Not applicable
Not applicable
1. Field of the Invention
The present invention relates to keel coolers. More particularly, the present invention relates to a system for insuring that a keel cooler is properly sealed to the hull of a vessel, and compensating for any misalignment in the openings in the vessel hull and the nozzles on the keel cooler using bushings having eccentric wall thicknesses.
2. General Background
Keel coolers have been used for decades as a device for cooling a vessel's engine water in order to prevent the engine from overheating. The most common type of keel cooler, and one which has dominated the industry for decades, is a keel cooler manufactured by R. W. Fernstrum & Company, and which was the subject of U.S. Pat. No. 2,382,218 issued on Aug. 14, 1945. That keel cooler which is currently being sold today provides a heat exchanger portion positioned between a pair of header portions, each header having a threaded pipe connection for connecting onto the water cooling system of a vessel's engine when the keel cooler is secured to a marine hull structure. The keel cooler heat exchanger portion includes a plurality of parallel heat conduction tubes extending between the headers, so that as heated engine water enters into a first threaded pipe through the first header, the water travels through the plurality of spaced apart heating tubes. The heating tubes are submerged in the water in which the vessel is moored, so that as the hot engine water runs through the headers and the tubes, it exits through the second header, having exchanged a great deal of heat from the engine water into the surrounding ambient water. This type of heat exchanger is a very efficient, compact and dependable heat exchanger, hence its industry dominance for the past fifty years.
In mounting keel coolers to vessel hulls ideally the openings in the hull are precisely spaced so as to engage in fluid tight engagement the nozzles of the keel cooler being mounted. However, through human error, often times the openings are a millimeters off in spaced apart alignment, so that when the nozzles are inserted, there is less than a fluid tight fit, which creates leakage and other problems in setting the alignment straight. Therefore, there is a need in the industry to solve this very common problem.
What is provided is an improved system for sealing a keelcooler to a hull of a vessel, including a keel cooler for mounting onto the vessel hull, of the type including a plurality of flow channels for exchanging heat between the vessel water flowing in the channels and the surrounding sea water; nozzles extending from first and second ends of the keelcooler, for allowing the water to flow between the vessel and the keelcooler, each nozzle including at least one o-ring positioned on its outer wall; companion fittings mounted on the vessel hull, each fitting including at least one o-ring positioned on its inner wall, and including an opening for receiving each nozzle of the keel cooler; a bushing positionable between each nozzle and each fitting, for allowing the o-ring of each nozzle and the o-ring of each fitting to seal against the inner and outer walls of each bushing; and each bushing further including an eccentric circular wall, insertable between each nozzle and each fitting so that in the event the fitting openings on the hull are not precisely the same distance apart as the nozzle openings on the keel cooler, the bushing is rotatable until the eccentric wall fully engages the o-rings of each nozzle and each fitting to define a complete fluid seal there between.
In other embodiments, the bushing would have the o-rings positioned in its walls, or the outer wall of the bushing would have o-rings, as would the outer wall of the nozzle of the keel cooler to effect the seal between the keel cooler and the vessel hull.
Therefore, it is a principal object of the present invention to provide an improved mounting for a keel cooler which facilitates fluid tight seals between the keel cooler and the hull of the ship in spite of slight discrepancies in the distance between the openings in the hull.
It is a further object of the present invention to provide an improved method to mount a keel cooler to a vessel hull through the use of an eccentric bushing to compensate for any discrepancy in the distance between the companion fittings on the vessel hull.
It is a further object of the present invention to provide the improved assembly to mount a keel cooler to a vessel hull wherein a bushing on each keel cooler nozzle defines a rotational eccentric configuration which seals by rotating of the bushing until the fluid seal is attained.
For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein:
Turning now to the preferred embodiment in
There is further provided companion fittings 30 mounted on the vessel hull 14, each fitting 30 having an outer wall 31, and including at least one o-ring 24 positioned on its inner wall 28; although in the preferred embodiment three o-rings would be utilized. Each fitting 30 would include an opening 32 for receiving each nozzle 22 of the keel cooler 12.
As seen in
As seen clearly in
It should be noted that in
In
For a more full understanding of the important function of the bushing 40 as it functions in each of the four embodiments, reference is made to
Now turning to
As seen in the
Stated another way, this eccentric wall thickness of the bushing wall 41 would allow that once the bushing 40 is set in place between the nozzles 22 and companion fittings 30, the rotation of bushing 40 provides a means to fill any gap between the bushing 40 and nozzles 22 and companion fittings 30 which may be the result of slightly off target openings in the ship's hull 14, and upon rotation of bushing 40, a fluid tight seal is then formed between the bushing 40, the nozzles 22 and the companion fittings 30 through o-rings 24. The bushings 40, once in place, may be rotated manually or rotated through natural movement as the nozzles 22 are fitted into the companion fittings 30 so that if there is a gap created between the walls of the three fittings, the rotation of the bushings 40 would naturally fill that gap and would allow there to ultimately be a fluid tight seal as seen by arrows 62, in
For purposes of construction, although o-rings are discussed in the specification, any flexible sealing member could be utilized as long as it effected the necessary fluid seal. Likewise the materials may be any type of metal or other materials in the components of the system.
The following is a list of parts and materials suitable for use in the present invention.
All measurements disclosed herein are at standard temperature and pressure, at sea level on Earth, unless indicated otherwise.
The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims.
This application claims priority from provisional patent application No. 60/956,786, filed Aug. 20, 2007 incorporated herein by reference, is hereby claimed.
Number | Name | Date | Kind |
---|---|---|---|
1000310 | Ward | Aug 1911 | A |
2258526 | Walter | Oct 1941 | A |
2382218 | Fernstrum | Aug 1945 | A |
2415154 | Walter | Feb 1947 | A |
2612858 | Mairs | Oct 1952 | A |
2682852 | Ruffolo | Jul 1954 | A |
2914012 | Godfrey et al. | Nov 1959 | A |
3177936 | Walter | Apr 1965 | A |
3561524 | Satterthwaite et al. | Feb 1971 | A |
4040476 | Telle et al. | Aug 1977 | A |
4043289 | Walter | Aug 1977 | A |
4338993 | Fernstrum | Jul 1982 | A |
4557319 | Arnold | Dec 1985 | A |
5931217 | Fernstrum | Aug 1999 | A |
6099373 | Fernstrum | Aug 2000 | A |
6575227 | Leeson et al. | Jun 2003 | B1 |
6830218 | Kordel et al. | Dec 2004 | B2 |
Number | Date | Country |
---|---|---|
322789 | Jul 1920 | DE |
434907 | Sep 1935 | GB |
505874 | Jul 1974 | SU |
Number | Date | Country | |
---|---|---|---|
60956786 | Aug 2007 | US |