Embodiments of the present invention relate to circuits for providing operational voltages in complementary metal-oxide semiconductor (CMOS) circuits. In particular, embodiments of the present invention relate to a charge pump circuit with a variable output.
As the operating voltages for CMOS transistor circuits have decreased, variations in the threshold voltages for the transistors have become more significant. Although low operating voltages offer the potential for reduced power consumption, threshold voltage variations due to process and environmental variables often prevent optimum efficiency and performance from being achieved due to increased leakage currents.
Prior Art
Threshold voltage variations may be compensated for by body-biasing. Body-biasing introduces a reverse bias potential between the bulk and the source of the transistor that allows the threshold voltage of the transistor to be adjusted electrically. The purpose of body-biasing is to compensate for 1) process variations; 2) temperature variations; 3) supply voltage variations; 4) changes in frequency of operation; and 5) changing levels of switching activity.
Prior Art
In integrated circuits that employ body-biasing, the transistors are effectively four terminal devices, and the substrate potential is not be maintained at ground. When the substrate bias supply (e.g., VBBP) is off the substrate potential may float.
A floating substrate potential can be a problem during the initial application of power to an integrated circuit. When a body-bias (e.g., VBBN) is initially applied to an N-well, leakage to the substrate from that N-well may cause the substrate potential to rise. This rise in substrate potential can forward bias the junction between the substrate and N-wells that are not connected to VBBN, causing undesired current flow.
Thus, a need exists for a system for preventing undesired current flow during power-up in integrated circuits that employ body-biasing.
Accordingly, embodiments of the present invention provide a switch or clamp that responds to conditions at power-up and prevents a circuit substrate from floating.
In one embodiment of the present invention, a bias input (VBBN) to an N-well is coupled to a control input for a single-pole, double-throw switch that couples an integrated circuit substrate to ground or to a bias voltage supply (VBBP) When VBBN is on and VBBP is off, the switch couples the substrate to ground. When VBBP is on, the switch couples the substrate to VBBP.
In another embodiment of the present invention, a bias input (VBBN) to an N-well is coupled to a control input for a single-pole, double-throw switch. The switch also has a control input coupled to a charge pump enable signal line (CPENABLE). When VBBN is high and CPENABLE is low, the switch couples the substrate to ground. CPENABLE is high, the switch is open.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:
Prior Art
Prior Art
In the following detailed description of the present invention, a variable output charge pump circuit, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one skilled in the art that the present invention may be practiced without these specific details. In other instances well known methods, procedures, components, and circuit elements have not been described in detail as not to unnecessarily obscure aspects of the present invention.
Switch 320 acts as a single-pole, double-throw (SPDT) switch, selectively and electrically coupling the substrate 305 to body bias VBBP 380 or ground, depending upon the state of bias supply lines VBBN2 360, VBBN2 370, and VBBP 380. If VBBN2 360 (or VBBN2 370 if present) is high and VBBP 380 is off, the switch 320 electrically couples the substrate 305 to ground. By electrically coupling the substrate to ground, the switch prevents the substrate from floating up to a potential that could forward bias the junction between the substrate and an unbiased N-well in the integrated circuit.
Operating power is supplied to the switch 320 by a small auxiliary charge pump (not shown) rather than one of the bias lines, since it is desirable that the switch be able to operate regardless of the state of the bias lines.
If VBBP 380 is on (e.g., −1.2 volts) and VBBN1 360 (or VBBN2 370 if present) is high, the switch 320 couples the substrate to VBBP 380. For the case when VBBP 380 is on while VBBN1 360 and VBBN2 370 are low, the switch may be built to switch the substrate to either VBBP 380 or to ground, depending upon other design considerations. For all possible bias input combinations, the switch 320 provides a regulated substrate potential that prevents undesirable forward biasing of the substrate/N-well junction.
For all possible bias input combinations, the switch 320 provides a regulated substrate potential that prevents undesirable forward biasing of the substrate/N-well junction. The switch operates to electrically couple the substrate to a substrate bias voltage or to ground, in response to particular combinations of bias voltages on the N-well and substrate bias lines.
A charge pump 410 having a VBBP enable input is coupled to substrate 305. The VBBP enable input is also coupled to the switch 405 as a control input 408. The charge pump 410 provides the bias potential VBBP for the substrate 305.
Switch 405 acts as a single-pole, double-throw (SPDT) switch, coupling the substrate 305 to ground, depending upon the state of VBBN1, VBBN2, and VBBP enable. If VBBN1 (or VBBN2 if present) is high and VBBP enable is low, the switch 405 couples the substrate 305 to ground. By clamping the substrate to ground, the switch prevents the substrate from floating up to a potential that could forward bias the junction between the substrate and an unbiased N-well in the integrated circuit.
If VBBP enable is high and VBBN1(or VBBN2 if present) is high, the switch 405 isolates the substrate from ground. It is desirable that the switch 405 be sufficiently fast to isolate the substrate before the charge pump output reaches a significant value. In general, a charge pump turn-on will be slower than that of the switch 405.
Trace 505 shows the turn-on or enablement of the N-well bias supply VBBN1. The sharp edge is idealized, and corresponds to a logic signal initiating the application of VBBN1.
Trace 510 shows the voltage of the N-well rising from ground (GND) to VBBN1 over time as the capacitance associated junction between the substrate and well is charged. Since bias supplies typically have a low current demand under steady state conditions, the initial rise time is slower than that of trace 505 due to the limited current.
Trace 515 shows the turn-on or enablement of the P-type substrate bias supply VBBP. The sharp edge is idealized, and corresponds to a logic signal initiating the application of VBBP (e.g., the signal VBBP enable of
As shown by trace 520, the action of the substrate regulating switch of the present invention prevents the substrate potential from rising above ground. The substrate potential is maintained between ground and VBBP.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. For example, an integrated circuit having a P-type substrate and an N-well disposed therein is described. More generally, the invention may be used with a semiconductor substrate of either N-type or P-type having a complementary well disposed therein. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.
This patent application is a Continuation of U.S. patent application Ser. No. 10/712,523, filed on Nov. 12, 2003, entitled “SYSTEM FOR SUBSTRATE POTENTIAL REGULATION DURING POWER-UP IN INTEGRATED CIRCUITS”, by Fu et al., which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4798974 | Reczek et al. | Jan 1989 | A |
5086501 | DeLuca et al. | Feb 1992 | A |
5167024 | Smith et al. | Nov 1992 | A |
5201059 | Nguyen | Apr 1993 | A |
5204863 | Saint-Joigny et al. | Apr 1993 | A |
5218704 | Watts, Jr. et al. | Jun 1993 | A |
5230055 | Katz et al. | Jul 1993 | A |
5239652 | Seibert et al. | Aug 1993 | A |
5386135 | Nakazato et al. | Jan 1995 | A |
5422591 | Rastegar et al. | Jun 1995 | A |
5422806 | Chen et al. | Jun 1995 | A |
5430403 | Moyer et al. | Jul 1995 | A |
5440520 | Schutz et al. | Aug 1995 | A |
5461266 | Koreeda et al. | Oct 1995 | A |
5502838 | Kikinis | Mar 1996 | A |
5511203 | Wisor et al. | Apr 1996 | A |
5514939 | Schlager et al. | May 1996 | A |
5519309 | Smith | May 1996 | A |
5560020 | Nakatani et al. | Sep 1996 | A |
5592173 | Lau et al. | Jan 1997 | A |
5610533 | Arimoto et al. | Mar 1997 | A |
5682093 | Kivela | Oct 1997 | A |
5717319 | Jokinen | Feb 1998 | A |
5719800 | Mittal et al. | Feb 1998 | A |
5727208 | Brown | Mar 1998 | A |
5745375 | Reinhardt et al. | Apr 1998 | A |
5752011 | Thomas et al. | May 1998 | A |
5754869 | Holzhammer et al. | May 1998 | A |
5757171 | Babcock | May 1998 | A |
5778237 | Yamamoto et al. | Jul 1998 | A |
5812860 | Horden et al. | Sep 1998 | A |
5815724 | Mates | Sep 1998 | A |
5825674 | Jackson | Oct 1998 | A |
5848281 | Smalley et al. | Dec 1998 | A |
5854561 | Arimoto et al. | Dec 1998 | A |
5884049 | Atkinson | Mar 1999 | A |
5894577 | MacDonald et al. | Apr 1999 | A |
5923545 | Nguyen | Jul 1999 | A |
5933649 | Lim et al. | Aug 1999 | A |
5940785 | Georgiou et al. | Aug 1999 | A |
5940786 | Steeby | Aug 1999 | A |
5974557 | Thomas et al. | Oct 1999 | A |
5996083 | Gupta et al. | Nov 1999 | A |
5996084 | Watts | Nov 1999 | A |
6035407 | Gebara et al. | Mar 2000 | A |
6047248 | Georgiou et al. | Apr 2000 | A |
6048319 | Hudgins et al. | Apr 2000 | A |
6048746 | Burr | Apr 2000 | A |
6087892 | Burr | Jul 2000 | A |
6091283 | Murgula et al. | Jul 2000 | A |
6118306 | Orton et al. | Sep 2000 | A |
6119241 | Michail et al. | Sep 2000 | A |
6157092 | Hofmann | Dec 2000 | A |
6202104 | Ober | Mar 2001 | B1 |
6216235 | Thomas et al. | Apr 2001 | B1 |
6218708 | Burr | Apr 2001 | B1 |
6272642 | Pole, II et al. | Aug 2001 | B2 |
6279048 | Fadavi-Ardekani et al. | Aug 2001 | B1 |
6304824 | Bausch et al. | Oct 2001 | B1 |
6311287 | Dischler et al. | Oct 2001 | B1 |
6314522 | Chu et al. | Nov 2001 | B1 |
6345363 | Levy-Kendler | Feb 2002 | B1 |
6347379 | Dai et al. | Feb 2002 | B1 |
6378081 | Hammond | Apr 2002 | B1 |
6388432 | Uchida | May 2002 | B2 |
6415388 | Browning et al. | Jul 2002 | B1 |
6427211 | Watts, Jr. | Jul 2002 | B2 |
6442746 | James et al. | Aug 2002 | B1 |
6457135 | Cooper | Sep 2002 | B1 |
6466077 | Miyazaki et al. | Oct 2002 | B1 |
6477654 | Dean et al. | Nov 2002 | B1 |
6486727 | Kwong | Nov 2002 | B1 |
6487668 | Thomas et al. | Nov 2002 | B2 |
6489224 | Burr | Dec 2002 | B1 |
6510400 | Moriyama | Jan 2003 | B1 |
6510525 | Nookala et al. | Jan 2003 | B1 |
6513124 | Furuichi et al. | Jan 2003 | B1 |
6518825 | Miyazaki et al. | Feb 2003 | B2 |
6519706 | Ogoro | Feb 2003 | B1 |
6574739 | Kung et al. | Jun 2003 | B1 |
6600346 | Macaluso | Jul 2003 | B1 |
6784722 | Tang et al. | Aug 2004 | B2 |
6791146 | Lai et al. | Sep 2004 | B2 |
6792379 | Ando | Sep 2004 | B2 |
6803633 | Mergens et al. | Oct 2004 | B2 |
6833750 | Miyazaki et al. | Dec 2004 | B2 |
6992508 | Chow | Jan 2006 | B2 |
7002397 | Kubo et al. | Feb 2006 | B2 |
20020026597 | Dai et al. | Feb 2002 | A1 |
20020073348 | Tani | Jun 2002 | A1 |
20020083356 | Dai | Jun 2002 | A1 |
20020087896 | Cline et al. | Jul 2002 | A1 |
20020113628 | Ajit | Aug 2002 | A1 |
20020116650 | Halepete et al. | Aug 2002 | A1 |
20020138778 | Cole et al. | Sep 2002 | A1 |
20020140494 | Thomas et al. | Oct 2002 | A1 |
20020194509 | Plante et al. | Dec 2002 | A1 |
20030014998 | Cabo | Jan 2003 | A1 |
20030036876 | Fuller, III et al. | Feb 2003 | A1 |
20030037008 | Raju et al. | Feb 2003 | A1 |
20030065960 | Rusu et al. | Apr 2003 | A1 |
20030074591 | McClendon et al. | Apr 2003 | A1 |
20030085751 | Miyazaki et al. | May 2003 | A1 |
20030218494 | Kubo et al. | Nov 2003 | A1 |
20040025061 | Lawrence | Feb 2004 | A1 |
20040073821 | Naveh et al. | Apr 2004 | A1 |
20050160465 | Walker | Jul 2005 | A1 |
20070206432 | Ishikawa et al. | Sep 2007 | A1 |
20100073075 | Fu et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
0381021 | Aug 1990 | EP |
0474963 | Mar 1992 | EP |
0501655 | Sep 1992 | EP |
409185589 | Jul 1997 | JP |
0127728 | Apr 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20100073076 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10712523 | Nov 2003 | US |
Child | 12628054 | US |