 16/404,283.
Office Action dated Jun. 29, 2020 in related U.S. Appl. No. 16/728,359.
Office Action dated Jun. 22, 2020 in related U.S. Appl. No. 16/377,861.
Canadian Office Action dated Aug. 18, 2020 in related CA Patent Application No. 2,933,444.
Canadian Office Action dated Aug. 17, 2020 in related CA Patent Application No. 2,944,968.
Berets, “Berets Oil Equipment,” accessed Sep. 4, 2020, 158 pages.
Andrew Howard Nunn, “The feasibility of natural gas as a fuel source for modern land-based drilling,” Dec. 2011, 94 pages.
R. Saidur, “Applications of variable speed drive (VSD) in electrical motors energy savings,” 2012, vol. 16, pp. 543-550.
Discenzo, “Next Generation Pump Systems Enable New Opportunities for Asset Management and Economic Optimization,” accessed Sep. 4, 2020, 8 pages.
Nikolich, “Compressors, pumps, refrigeration equipment: improvement and specialization of piston pumps for oil and gas well-drilling and production operations,” 1996, Chemical and Petroleum Engineering, vol. 32, pp. 157-162.
Finger, “Sandia National Handbook Laboratories Report: Slimhole handbook: procedures and recommendations for slimhole drilling and testing in geothermal exploration,” Oct. 1999, 164 pages.
Steve Besore, MTU Detroit Diesel Inc., “How to select generator sets for today's oil and gas drill rigs: careful comparison and selection can improve performance and reduce costs,” May 5, 2010, 4 pages, https://www.mtu-online.com/fileadmin/fm-dam/mtu-usa/mtuinnorthamerica/white-papers/WhitePaper_EDP.pdf.
Pemberton, “Strategies for Optimizing pump efficiency and LCC performance: process pumps are the largest consumers of energy in a typical pulp and paper mill—boosting their efficiency is a new avenue to reduced plant operating costs,” Jun. 2003, Paper Age, pp. 28-32.
Robert B. Thompson, “Optimizing the production system using real-time measurements: a piece of the digital oilfield puzzle,” Nov. 11-14, 2007, Spe Annual Technical Conference and Exhibition, Anaheim, CA, pp. 1-10.
Guffey, “Field testing of variable-speed beam-pump computer control,” May 1991, SPE Production Engineering, pp. 155-160.
Irvine, “The use of variable frequency drives as a final control in the petroleum industry,” 2000, IEEE, pp. 2749-2758.
R. Ikeda et al., “Hydraulic fracturing technique: pore pressure effect and stress heterogeneity,” 1989, Int. J. Rock Mech. Min. Sci. & Geomech, vol. 26, No. 6, pp. 471-475.
Coli Patent Application, “Mobile, modular, electrically powered system for use in fracturing underground formations,” filed Apr. 7, 2011, 28 pages.
Gardner Denver—Well Servicing Pump Model GD-2500Q, GD-25000-HD, Quintuplex Pumps, GWS Fluid End Parts List, Jul. 2011, 39 pages.
Gardner Denver C-2500 Quintuplex Well Service Pump, 2013, 2 pages.
Toshiba 2011 Industrial Catalog, Drives, PAC, PLCs, 2011, 272 pages.
Gardner Denver GD-2500 Quintuplex Well Service Pump, 2003, 2 pages.
Gardner Denver GD-25000 Quintuplex Well Service Pump Operating and Service Manual, Aug. 2005, 46 pages.
Gardner Denver GD-25000 Quintuplex Well Service Pump Power End Parts List, Apr. 2007, 15 pages.
Toshiba H9 ASD Installation and Operation Manual, Mar. 2011, 287 pages.
Offshore Technology Conference, Houston, TX, Apr. 30-May 3, 2012, Honghua Group Brochure and Pictures, 6 pages.
Charlotte Owen, “Chinese company launches new tracking rigs,” May 2, 2012, Oil & Gas Technology Magazine, 2 pages.
ABB Group, MV Drive benefits for shale gas applications, Powerpoint, Apr. 2012, 16 pages.
U.S. Well Services, Game-changing hydraulic fracturing technology, reduces emissions by 99%: U.S. Well Services's patented clean fleet technology proven to cut emission, save fuel and allow for quieter operations on site, Oct. 1, 2014, 3 pages.
Asme, Hydraulic Fracturing's Greener Tint, Jan. 11, 2018, 2 pages.
Fluid Power, Clean Fleet Reduces Emissions by 99% at Hydraulic Fracturing Sites, Jan. 11, 2005, 3 pages.
Louisiana State University, Petroleum alumnus and team develop mobile fracturing unit that alleviates environmental Impact, LSU School of EE & CS, Nov. 2012, 2 pages.
Linda Kane, Energy pipeline: US Well Services brings clean fleet to Weld County, Nov. 4, 2015, Greeley Tribute, 1 pages.
Business Wire, Hunghua Group showcases shale gas, offshore and land drilling solutions at the 2013 Offshore Technology Conference, May 6, 2013, 2 pages.
Joanne Liou, Hunghua Group introduces 6,000-hp integrated shale gas system, Drilling Matters, May 21, 2012, 2 pages.
Tess Record—Trademark for Clean Fleet registered Sep. 5, 2013, accessed Jan. 14, 2020, 2 pages.
U.S. Well Services, About U.S. Well Services, accessed Jan. 14, 2020, 14 pages.
Unknown, “Improving the Drilling Cycle,” Oilfield Technology, Dec. 2009, vol. 2, Issue 9, 5 pages.
Unknown, “Andon (manufacturing),” last edited Sep. 8, 2019, https://en.wikipedia.org/w/index.php?title=Andon_38 (manufacturing)&oldid=914575778, 2 pages.
S.K. Subramaniam, “Production monitoring system for monitoring the industrial shop floor performance,” 2009, International Journal of Systems Applications, Engineering & Development, vol. 3, Issue 1, pp. 28-35.
Unknown, Evolution Well Services advances fracturing operations with an electrically powered system,Calgary PR Newswire, Jun. 4, 2012, 2 pages.
Honghua Group, Honghua Shale Gas Solutions Power Point Slides, Feb. 2012, 41 pages.
Mactel, Frac Test with VFDs Final Report Hydraulic Fracturing Pilot Test Results and Preliminary Full Scale Design United Nuclear Church Rock Facility, Dec. 23, 2003, 73 pages.
Jon Gates, ASME Hydraulic Fracturing Conference, Mar. 24, 2015, http://www.otrglobal.com/newsroom/cnotes/128720, 6 pages.
Gardner Denver Well Servicing Pump Model C2500Q Quintuplex Operating and Service Manual, Apr. 2011, 46 pages.
Coli, Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas, Oct. 5, 2012, U.S. Appl. No. 61/710,393, 59 pages.
Toshiba, G9 Brochure—G9 Series Adjustable Speed Drives, Jun. 2007, 6 pages.
Luis Gamboa, “Variable Frequency Drives in Oil and Gas Pumping Systems,” Pumps & Systems, Dec. 17, 2011,48 https://www.pumpsandsystems.com/variable-frequency-drives-oil-and-gas-pumping-systems, 5 pages.
Unknown, “U.S. Well Services for Antero Fracking,” Oct. 3, 2014, HHP Insight, http://hhpinsight.com/epoperations/2014/10/u-s-well-services-for-antero-fracking/, 3 pages.
Stuart H. Loewenthal, Design of Power-Transmitting Shafts, NASA Reference Publication 1123, Jul. 1984, 30 pages.
Non-Final Office dated Oct. 26, 2020 in U.S. Appl. No. 15/356,436.
Non-Final Office dated Oct. 5, 2020 in U.S. Appl. No. 16/443,273.
Non-Final Office Action dated Sep. 29, 2020 in U.S. Appl. No. 16/943,727.
Non-Final Office Action dated Sep. 2, 2020 in U.S. Appl. No. 16/356,263.
Non-Final Office Action dated Aug. 31, 2020 in U.S. Appl. No. 16/167,083.
Albone, “Mobile Compressor Stations for Natural Gas Transmission Service,” ASME 67-GT-33, Turbo Expo, Power for Land, Sea and Air, vol. 79887, pp. 1-10, 1967.
Canadian Office Action dated Sep. 22, 2020 in Canadian Application No. 2,982,974.
International Search Report and Written Opinion dated Sep. 3, 2020 in PCT/US2020/36932.
“Process Burner” (https://www.cebasrt.com/productsloii-gaslprocess-bumer) 06 Sep. 6, 2018 (Sep. 6, 2018), entire document, especially para [Burners for refinery Heaters].
Water and Glycol Heating Systems (https://www.heat-inc.com/wg-series-water-glycol-systems/) Jun. 18, 2018 (Jun. 18, 2018), entire document, especially WG Series Water Glycol Systems.
“Heat Exchanger” (https://en.wikipedia.org/w/index.php?title=Heat_exchanger&oldid=89300146) Dec. 18, 2019 Apr. 2019 (Apr. 18, 2019), entire document, especially para (0001].
Canadian Office Action dated Sep. 8, 2020 in Canadian Patent Application No. 2,928,707.
Canadian Office Action dated Aug. 31, 2020 in Canadian Patent Application No. 2,944,980.
International Search Report and Written Opinion dated Aug. 28, 2020 in PCT/US20/23821.
Related Publications (1)
Number Date Country
20190040727 A1 Feb 2019 US
Provisional Applications (1)
Number Date Country
62156306 May 2015 US
Continuations (1)
Number Date Country
Parent 15145414 May 2016 US
Child 16158756 US
Continuation in Parts (1)
Number Date Country
Parent 13679689 Nov 2012 US
Child 15145414 US