System for testing semiconductors

Information

  • Patent Grant
  • 7656172
  • Patent Number
    7,656,172
  • Date Filed
    Wednesday, January 18, 2006
    19 years ago
  • Date Issued
    Tuesday, February 2, 2010
    14 years ago
Abstract
A semiconductor testing system that includes an plural imaging devices for capturing plural video sequences from a single optical path and concurrently displaying the video sequences for effectively positioning a probe for testing a semiconductor wafer.
Description
BACKGROUND OF THE INVENTION

The present invention relates to a system that includes an imaging device for effectively positioning a probe for testing a semiconductor wafer.


Processing semiconductor wafers include processes which form a large number of devices within and on the surface of the semiconductor wafer (hereinafter referred to simply as “wafer”). After fabrication these devices are typically subjected to various electrical tests and characterizations. In some cases the electrical tests characterize the operation of circuitry and in other cases characterize the semiconductor process. By characterizing the circuitry and devices thereon the yield of the semiconductor process may be increased.


In many cases a probe station, such as those available from Cascade Microtech, Inc., are used to perform the characterization of the semiconductor process. With reference to FIGS. 1, 2 and 3, a probe station comprises a base 10 (shown partially) which supports a platen 12 through a number of jacks 14a, 14b, 14c, 14d which selectively raise and lower the platen vertically relative to the base by a small increment (approximately one-tenth of an inch) for purposes to be described hereafter. Also supported by the base 10 of the probe station is a motorized positioner 16 having a rectangular plunger 18 which supports a movable chuck assembly 20 for supporting a wafer or other test device. The chuck assembly 20 passes freely through a large aperture 22 in the platen 12 which permits the chuck assembly to be moved independently of the platen by the positioner 16 along X, Y and Z axes, i.e., horizontally along two mutually-perpendicular axes X and Y, and vertically along the Z axis. Likewise, the platen 12, when moved vertically by the jacks 14, moves independently of the chuck assembly 20 and the positioner 16.


Mounted atop the platen 12 are multiple individual probe positioners such as 24 (only one of which is shown), each having an extending member 26 to which is mounted a probe holder 28 which in turn supports a respective probe 30 for contacting wafers and other test devices mounted atop the chuck assembly 20. The probe positioner 24 has micrometer adjustments 34, 36 and 38 for adjusting the position of the probe holder 28, and thus the probe 30, along the X, Y and Z axes, respectively, relative to the chuck assembly 20. The Z axis is exemplary of what is referred to herein loosely as the “axis of approach” between the probe holder 28 and the chuck assembly 20, although directions of approach which are neither vertical nor linear, along which the probe tip and wafer or other test device are brought into contact with each other, are also intended to be included within the meaning of the term “axis of approach.” A further micrometer adjustment 40 adjustably tilts the probe holder 28 to adjust planarity of the probe with respect to the wafer or other test device supported by the chuck assembly 20. As many as twelve individual probe positioners 24, each supporting a respective probe, may be arranged on the platen 12 around the chuck assembly 20 so as to converge radially toward the chuck assembly similarly to the spokes of a wheel. With such an arrangement, each individual positioner 24 can independently adjust its respective probe in the X, Y and Z directions, while the jacks 14 can be actuated to raise or lower the platen 12 and thus all of the positioners 24 and their respective probes in unison.


An environment control enclosure is composed of an upper box portion 42 rigidly attached to the platen 12, and a lower box portion 44 rigidly attached to the base 10. Both portions are made of steel or other suitable electrically conductive material to provide EMI shielding. To accommodate the small vertical movement between the two box portions 42 and 44 when the jacks 14 are actuated to raise or lower the platen 12, an electrically conductive resilient foam gasket 46, preferably composed of silver or carbon-impregnated silicone, is interposed peripherally at their mating juncture at the front of the enclosure and between the lower portion 44 and the platen 12 so that an EMI, substantially hermetic, and light seal are all maintained despite relative vertical movement between the two box portions 42 and 44. Even though the upper box portion 42 is rigidly attached to the platen 12, a similar gasket 47 is preferably interposed between the portion 42 and the top of the platen to maximize sealing.


With reference to FIGS. 5A and 5B, the top of the upper box portion 42 comprises an octagonal steel box 48 having eight side panels such as 49a and 49b through which the extending members 26 of the respective probe positioners 24 can penetrate movably. Each panel comprises a hollow housing in which a respective sheet 50 of resilient foam, which may be similar to the above-identified gasket material, is placed. Slits such as 52 are partially cut vertically in the foam in alignment with slots 54 formed in the inner and outer surfaces of each panel housing, through which a respective extending member 26 of a respective probe positioner 24 can pass movably. The slitted foam permits X, Y and Z movement of the extending members 26 of each probe positioner, while maintaining the EMI, substantially hermetic, and light seal provided by the enclosure. In four of the panels, to enable a greater range of X and Y movement, the foam sheet 50 is sandwiched between a pair of steel plates 55 having slots 54 therein, such plates being slidable transversely within the panel housing through a range of movement encompassed by larger slots 56 in the inner and outer surfaces Atop the octagonal box 48, a circular viewing aperture 58 is provided, having a recessed circular transparent sealing window 60 therein. A bracket 62 holds an apertured sliding shutter 64 to selectively permit or prevent the passage of light through the window. A stereoscope (not shown) connected to a CRT monitor can be placed above the window to provide a magnified display of the wafer or other test device and the probe tip for proper probe placement during set-up or operation. Alternatively, the window 60 can be removed and a microscope lens (not shown) surrounded by a foam gasket can be inserted through the viewing aperture 58 with the foam providing EMI, hermetic and light sealing. The upper box portion 42 of the environment control enclosure also includes a hinged steel door 68 which pivots outwardly about the pivot axis of a hinge 70 as shown in FIG. 2A. The hinge biases the door downwardly toward the top of the upper box portion 42 so that it forms a tight, overlapping, sliding peripheral seal 68a with the top of the upper box portion. When the door is open, and the chuck assembly 20 is moved by the positioner 16 beneath the door opening as shown in FIG. 2A, the chuck assembly is accessible for loading and unloading.


With reference to FIGS. 3A and 4, the sealing integrity of the enclosure is likewise maintained throughout positioning movements by the motorized positioner 16 due to the provision of a series of four sealing plates 72, 74, 76 and 78 stacked slidably atop one another. The sizes of the plates progress increasingly from the top to the bottom one, as do the respective sizes of the central apertures 72a, 74a, 76a and 78a formed in the respective plates 72, 74, 76 and 78, and the aperture 79a formed in the bottom 44a of the lower box portion 44. The central aperture 72a in the top plate 72 mates closely around the bearing housing 18a of the vertically-movable plunger 18. The next plate in the downward progression, plate 74, has an upwardly-projecting peripheral margin 74b which limits the extent to which the plate 72 can slide across the top of the plate 74. The central aperture 74a in the plate 74 is of a size to permit the positioner 16 to move the plunger 18 and its bearing housing 18 a transversely along the X and Y axes until the edge of the top plate 72 abuts against the margin 74b of the plate 74. The size of the aperture 74a is, however, too small to be uncovered by the top plate 72 when such abutment occurs, and therefore a seal is maintained between the plates 72 and 74 regardless of the movement of the plunger 18 and its bearing housing along the X and Y axes. Further movement of the plunger 18 and bearing housing in the direction of abutment of the plate 72 with the margin 74b results in the sliding of the plate 74 toward the peripheral margin 76b of the next underlying plate 76. Again, the central aperture 76a in the plate 76 is large enough to permit abutment of the plate 74 with the margin 76b, but small enough to prevent the plate 74 from uncovering the aperture 76a, thereby likewise maintaining the seal between the plates 74 and 76. Still further movement of the plunger 18 and bearing housing in the same direction causes similar sliding of the plates 76 and 78 relative to their underlying plates into abutment with the margin 78b and the side of the box portion 44, respectively, without the apertures 78a and 79a becoming uncovered. This combination of sliding plates and central apertures of progressively increasing size permits a full range of movement of the plunger 18 along the X and Y axes by the positioner 16, while maintaining the enclosure in a sealed condition despite such positioning movement. The EMI sealing provided by this structure is effective even with respect to the electric motors of the positioner 16, since they are located below the sliding plates.


With particular reference to FIGS. 3A, 6 and 7, the chuck assembly 20 is a modular construction usable either with or without an environment control enclosure. The plunger 18 supports an adjustment plate 79 which in turn supports first, second and third chuck assembly elements 80, 81 and 83, respectively, positioned at progressively greater distances from the probe(s) along the axis of approach. Element 83 is a conductive rectangular stage or shield 83 which detachably mounts conductive elements 80 and 81 of circular shape. The element 80 has a planar upwardly-facing wafer-supporting surface 82 having an array of vertical apertures 84 therein. These apertures communicate with respective chambers separated by O-rings 88, the chambers in turn being connected separately to different vacuum lines 90a, 90b, 90c (FIG. 6) communicating through separately-controlled vacuum valves (not shown) with a source of vacuum. The respective vacuum lines selectively connect the respective chambers and their apertures to the source of vacuum to hold the wafer, or alternatively isolate the apertures from the source of vacuum to release the wafer, in a conventional manner. The separate operability of the respective chambers and their corresponding apertures enables the chuck to hold wafers of different diameters.


In addition to the circular elements 80 and 81, auxiliary chucks such as 92 and 94 are detachably mounted on the corners of the element 83 by screws (not shown) independently of the elements 80 and 81 for the purpose of supporting contact substrates and calibration substrates while a wafer or other test device is simultaneously supported by the element 80. Each auxiliary chuck 92, 94 has its own separate upwardly-facing planar surface 100, 102 respectively, in parallel relationship to the surface 82 of the element 80. Vacuum apertures 104 protrude through the surfaces 100 and 102 from communication with respective chambers within the body of each auxiliary chuck. Each of these chambers in turn communicates through a separate vacuum line and a separate independently-actuated vacuum valve (not shown) with a source of vacuum, each such valve selectively connecting or isolating the respective sets of apertures 104 with respect to the source of vacuum independently of the operation of the apertures 84 of the element 80, so as to selectively hold or release a contact substrate or calibration substrate located on the respective surfaces 100 and 102 independently of the wafer or other test device. An optional metal shield 106 may protrude upwardly from the edges of the element 83 to surround the other elements 80, 81 and the auxiliary chucks 92, 94.


All of the chuck assembly elements 80, 81 and 83, as well as the additional chuck assembly element 79, are electrically insulated from one another even though they are constructed of electrically conductive metal and interconnected detachably by metallic screws such as 96. With reference to FIGS. 3A and 3B the electrical insulation results from the fact that, in addition to the resilient dielectric O-rings 88, dielectric spacers 85 and dielectric washers 86 are provided. These, coupled with the fact that the screws 96 pass through oversized apertures in the lower one of the two elements which each screw joins together thereby preventing electrical contact between the shank of the screw and the lower element, provide the desired insulation. As is apparent in FIG. 3A, the dielectric spacers 85 extend over only minor portions of the opposing surface areas of the interconnected chuck assembly elements, thereby leaving air gaps between the opposing surfaces over major portions of their respective areas. Such air gaps minimize the dielectric constant in the spaces between the respective chuck assembly elements, thereby correspondingly minimizing the capacitance between them and the ability for electrical current to leak from one element to another. Preferably, the spacers and washers 85 and 86, respectively, are constructed of a material having the lowest possible dielectric constant consistent with high dimensional stability and high volume resistivity. A suitable material for the spacers and washers is glass epoxy, or acetyl homopolymer marketed under the trademark Delrin by E. I. DuPont.


With reference to FIGS. 6 and 7, the chuck assembly 20 also includes a pair of detachable electrical connector assemblies designated generally as 108 and 110, each having at least two conductive connector elements 108a, 108b and 110a, 110b, respectively, electrically insulated from each other, with the connector elements 108b and 110b preferably coaxially surrounding the connector elements 108a and 110a as guards therefor. If desired, the connector assemblies 108 and 110 can be triaxial in configuration so as to include respective outer shields 108c, 110c surrounding the respective connector elements 108b and 110b, as shown in FIG. 7. The outer shields 108c and 110c may, if desired, be connected electrically through a shielding box 112 and a connector supporting bracket 113 to the chuck assembly element 83, although such electrical connection is optional particularly in view of the surrounding EMI shielding enclosure 42, 44. In any case, the respective connector elements 108a and 110a are electrically connected in parallel to a connector plate 114 matingly and detachably connected along a curved contact surface 114a by screws 114b and 114c to the curved edge of the chuck assembly element 80. Conversely, the connector elements 108b and 110b are connected in parallel to a connector plate 116 similarly matingly connected detachably to element 81. The connector elements pass freely through a rectangular opening 112a in the box 112, being electrically insulated from the box 112 and therefore from the element 83, as well as being electrically insulated from each other. Set screws such as 118 detachably fasten the connector elements to the respective connector plates 114 and 116.


Either coaxial or, as shown, triaxial cables 118 and 120 form portions of the respective detachable electrical connector assemblies 108 and 110, as do their respective triaxial detachable connectors 122 and 124 which penetrate a wall of the lower portion 44 of the environment control enclosure so that the outer shields of the triaxial connectors 122, 124 are electrically connected to the enclosure. Further triaxial cables 122a, 124a are detachably connectable to the connectors 122 and 124 from suitable test equipment such as a Hewlett-Packard 4142B modular DC source/monitor or a Hewlett-Packard 4284A precision LCR meter, depending upon the test application. If the cables 118 and 120 are merely coaxial cables or other types of cables having only two conductors, one conductor interconnects the inner (signal) connector element of a respective connector 122 or 124 with a respective connector element 108a or 110a, while the other conductor connects the intermediate (guard) connector element of a respective connector 122 or 124 with a respective connector element 108b, 110b. U.S. Pat. No. 5,532,609 discloses a probe station and chuck and is hereby incorporated by reference.


In order to position probes for testing semiconductors, typically on a conductive pad, a microscope may be used. The process for positioning the microscope on the semiconductor is time consuming and laborious. A wide angle field of view objective lens for the microscope is selected and installed. Then the probe is brought into the general field of view of the microscope with the semiconductor thereunder with the objective lens focused on the upper region of the probe. Hence, the upper region of the probe farther away from the probe tip is generally in focus. The lower regions of the probe and the probe tip are generally not in focus due to the limited depth of field of the objective lens. Also, at this point only the larger features of the semiconductor are discernable. The zoom of the microscope may be increased by the operator and the microscope shifted to focus on a further distant part of the probe which provides a narrower field of view so that a middle region of the microscope is in focus. Hence, the upper region of the probe and the probe tip region are generally not in focus when viewing the middle region of the probe due to the limited depth of field of the objective lens. Also, at this point smaller regions of the semiconductor are discernable. The zoom of the microscope may be increased by the operator and the microscope shifted to focus on the probe tip which provides an increasingly narrower field of view so that the probe tip region is generally in focus together with the corresponding devices under test. The lower regions of the probe and the upper regions of the probe are generally not in focus when viewing the probe tip region of the probe due to the limited depth of field of the objective lens.


While it would appear to be straightforward to position a probe tip on a desirable device under test, it turns out that this is a burdensome and difficult task. Often when zooming the microscope the probe goes out of focus and when the microscope is refocused the probe is not within the field of view. When this occurs there is a need to zoom out to a wider field of view and restart the process. Also, when there are several devices in close proximity to one another and a wide field of view is observed, it is difficult to discern which device under test the probe tip is actually proximate. As the microscope is zoomed and an increasingly narrow field of view it tends to be difficult to determine which device the probe is actually testing among a set of closely spaced devices. In many cases, the operator will desire to use a higher magnification microscope, which requires the microscope to be retracted, the objective lens changed, and the microscope moved back into position. Unfortunately, if any movement of the wafer relative to the probe occurs due to even slight vibration, the probe will not longer be in close alignment. Thus, the objective lens will typically be changed back to one with a lower magnification and the process started all over again.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a partial front view of an exemplary embodiment of a wafer probe station constructed in accordance with the present invention.



FIG. 2A is a top view of the wafer probe station of FIG. 1.



FIG. 2B is a partial top view of the wafer probe station of FIG. 1 with the enclosure door shown partially open.



FIG. 3A is a partially sectional and partially schematic front view of the probe station of FIG. 1.



FIG. 3B is an enlarged sectional view taken along line 3B-3B of FIG. 3A.



FIG. 4 is a top view of the sealing assembly where the motorized positioning mechanism extends through the bottom of the enclosure.



FIG. 5A is an enlarged top detail view taken along line 5A-5A of FIG. 1.



FIG. 5B is an enlarged top sectional view taken along line 5B-5B of FIG. 1.



FIG. 6 is a partially schematic top detail view of the chuck assembly, taken along line 6-6 of FIG. 3A.



FIG. 7 is a partially sectional front view of the chuck assembly of FIG. 6.



FIG. 8 illustrates a probing system together with a microscope.



FIG. 9 illustrates a graphical user interface.



FIG. 10 illustrates another graphical user interface.



FIG. 11 illustrates another graphical user interface.



FIG. 12 illustrates another graphical user interface.



FIG. 13 illustrates another graphical user interface.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENT

Referring to FIG. 8, a probing system may include a probing environment 200 having a support 202 for a wafer 204 together with a microscope 206. The microscope 206 preferably includes a single optical path 210 that passes through an objective lens 212. The optical path may pass through a first lens 214 which images the light from the device under test on a first imaging device 216, such as a charge coupled device. An optical splitting device 218 may be used to direct a portion 220 of the light from being imaged on the first imaging device 216. The light 220 may be reflected by a mirror 221 and pass through a second lens 222. An optical splitting device 226 and mirror 230 may be used to direct a portion 228 of the light being imaged on a second imaging device 224. Accordingly, the light from the second lens 222 images the light on a second imaging device 224. The light passing through the optical splitting device 226 passes through a lens 232 and is imaged on a third imaging device 234.


The first imaging device 216 images the device under test at a first magnification based upon the objective lens 212 and the first lens 214. Normally the first imaging device 216 images a relatively wide field of view. The second imaging device 224 images the device under test at a second magnification based upon the objective lens 212, the first lens 214, and the second lens 222. Normally the second imaging device 216 images a medium field of view, being of a greater magnification than the relatively wide field of view of the first imaging device 216. The third imaging device 234 images the device under test at a third magnification based upon the objective lens 212, the first lens 214, the second lens 222, and the third lens 232. Normally the third imaging device 234 images a narrow field of view, being of a greater magnification than the medium field of view of the second imaging device 224. In some embodiments, three or more imaging devices may be used. In other embodiments, two or more imaging devices may be used. In yet other embodiments, a single imaging device may be used. In some cases, the microscope with a single imaging device may include mechanisms to provide variable magnification. Also, in some cases the microscope with a single imaging device may use all of the imaging sensor for the wide field of view, a smaller region of the imaging sensor for a narrower field of view, and so forth.


With a wide field of view for the first imaging device 216, the large features of the device under test may be observed. With the narrower field of view of the second imaging device 224, the smaller features of the device under test may be observed. With the increasingly narrower field of view of the third imaging device 234, the increasingly smaller features of the device under test may be observed. As it may be observed, the three imaging devices provide different fields of view of the same device.


The microscope 206 includes an output 238 connected to a cable 240, such as a gigabit network cable. Each of the imaging devices 216, 224, 234, provides a video signal (comprising a sequence of sequential frames in most cases) to the cable 240. The multiple video signals in the cable 240 are preferably simultaneous video sequences captured as a series of frames from each of the respective imaging devices 216, 224, 234. In addition, the video signals are preferably simultaneously transmitted, albeit they may be multiplexed within the cable 240. In some embodiments the microscope 206 may have multiple outputs and multiple cables, with one for each imaging device and video signal, it is preferable that the microscope 206 includes a single output for the video signals.


The multiple video signals transmitted within the cable 240 are provided to a computing device 250. The input feeds in many cases are provided to a graphics card connected to an AGP interconnection or PCI interconnection. Accordingly, the computing device receives a plurality of simultaneous video streams. Each of the video streams may be graphically enhanced, as desired, such as by sharpening and using temporal analysis to enhance details. The three video feeds may be combined into a single composite video feed with a portion of each video feed being illustrated on the composite video feed and provided to a single display for presentation to the viewer. In this case, each of the viewers would be able to observe multiple video feeds on a single display. The video signal may likewise be provided to multiple different displays.


Referring to FIG. 9, it is desirable to view the probe 304 and device under test 306 in a first window 302 of a display 300 using the first imaging device 216. By using the first imaging device 216 a relatively wide field of view may be observed of the probe 304 and the device under test 306. The probe 304 may be generally aligned with the device under test 306. This permits the operator to view a large region of devices under test and align the probe 304 with the desired device under test out of a group of devices under test.


It is further desirable to view the probe 304 and device under test 306 in a second window 310 of a display 300 using the second imaging device 224. By using the second imaging device 224 a narrower field of view may be observed of the probe 304 and the device under test 306. The details of the device under test 306 may be observed in the second window 310 which permits the probe 304 to be more accurately aligned with the device under test 306. This permits the operator to view a large region of devices under test and align the probe 304 using the first window 302 and to view a narrower region of the device under test to align the probe 304 with the second window 310. In this manner, the operator can roughly guide the probe using the first window 302 and then further guide the probe more accurately using the second window 310, without the need to zoom in and out which tends to cause the microscope to go out of focus.


It is still further desirable to view the probe 304 and device under test 306 in a third window 320 of a display 300 using the third imaging device 234. By using the third imaging device 234 an even narrower field of view may be observed of the probe 304 and the device under test 306. The details of the device under test 306 may be observed in the third window 320 which permits the probe 304 to be more accurately aligned with the device under test 306. This permits the operator to view a large region of devices under test and align the probe 304 using the first window 302, to view a narrower region of the device under test to align the probe 304 with the second window 310, and to further accurately position the probe 304 on the device under test 306 using the third window 320. In this manner, the operator can roughly guide the probe using the first window 302, further guide the probe more accurately using the second window 310, and then guide the probe to the device under test using the third window 320, without the need to zoom in and out to maintain the focus of the probe. Additional windows and imaging devices may be used, as desired. In some embodiments, the video for each of the windows (two or more) may be provided by a single imaging device, two imaging devices, or three or more imaging devices.


When operating the device, typically the probe 304 and the device under test 306 comes into view in the first window 302. Thereafter, as the operator moves the probe 304 closer to the device under test 306, the probe 304 comes into view in the second window 310. The operator may thus move the probe 304, while simultaneously viewing the probe 304 and the device under test 306 in the second window 310. Then, as the operator moves the probe closer to the device under test 306, the probe 304 comes into view in the third window 320. The operator may thus move the probe 304, while simultaneously viewing the probe 304 and the device under test 306 in the third window 320, such that the probe is positioned on the device under test. Accordingly, the x, y, and z tip of the probe 304 may be effectively aligned with the device under test 306.


The system may include a zoom 402 feature for a window 400 to zoom in and out on the device under test. The range of the zoom may be scaled from 0 to 100, with zero being the widest angle and 100 being the narrowest angle. The first imaging device 216 may be used as the basis upon which to provide a digital zoom for the zoom of images within range A. The ‘native’ imaging mode of the first imaging device 216 is at the zero point. The second imaging device 224 may be used as the basis upon which to provide a digital zoom for the zoom of images within range B. The ‘native’ imaging mode of the second imaging device 224 may be at the ⅓ point. The third imaging device 234 may be used as the basis upon which to provide a digital zoom for the zoom of images within range C. The ‘native’ imaging mode of the third imaging device 234 may be at the ⅔ point. Using a digital zoom based upon the best available image quality (next lower native mode) provides a higher quality digital zoom, such as using the third imaging device 234 for a digital zoom of 80%. The ‘native’ mode generally refers to a non-digitally zoomed image from the imaging device.


In the event that the operator desires to only observe the best quality of images, a quality mode 410 may be selected. In the quality mode of operation the available zooms may be set at 0, ⅓, and ⅔ which represent that ‘native’ non-digitally zoomed images from the respective imaging devices. Also, some imaging devices may have multiple ‘native’ non-digitally zoomed images depending on the sampling used to acquire the images. In addition, other selected zooms may be provided, such as for example, ½ way in each of the A, B, and C ranges. In general, the zoom feature 402 may be limited to less than all of the available digital zooms to maintain image quality that may otherwise not result from excess digital zooming. For example, there may be one or more regions of the zoom range of 5% or more (based upon a scale of 0 to 100) each that are not selectable by the operator.


Referring to FIG. 11, the system may also include multiple windows 420, 422, 424, each of which may be a selected portion of the window 400 at a selected zoom. Window 400 may be any zoom but is preferably the widest view. In this manner, the operator may be able to simultaneously observe multiple regions of the device under test, each of which may be associated with a different probe testing a different device under test. In this case the principal window 400 may be updated at a video frame rate and each of the windows 420, 422, 424 may likewise be updated at the video frame rate. In some embodiments, the images may be updated at a rate slower than the video frame rate, if desired.


In a lot of circumstances the devices under test are arranged in a typical array of 3×2 with each three aligned pads being ground-signal-ground. Referring to FIG. 12, it is preferable that a vertical mode 430 may be selected that presents a set of windows 432 that are arranged in a vertical arrangement of 3×2 windows. Typically window 434A would relate to a ground path of a left probe, window 434B would relate to a signal path of the left probe, window 434C would relate to a ground path of the left probe, window 434D would relate to a ground path of a right probe, window 434E would relate to a signal path of the right probe, and window 434F would relate to a ground path of the right probe. In this manner, the windows 434A-F are oriented in a similar orientation to the pair of probes being used on the devices under test.


In a lot of circumstances the devices under test are arranged in a typical array of 2×3 with each three aligned pads being ground-signal-ground. Referring to FIG. 13, it is preferable that a horizontal mode 438 may be selected that presents a set of windows 436 that are arranged in a vertical arrangement of 2×3 windows. Typically window 440A would relate to a ground path of a upper probe, window 440B would relate to a signal path of the upper probe, window 440C would relate to a ground path of the upper probe, window 440D would relate to a ground path of a lower probe, window 440E would relate to a signal path of the lower probe, and window 440F would relate to a ground path of the lower probe. In this manner, the windows 440A-F are oriented in a similar orientation to the pair of probes being used on the devices under test.


In some cases the operator may need a particular configuration of windows to correspond with a particular probing configuration of probe. In this case, the user may select layout 450, which permits the user to layout a set of windows on the screen in any desirable configuration. In addition, the user may save and retrieve these custom layouts for future use.


The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.

Claims
  • 1. A probing system for a device under test comprising: (a) an objective lens, light illuminating said device under test traversing a single optical path extending through said objective lens;(b) a first imaging device sensing a first video sequence of said device under test at a first magnification from said single optical path;(c) a second imaging device sensing a second video sequence of said device under test at a second magnification from said single optical path;(d) a third imaging device sensing a third video sequence of said device under test at a third magnification from said single optical path;(e) providing a video signal to a display that simultaneously presents said first video sequence, said second video sequence, and said third video sequence to a monitor.
  • 2. The probing system of claim 1 wherein said first video sequence is presented in a first window, said second video sequence is presented in a second window, and said third video sequence is presented in a third window.
  • 3. A probing system for a device under test comprising: (a) an objective lens, light illuminating said device under test traversing a single optical path extending through said objective lens;(b) a first imaging device sensing a first video sequence of said device under test at a first selectable magnification from said single optical path;(c) a second imaging device sensing a second video sequence of said device under test at a second selectable magnification from said single optical path;(d) simultaneously providing said first video sequence, and said second video sequence, to a display.
  • 4. The probing system of claim 3 wherein said magnification of said first video sequence includes a range of at least 5% of the total range of magnification that is not selectable by a user.
  • 5. A probing system for a device under test comprising: (a) an objective lens, light illuminating said device under test traversing a single optical path extending through said objective lens;(b) an imaging device sensing a video sequence of said device under test at a first magnification from said single optical path; and(c) a display displaying the video sequence in a first window; said display concurrently displaying a region of said first video sequence in a second window.
  • 6. The probing system of claim 1 wherein said video displayed in said second window is from another imaging device at a second magnification from said single optical path.
  • 7. A method for displaying video for a probing system comprising: (a) receiving a video sequence of a device under test, said video sequence comprising a plurality of frames sequentially presented at a frame rate, a frame comprising an image of a portion of said device under test;(b) presenting said video sequence in a first window on a display;(c) concurrently presenting a first portion of said video sequence in a second window on a portion of said display, said first portion of said video sequence comprising first portions of a plurality of said sequentially presented images, said first portions being selectable; and(d) concurrently presenting a second portion of said video sequence in a third window on a portion of said display, said second portion of said video sequence comprising second portions of a plurality of said sequentially presented images, said second portions being selectable.
  • 8. The method of claim 7 further comprising presenting a third portion of said video sequence in a fourth window, a fourth portion of said video sequence in a fifth window, a fifth portion of said video sequence in a sixth window, a fifth portion of said video sequence in a sixth window, and a sixth portion of said video sequence in a seventh window.
  • 9. The method of claim 8 wherein said second, third, fourth, fifth, sixth, and seventh windows are arranged in a 2×3 format.
  • 10. The method of claim 8 wherein said second, third, fourth, fifth, sixth, and seventh windows are arranged in a 3×2 format.
  • 11. The method of claim 8 wherein said second, third, fourth, fifth, sixth, and seventh windows are arranged in a 1×3 format.
  • 12. The method of claim 8 wherein said second, third, fourth, fifth, sixth, and seventh windows are arranged in a 3×1 format.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional App. No. 60/648,952, filed Jan. 31, 2005.

US Referenced Citations (1285)
Number Name Date Kind
491783 Moyer Feb 1893 A
1337866 Whitaker Apr 1920 A
2142625 Zoethout Jan 1939 A
2197081 Piron Apr 1940 A
2376101 Tyzzer May 1945 A
2389668 Johnson Nov 1945 A
2471897 Rappl May 1949 A
2545258 Cailloux Mar 1951 A
2762234 Dodd Sep 1956 A
2812502 Doherty Nov 1957 A
2901696 Möllfors Aug 1959 A
2921276 Fubini Jan 1960 A
3176091 Hanson et al. Mar 1965 A
3185927 Marguilis et al. May 1965 A
3192844 Szasz et al. Jul 1965 A
3193712 Harris Jul 1965 A
3201721 Voelcker Aug 1965 A
3218584 Ayer Nov 1965 A
3230299 Radziejowski Jan 1966 A
3256484 Terry Jun 1966 A
3262593 Hainer Jul 1966 A
3265969 Catu Aug 1966 A
3289046 Carr Nov 1966 A
3333274 Forcier Jul 1967 A
3396598 Grispo Aug 1968 A
3401126 Miller et al. Sep 1968 A
3405361 Kattner et al. Oct 1968 A
3408565 Frick et al. Oct 1968 A
3429040 Miller Feb 1969 A
3435185 Gerard Mar 1969 A
3445770 Harmon May 1969 A
3484679 Hodgson et al. Dec 1969 A
3541222 Parks et al. Nov 1970 A
3561280 MacPhee et al. Feb 1971 A
3573617 Randolph et al. Apr 1971 A
3596228 Reed, Jr. et al. Jul 1971 A
3602845 Agrios et al. Aug 1971 A
3609539 Gunthert Sep 1971 A
3611199 Safran Oct 1971 A
3619780 Hoeks Nov 1971 A
3622915 Davo Nov 1971 A
3634807 Grobe et al. Jan 1972 A
3648169 Wiesler Mar 1972 A
3654573 Graham Apr 1972 A
3654585 Wickersham Apr 1972 A
3662318 Decuyper May 1972 A
3680037 Nellis et al. Jul 1972 A
3686624 Napoli et al. Aug 1972 A
3700998 Lee et al. Oct 1972 A
3705379 Bogar Dec 1972 A
3710251 Hagge et al. Jan 1973 A
3714572 Ham et al. Jan 1973 A
3725829 Brown Apr 1973 A
3740900 Youmans et al. Jun 1973 A
3766470 Hay et al. Oct 1973 A
3775644 Cotner et al. Nov 1973 A
3777260 Davies et al. Dec 1973 A
3806801 Bove Apr 1974 A
3810016 Chayka et al. May 1974 A
3810017 Wiesler et al. May 1974 A
3814888 Bowers et al. Jun 1974 A
3829076 Sofy Aug 1974 A
3833852 Schoch Sep 1974 A
3839672 Anderson Oct 1974 A
3849728 Evans Nov 1974 A
3858212 Tompkins et al. Dec 1974 A
3862790 Davies et al. Jan 1975 A
3863181 Glance et al. Jan 1975 A
3866093 Kusters et al. Feb 1975 A
3867698 Beltz et al. Feb 1975 A
3930809 Evans Jan 1976 A
3936743 Roch Feb 1976 A
3952156 Lahr Apr 1976 A
3970934 Aksu Jul 1976 A
3971610 Buchoff et al. Jul 1976 A
3976959 Gaspari Aug 1976 A
3992073 Buchoff et al. Nov 1976 A
3996517 Fergason et al. Dec 1976 A
4001685 Roch Jan 1977 A
4008900 Khoshaba Feb 1977 A
4009456 Hopfer Feb 1977 A
4027253 Chiron et al. May 1977 A
4027935 Byrnes et al. Jun 1977 A
4035723 Kvaternik Jul 1977 A
4038599 Bove et al. Jul 1977 A
4038894 Knibbe et al. Aug 1977 A
4042119 Hassan et al. Aug 1977 A
4049252 Bell Sep 1977 A
4063195 Abrams et al. Dec 1977 A
4066943 Roch Jan 1978 A
4072576 Arwin et al. Feb 1978 A
4074201 Lennon Feb 1978 A
4093988 Scott Jun 1978 A
4099120 Aksu Jul 1978 A
4115735 Stanford Sep 1978 A
4115736 Tracy Sep 1978 A
4116523 Coberly et al. Sep 1978 A
4123706 Roch Oct 1978 A
4124787 Aamoth et al. Nov 1978 A
4135131 Larsen et al. Jan 1979 A
4151465 Lenz Apr 1979 A
4161692 Tarzwell Jul 1979 A
4172993 Leach Oct 1979 A
4177421 Thornburg Dec 1979 A
4184133 Gehle Jan 1980 A
4184729 Parks et al. Jan 1980 A
4186338 Fichtenbaum Jan 1980 A
4216467 Colston Aug 1980 A
4225819 Grau et al. Sep 1980 A
4232398 Gould et al. Nov 1980 A
4251772 Worsham et al. Feb 1981 A
4275446 Blaess Jun 1981 A
4277741 Faxvog et al. Jul 1981 A
4280112 Eisenhart Jul 1981 A
4284033 del Rio Aug 1981 A
4284682 Frosch et al. Aug 1981 A
4287473 Sawyer Sep 1981 A
4302146 Finlayson et al. Nov 1981 A
4306235 Christmann Dec 1981 A
4312117 Robillard et al. Jan 1982 A
4327180 Chen Apr 1982 A
4330783 Toia May 1982 A
4340860 Teeple, Jr. Jul 1982 A
4342958 Russell Aug 1982 A
4346355 Tsukii Aug 1982 A
4352061 Matrone Sep 1982 A
4357575 Uren et al. Nov 1982 A
4365109 O'Loughlin Dec 1982 A
4365195 Stegens Dec 1982 A
4371742 Manly Feb 1983 A
4375631 Goldberg Mar 1983 A
4376920 Smith Mar 1983 A
4383178 Shibata et al. May 1983 A
4383217 Shiell May 1983 A
4401945 Juengel Aug 1983 A
4414638 Talambiras Nov 1983 A
4419626 Cedrone et al. Dec 1983 A
4425395 Negishi et al. Jan 1984 A
4426619 Demand Jan 1984 A
4453142 Murphy Jun 1984 A
4468629 Choma, Jr. Aug 1984 A
4473798 Cedrone et al. Sep 1984 A
4479690 Inouye et al. Oct 1984 A
4480223 Aigo Oct 1984 A
4487996 Rabinowitz et al. Dec 1984 A
4491173 Demand Jan 1985 A
4503335 Takahashi Mar 1985 A
4507602 Aguirre Mar 1985 A
4515133 Roman May 1985 A
4515439 Esswein May 1985 A
4528504 Thornton, Jr. et al. Jul 1985 A
4531474 Inuta Jul 1985 A
4532423 Tojo et al. Jul 1985 A
4552033 Marzhauser Nov 1985 A
4557599 Zimring Dec 1985 A
4566184 Higgins et al. Jan 1986 A
4567321 Harayama Jan 1986 A
4567908 Bolsterli Feb 1986 A
4575676 Palkuti Mar 1986 A
4588950 Henley May 1986 A
4588970 Donecker et al. May 1986 A
4621169 Petinelli et al. Nov 1986 A
4626618 Takaoka et al. Dec 1986 A
4641659 Sepponen Feb 1987 A
4642417 Ruthrof et al. Feb 1987 A
4646005 Ryan Feb 1987 A
4649339 Grangroth et al. Mar 1987 A
4651115 Wu Mar 1987 A
4652082 Warner Mar 1987 A
4663840 Ubbens et al. May 1987 A
4665360 Phillips May 1987 A
4669805 Kosugi et al. Jun 1987 A
4673839 Veenendaal Jun 1987 A
4675600 Gergin Jun 1987 A
4680538 Dalman et al. Jul 1987 A
4684883 Ackerman et al. Aug 1987 A
4684884 Soderlund Aug 1987 A
4685150 Maier Aug 1987 A
4691163 Blass et al. Sep 1987 A
4691831 Suzuki et al. Sep 1987 A
4694245 Frommes Sep 1987 A
4695794 Bargett et al. Sep 1987 A
4696544 Costella Sep 1987 A
4697143 Lockwood et al. Sep 1987 A
4703433 Sharrit Oct 1987 A
4705447 Smith Nov 1987 A
4706050 Andrews Nov 1987 A
4707657 Boegh-Petersen Nov 1987 A
4711563 Lass Dec 1987 A
4712370 MacGee Dec 1987 A
4713347 Mitchell et al. Dec 1987 A
4714873 McPherson et al. Dec 1987 A
4725793 Igarashi Feb 1988 A
4727319 Shahriary Feb 1988 A
4727391 Tajima et al. Feb 1988 A
4727637 Buckwitz et al. Mar 1988 A
4730158 Kasai et al. Mar 1988 A
4731577 Logan Mar 1988 A
4734641 Byrd, Jr. et al. Mar 1988 A
4734872 Eager et al. Mar 1988 A
4739259 Hadwin et al. Apr 1988 A
4740764 Gerlack Apr 1988 A
4742571 Letron May 1988 A
4744041 Strunk et al. May 1988 A
4746857 Sakai et al. May 1988 A
4749942 Sang et al. Jun 1988 A
4754239 Sedivec Jun 1988 A
4755742 Mallory et al. Jul 1988 A
4755746 Mallory et al. Jul 1988 A
4755747 Sato Jul 1988 A
4755872 Esrig et al. Jul 1988 A
4755874 Esrig et al. Jul 1988 A
4757255 Margozzi Jul 1988 A
4757550 Uga Jul 1988 A
4758785 Rath Jul 1988 A
4759712 Demand Jul 1988 A
4764723 Strid Aug 1988 A
4766384 Kleinberg et al. Aug 1988 A
4771234 Cook et al. Sep 1988 A
4772846 Reeds Sep 1988 A
4777434 Miller et al. Oct 1988 A
4780670 Cherry Oct 1988 A
4783625 Harry et al. Nov 1988 A
4784213 Eager et al. Nov 1988 A
4786867 Yamatsu Nov 1988 A
4787752 Fraser et al. Nov 1988 A
4788851 Brault Dec 1988 A
4791363 Logan Dec 1988 A
4793814 Zifcak et al. Dec 1988 A
4795962 Yanagawa et al. Jan 1989 A
4805627 Klingenbeck et al. Feb 1989 A
4810981 Herstein Mar 1989 A
4812754 Tracy et al. Mar 1989 A
4816767 Cannon et al. Mar 1989 A
4818059 Kakii et al. Apr 1989 A
4818169 Schram et al. Apr 1989 A
4827211 Strid et al. May 1989 A
4831494 Arnold et al. May 1989 A
4835495 Simonutti May 1989 A
4837507 Hechtman Jun 1989 A
4838802 Soar Jun 1989 A
4839587 Flatley et al. Jun 1989 A
4845426 Nolan et al. Jul 1989 A
4849689 Gleason et al. Jul 1989 A
4853613 Sequeira et al. Aug 1989 A
4853624 Rabjohn Aug 1989 A
4853627 Gleason et al. Aug 1989 A
4856426 Wirz Aug 1989 A
4856904 Akagawa Aug 1989 A
4858160 Strid et al. Aug 1989 A
4859989 McPherson Aug 1989 A
4864227 Sato Sep 1989 A
4871883 Guiol Oct 1989 A
4871964 Boll et al. Oct 1989 A
4871965 Elbert et al. Oct 1989 A
4884026 Hayakawa et al. Nov 1989 A
4884206 Mate Nov 1989 A
4888550 Reid Dec 1989 A
4891584 Kamieniecki et al. Jan 1990 A
4893914 Hancock et al. Jan 1990 A
4894612 Drake et al. Jan 1990 A
4896109 Rauscher Jan 1990 A
4899126 Yamada Feb 1990 A
4899998 Teramachi Feb 1990 A
4901012 Gloanec et al. Feb 1990 A
4904933 Snyder et al. Feb 1990 A
4904935 Calma et al. Feb 1990 A
4906920 Huff et al. Mar 1990 A
4908570 Gupta et al. Mar 1990 A
4912399 Greub et al. Mar 1990 A
4916002 Carver Apr 1990 A
4916398 Rath Apr 1990 A
4918279 Babel et al. Apr 1990 A
4918373 Newberg Apr 1990 A
4918374 Stewart et al. Apr 1990 A
4918383 Huff et al. Apr 1990 A
4922128 Dhong et al. May 1990 A
4922186 Tsuchiya et al. May 1990 A
4922912 Watanabe May 1990 A
4923407 Rice et al. May 1990 A
4926118 O'Connor et al. May 1990 A
4926172 Gorsek May 1990 A
4929893 Sato et al. May 1990 A
4933634 Cuzin et al. Jun 1990 A
4968931 Littlebury et al. Nov 1990 A
4970386 Buck Nov 1990 A
4972073 Lessing Nov 1990 A
4975638 Evans et al. Dec 1990 A
4978907 Smith Dec 1990 A
4978914 Akimoto et al. Dec 1990 A
4980637 Huff et al. Dec 1990 A
4982153 Collins et al. Jan 1991 A
4983910 Majidi-Ahy et al. Jan 1991 A
4987100 McBride et al. Jan 1991 A
4988062 London Jan 1991 A
4991290 MacKay Feb 1991 A
4994737 Carlton et al. Feb 1991 A
4998062 Ikeda Mar 1991 A
4998063 Miller Mar 1991 A
5001423 Abrami et al. Mar 1991 A
5003253 Majidi-Ahy et al. Mar 1991 A
5006796 Burton et al. Apr 1991 A
5010296 Okada et al. Apr 1991 A
5012186 Gleason Apr 1991 A
5019692 Nbedi et al. May 1991 A
5020219 Leedy Jun 1991 A
5021186 Ota et al. Jun 1991 A
5030907 Yih et al. Jul 1991 A
5034688 Moulene et al. Jul 1991 A
5041782 Marzan Aug 1991 A
5045781 Gleason et al. Sep 1991 A
5051825 Cochran et al. Sep 1991 A
5059898 Barsotti et al. Oct 1991 A
5061192 Chapin et al. Oct 1991 A
5061823 Carroll Oct 1991 A
5065089 Rich Nov 1991 A
5065092 Sigler Nov 1991 A
5066357 Smyth, Jr. et al. Nov 1991 A
5069628 Crumly Dec 1991 A
5070297 Kwon et al. Dec 1991 A
5077523 Blanz Dec 1991 A
5082627 Stanbro Jan 1992 A
5084671 Miyata et al. Jan 1992 A
5089774 Nakano Feb 1992 A
5091691 Kamieniecki et al. Feb 1992 A
5091692 Ohno et al. Feb 1992 A
5091732 Mileski et al. Feb 1992 A
5095891 Reitter Mar 1992 A
5097101 Trobough Mar 1992 A
5097207 Blanz Mar 1992 A
5101149 Adams et al. Mar 1992 A
5101453 Rumbaugh Mar 1992 A
5103169 Heaton et al. Apr 1992 A
5105148 Lee Apr 1992 A
5105181 Ross Apr 1992 A
5107076 Bullock et al. Apr 1992 A
5116180 Fung et al. May 1992 A
5126286 Chance Jun 1992 A
5126696 Grote et al. Jun 1992 A
5133119 Afshari et al. Jul 1992 A
5134365 Okubo et al. Jul 1992 A
5136237 Smith et al. Aug 1992 A
5138289 McGrath Aug 1992 A
5142224 Smith et al. Aug 1992 A
5144228 Sorna et al. Sep 1992 A
5145552 Yoshizawa et al. Sep 1992 A
5148131 Amboss et al. Sep 1992 A
5159264 Anderson Oct 1992 A
5159267 Anderson Oct 1992 A
5159752 Mahant-Shetti et al. Nov 1992 A
5160883 Blanz Nov 1992 A
5164319 Hafeman et al. Nov 1992 A
5164661 Jones Nov 1992 A
5166606 Blanz Nov 1992 A
5172049 Kiyokawa et al. Dec 1992 A
5172050 Swapp Dec 1992 A
5172051 Zamborelli Dec 1992 A
5177438 Littlebury et al. Jan 1993 A
5180977 Huff Jan 1993 A
5187443 Bereskin Feb 1993 A
5198752 Miyata et al. Mar 1993 A
5198753 Hamburgen Mar 1993 A
5198756 Jenkins et al. Mar 1993 A
5198758 Iknaian et al. Mar 1993 A
5202558 Barker Apr 1993 A
5202648 McCandless Apr 1993 A
5207585 Byrnes et al. May 1993 A
5209088 Vaks May 1993 A
5210485 Kreiger et al. May 1993 A
5214243 Johnson May 1993 A
5214374 St. Onge May 1993 A
5218185 Gross Jun 1993 A
5220277 Reitinger Jun 1993 A
5221905 Bhangu et al. Jun 1993 A
5225037 Elder et al. Jul 1993 A
5225796 Williams et al. Jul 1993 A
5227730 King et al. Jul 1993 A
5232789 Platz et al. Aug 1993 A
5233197 Bowman et al. Aug 1993 A
5233306 Misra Aug 1993 A
5237267 Harwood et al. Aug 1993 A
5245292 Milesky et al. Sep 1993 A
5266889 Harwood et al. Nov 1993 A
5266963 Carter Nov 1993 A
5267088 Nomura Nov 1993 A
5270664 McMurtry et al. Dec 1993 A
5274336 Crook et al. Dec 1993 A
5278494 Obigane Jan 1994 A
5280156 Niori et al. Jan 1994 A
5289117 Van Loan et al. Feb 1994 A
5293175 Hemmie et al. Mar 1994 A
5298972 Heffner Mar 1994 A
5303938 Miller et al. Apr 1994 A
5304924 Yamano et al. Apr 1994 A
5313157 Pasiecznik, Jr. May 1994 A
5315237 Iwakura et al. May 1994 A
5316435 Mozingo May 1994 A
5317656 Moslehi et al. May 1994 A
5321352 Takebuchi Jun 1994 A
5321453 Mori et al. Jun 1994 A
5325052 Yamashita Jun 1994 A
5326412 Schreiber et al. Jul 1994 A
5334931 Clarke et al. Aug 1994 A
5336989 Hofer Aug 1994 A
5345170 Schwindt et al. Sep 1994 A
5347204 Gregory et al. Sep 1994 A
5355079 Evans et al. Oct 1994 A
5357211 Bryson et al. Oct 1994 A
5360312 Mozingo Nov 1994 A
5361049 Rubin et al. Nov 1994 A
5363050 Guo et al. Nov 1994 A
5367165 Toda et al. Nov 1994 A
5369368 Kassen et al. Nov 1994 A
5369370 Stratmann et al. Nov 1994 A
5371457 Lipp Dec 1994 A
5371654 Beaman et al. Dec 1994 A
5373231 Boll et al. Dec 1994 A
5374938 Hatazawa et al. Dec 1994 A
5376790 Linker et al. Dec 1994 A
5382898 Subramanian Jan 1995 A
5383787 Switky et al. Jan 1995 A
5389885 Swart Feb 1995 A
5395253 Crumly Mar 1995 A
5397855 Ferlier Mar 1995 A
5404111 Mori et al. Apr 1995 A
5408188 Katoh Apr 1995 A
5408189 Swart et al. Apr 1995 A
5410259 Fujihara et al. Apr 1995 A
5412330 Ravel et al. May 1995 A
5412866 Woith et al. May 1995 A
5414565 Sullivan et al. May 1995 A
5422574 Kister Jun 1995 A
5430813 Anderson et al. Jul 1995 A
5434512 Schwindt et al. Jul 1995 A
5441690 Ayala-Esquilin et al. Aug 1995 A
5451884 Sauerland Sep 1995 A
5453404 Leedy Sep 1995 A
5457398 Schwindt et al. Oct 1995 A
5461328 Devereaux et al. Oct 1995 A
5463324 Wardwell et al. Oct 1995 A
5467024 Swapp Nov 1995 A
5469324 Henderson et al. Nov 1995 A
5475316 Hurley et al. Dec 1995 A
5476211 Khandros Dec 1995 A
5477011 Singles et al. Dec 1995 A
5478748 Akins, Jr. et al. Dec 1995 A
5479108 Cheng Dec 1995 A
5479109 Lau et al. Dec 1995 A
5481196 Nosov Jan 1996 A
5481936 Yanagisawa Jan 1996 A
5486975 Shamouilian et al. Jan 1996 A
5487999 Farnworth Jan 1996 A
5488954 Sleva et al. Feb 1996 A
5491426 Small Feb 1996 A
5493070 Habu Feb 1996 A
5493236 Ishii et al. Feb 1996 A
5500606 Holmes Mar 1996 A
5505150 James et al. Apr 1996 A
5506498 Anderson et al. Apr 1996 A
5506515 Godshalk et al. Apr 1996 A
5507652 Wardwell Apr 1996 A
5508631 Manku et al. Apr 1996 A
5510792 Ono et al. Apr 1996 A
5511010 Burns Apr 1996 A
5512835 Rivera et al. Apr 1996 A
5515167 Ledger et al. May 1996 A
5517111 Shelor May 1996 A
5517126 Yamaguchi May 1996 A
5521518 Higgins May 1996 A
5521522 Abe et al. May 1996 A
5523694 Cole, Jr. Jun 1996 A
5528158 Sinsheimer et al. Jun 1996 A
5530371 Perry et al. Jun 1996 A
5530372 Lee et al. Jun 1996 A
5531022 Beaman et al. Jul 1996 A
5532608 Behfar-Rad et al. Jul 1996 A
5532609 Harwood et al. Jul 1996 A
5537372 Albrecht et al. Jul 1996 A
5539323 Davis, Jr. Jul 1996 A
5539676 Yamaguchi Jul 1996 A
5546012 Perry et al. Aug 1996 A
5550480 Nelson et al. Aug 1996 A
5550481 Holmes et al. Aug 1996 A
5550482 Sano Aug 1996 A
5552716 Takahashi et al. Sep 1996 A
5561377 Strid et al. Oct 1996 A
5561585 Barnes et al. Oct 1996 A
5565788 Burr et al. Oct 1996 A
5565881 Phillips et al. Oct 1996 A
5569591 Kell et al. Oct 1996 A
5571324 Sago et al. Nov 1996 A
5572398 Federlin et al. Nov 1996 A
5578932 Adamian Nov 1996 A
5583445 Mullen Dec 1996 A
5584120 Roberts Dec 1996 A
5584608 Gillespie Dec 1996 A
5589781 Higgins et al. Dec 1996 A
5594358 Ishikawa et al. Jan 1997 A
5600256 Woith et al. Feb 1997 A
5601740 Eldridge et al. Feb 1997 A
5604444 Harwood et al. Feb 1997 A
5610529 Schwindt Mar 1997 A
5611008 Yap Mar 1997 A
5611946 Leong et al. Mar 1997 A
5617035 Swapp Apr 1997 A
5621333 Long et al. Apr 1997 A
5621400 Corbi Apr 1997 A
5623213 Liu et al. Apr 1997 A
5623214 Pasiecznik, Jr. Apr 1997 A
5627473 Takani May 1997 A
5628057 Phillips et al. May 1997 A
5629631 Perry et al. May 1997 A
5629838 Knight et al. May 1997 A
5631571 Spaziani et al. May 1997 A
5633780 Cronin May 1997 A
5635846 Beaman et al. Jun 1997 A
5640101 Kuji et al. Jun 1997 A
5642298 Mallory et al. Jun 1997 A
5644248 Fujimoto Jul 1997 A
5646538 Lide et al. Jul 1997 A
5653939 Hollis et al. Aug 1997 A
5656942 Watts et al. Aug 1997 A
5657394 Schwartz et al. Aug 1997 A
5659255 Strid et al. Aug 1997 A
5659421 Rahmel et al. Aug 1997 A
5663653 Schwindt et al. Sep 1997 A
5666063 Abercrombie et al. Sep 1997 A
5668470 Shelor Sep 1997 A
5669316 Faz et al. Sep 1997 A
5670322 Eggers et al. Sep 1997 A
5670888 Cheng Sep 1997 A
5672816 Park et al. Sep 1997 A
5675499 Lee et al. Oct 1997 A
5675932 Mauney Oct 1997 A
5676360 Boucher et al. Oct 1997 A
5678210 Hannah Oct 1997 A
5680039 Mochizuki et al. Oct 1997 A
5682337 El-Fishawy et al. Oct 1997 A
5685232 Inoue Nov 1997 A
5686317 Akram et al. Nov 1997 A
5686960 Sussman et al. Nov 1997 A
5688618 Hulderman et al. Nov 1997 A
5700844 Hedrick et al. Dec 1997 A
5704355 Bridges Jan 1998 A
5712571 O'Donoghue Jan 1998 A
5715819 Svenson et al. Feb 1998 A
5720098 Kister Feb 1998 A
5723347 Hirano et al. Mar 1998 A
5726211 Hedrick et al. Mar 1998 A
5728091 Payne et al. Mar 1998 A
5729150 Schwindt Mar 1998 A
5731708 Sobhani Mar 1998 A
5731920 Katsuragawa Mar 1998 A
5742174 Kister et al. Apr 1998 A
5744971 Chan et al. Apr 1998 A
5748506 Bockelman May 1998 A
5751252 Phillips May 1998 A
5756021 Bedrick et al. May 1998 A
5756908 Knollmeyer et al. May 1998 A
5767690 Fujimoto Jun 1998 A
5772451 Dozier, II et al. Jun 1998 A
5773780 Eldridge et al. Jun 1998 A
5773951 Markowski et al. Jun 1998 A
5777485 Tanaka et al. Jul 1998 A
5785538 Beaman et al. Jul 1998 A
5792668 Fuller et al. Aug 1998 A
5793213 Bockelman et al. Aug 1998 A
5794133 Kashima Aug 1998 A
5798652 Taraci Aug 1998 A
5802856 Schaper et al. Sep 1998 A
5803607 Jones et al. Sep 1998 A
5804483 Nakajima et al. Sep 1998 A
5804607 Hedrick et al. Sep 1998 A
5804982 Lo et al. Sep 1998 A
5804983 Nakajima et al. Sep 1998 A
5806181 Khandros et al. Sep 1998 A
5807107 Bright et al. Sep 1998 A
5810607 Shih et al. Sep 1998 A
5811751 Leong et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5813847 Eroglu et al. Sep 1998 A
5814847 Shihadeh et al. Sep 1998 A
5820014 Dozier, II et al. Oct 1998 A
5821763 Beaman et al. Oct 1998 A
5824494 Feldberg Oct 1998 A
5828225 Obikane et al. Oct 1998 A
5829128 Eldridge et al. Nov 1998 A
5829437 Bridges Nov 1998 A
5831442 Heigl Nov 1998 A
5832601 Eldridge et al. Nov 1998 A
5833601 Swartz et al. Nov 1998 A
5835997 Yassine Nov 1998 A
5838160 Beaman et al. Nov 1998 A
5838161 Akram et al. Nov 1998 A
5841288 Meaney et al. Nov 1998 A
5841342 Hegmann et al. Nov 1998 A
5846708 Hollis et al. Dec 1998 A
5847569 Ho et al. Dec 1998 A
5848500 Kirk Dec 1998 A
5852232 Samsavar et al. Dec 1998 A
5852871 Khandros Dec 1998 A
5854608 Leisten Dec 1998 A
5857667 Lee Jan 1999 A
5861743 Pye et al. Jan 1999 A
5864946 Eldridge et al. Feb 1999 A
5867073 Weinreb et al. Feb 1999 A
5869326 Hofmann Feb 1999 A
5869974 Akram et al. Feb 1999 A
5869975 Strid et al. Feb 1999 A
5874361 Collins et al. Feb 1999 A
5876082 Kempf et al. Mar 1999 A
5878486 Eldridge et al. Mar 1999 A
5879289 Yarush et al. Mar 1999 A
5880772 Kalnajs et al. Mar 1999 A
5883522 O'Boyle Mar 1999 A
5883523 Ferland et al. Mar 1999 A
5884398 Eldridge et al. Mar 1999 A
5888075 Hasegawa et al. Mar 1999 A
5892539 Colvin Apr 1999 A
5896038 Budnaitis et al. Apr 1999 A
5900737 Graham et al. May 1999 A
5900738 Khandros et al. May 1999 A
5903143 Mochizuki et al. May 1999 A
5905421 Oldfield May 1999 A
5910727 Fujihara et al. Jun 1999 A
5912046 Eldridge et al. Jun 1999 A
5914613 Gleason et al. Jun 1999 A
5914614 Beaman et al. Jun 1999 A
5916689 Collins et al. Jun 1999 A
5917707 Khandros et al. Jun 1999 A
5923177 Wardwell Jul 1999 A
5923180 Botka et al. Jul 1999 A
5926029 Ference et al. Jul 1999 A
5926951 Khandros et al. Jul 1999 A
5942907 Chiang Aug 1999 A
5944093 Viswanath Aug 1999 A
5945836 Sayre et al. Aug 1999 A
5949383 Hayes et al. Sep 1999 A
5949579 Baker Sep 1999 A
5952842 Fujimoto Sep 1999 A
5959461 Brown et al. Sep 1999 A
5960411 Hartman et al. Sep 1999 A
5963027 Peters Oct 1999 A
5963364 Leong et al. Oct 1999 A
5966645 Davis Oct 1999 A
5970429 Martin Oct 1999 A
5973504 Chong Oct 1999 A
5973505 Strid et al. Oct 1999 A
5974662 Eldridge et al. Nov 1999 A
5981268 Kovacs et al. Nov 1999 A
5982166 Mautz Nov 1999 A
5983493 Eldridge et al. Nov 1999 A
5993611 Moroney, III et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
5995914 Cabot Nov 1999 A
5996102 Haulin Nov 1999 A
5998228 Eldridge et al. Dec 1999 A
5998768 Hunter et al. Dec 1999 A
5998864 Khandros et al. Dec 1999 A
5999268 Yonezawa et al. Dec 1999 A
6001760 Katsuda et al. Dec 1999 A
6002263 Peters et al. Dec 1999 A
6002426 Back et al. Dec 1999 A
6005579 Sugiyama et al. Dec 1999 A
6006002 Motok et al. Dec 1999 A
6013586 McGhee et al. Jan 2000 A
6019612 Hasegawa et al. Feb 2000 A
6023103 Chang et al. Feb 2000 A
6023209 Faulkner et al. Feb 2000 A
6028435 Nikawa Feb 2000 A
6029141 Bezos et al. Feb 2000 A
6029344 Khandros et al. Feb 2000 A
6031383 Streib et al. Feb 2000 A
6031384 Streib et al. Feb 2000 A
6032356 Eldridge et al. Mar 2000 A
6032714 Fenton Mar 2000 A
6033935 Dozier, II et al. Mar 2000 A
6034533 Tervo et al. Mar 2000 A
6037785 Higgins Mar 2000 A
6037793 Miyazawa et al. Mar 2000 A
6040739 Wedeen et al. Mar 2000 A
6042712 Mathieu Mar 2000 A
6043563 Eldridge et al. Mar 2000 A
6043667 Cadwallader et al. Mar 2000 A
6046599 Long et al. Apr 2000 A
6049216 Yang et al. Apr 2000 A
6049976 Khandros Apr 2000 A
6050829 Eldridge et al. Apr 2000 A
6051422 Kovacs et al. Apr 2000 A
6052653 Mazur et al. Apr 2000 A
6054651 Fogel et al. Apr 2000 A
6054869 Hutton et al. Apr 2000 A
6059982 Palagonia et al. May 2000 A
6060888 Blackham et al. May 2000 A
6060891 Hembree et al. May 2000 A
6060892 Yamagata May 2000 A
6061589 Bridges et al. May 2000 A
6062879 Beaman et al. May 2000 A
6064213 Khandros et al. May 2000 A
6064217 Smith May 2000 A
6064218 Godfrey et al. May 2000 A
6066911 Lindemann et al. May 2000 A
6071009 Clyne Jun 2000 A
6078183 Cole, Jr. Jun 2000 A
6078500 Beaman et al. Jun 2000 A
6090261 Mathieu Jul 2000 A
6091236 Piety et al. Jul 2000 A
6091255 Godfrey Jul 2000 A
6091256 Long et al. Jul 2000 A
6096561 Kaplan et al. Aug 2000 A
6096567 Kaplan et al. Aug 2000 A
6100815 Pailthorp Aug 2000 A
6104201 Beaman et al. Aug 2000 A
6104203 Costello et al. Aug 2000 A
6104206 Verkull Aug 2000 A
6110823 Eldridge et al. Aug 2000 A
6111419 Lefever et al. Aug 2000 A
6114864 Soejima et al. Sep 2000 A
6114865 Lagowski et al. Sep 2000 A
6118287 Boll et al. Sep 2000 A
6118894 Schwartz et al. Sep 2000 A
6121783 Horner et al. Sep 2000 A
6124723 Costello Sep 2000 A
6124725 Sato Sep 2000 A
6127831 Khoury et al. Oct 2000 A
6130536 Powell et al. Oct 2000 A
6130544 Strid et al. Oct 2000 A
6137302 Schwindt Oct 2000 A
6137303 Deckert et al. Oct 2000 A
6144212 Mizuta Nov 2000 A
6147502 Fryer et al. Nov 2000 A
6147851 Anderson Nov 2000 A
6150186 Chen et al. Nov 2000 A
6160407 Nikawa Dec 2000 A
6166553 Sinsheimer Dec 2000 A
6168974 Chang et al. Jan 2001 B1
6169410 Grace et al. Jan 2001 B1
6172337 Johnsgard et al. Jan 2001 B1
6174744 Watanabe et al. Jan 2001 B1
6175228 Zamborelli et al. Jan 2001 B1
6181144 Hembree et al. Jan 2001 B1
6181149 Godfrey et al. Jan 2001 B1
6181297 Leisten Jan 2001 B1
6181416 Falk Jan 2001 B1
6184053 Eldridge et al. Feb 2001 B1
6184587 Khandros et al. Feb 2001 B1
6184845 Leisten et al. Feb 2001 B1
6191596 Abiko Feb 2001 B1
6194720 Li et al. Feb 2001 B1
6194907 Kanao et al. Feb 2001 B1
6198299 Hollman Mar 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208225 Miller Mar 2001 B1
RE37130 Fiori, Jr. Apr 2001 E
6211663 Moulthrop et al. Apr 2001 B1
6211837 Crouch et al. Apr 2001 B1
6215196 Eldridge et al. Apr 2001 B1
6215295 Smith, III Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218910 Miller Apr 2001 B1
6222031 Wakabayashi et al. Apr 2001 B1
6222970 Wach et al. Apr 2001 B1
6229327 Boll et al. May 2001 B1
6232149 Dozier, II et al. May 2001 B1
6232787 Lo et al. May 2001 B1
6232788 Schwindt et al. May 2001 B1
6232789 Schwindt May 2001 B1
6232790 Bryan et al. May 2001 B1
6233613 Walker et al. May 2001 B1
6236223 Brady et al. May 2001 B1
6236975 Boe et al. May 2001 B1
6236977 Verba et al. May 2001 B1
6242803 Khandros et al. Jun 2001 B1
6242929 Mizuta Jun 2001 B1
6245692 Pearce et al. Jun 2001 B1
6246247 Eldridge et al. Jun 2001 B1
6251595 Gordon et al. Jun 2001 B1
6252392 Peters Jun 2001 B1
6255126 Mathieu et al. Jul 2001 B1
6256882 Gleason et al. Jul 2001 B1
6257319 Kainuma et al. Jul 2001 B1
6257564 Avneri et al. Jul 2001 B1
6257565 Avneri et al. Jul 2001 B1
6259261 Engelking et al. Jul 2001 B1
6265950 Schmidt et al. Jul 2001 B1
6268015 Mathieu et al. Jul 2001 B1
6268016 Bhatt et al. Jul 2001 B1
6271673 Furuta et al. Aug 2001 B1
6274823 Khandros et al. Aug 2001 B1
6275043 Muhlberger et al. Aug 2001 B1
6275738 Kasevich et al. Aug 2001 B1
6278051 Peabody Aug 2001 B1
6278411 Ohlsson et al. Aug 2001 B1
6281691 Matsunaga et al. Aug 2001 B1
6284971 Atalar et al. Sep 2001 B1
6286208 Shih et al. Sep 2001 B1
6288557 Peters et al. Sep 2001 B1
6292760 Burns Sep 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300775 Peach et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6307161 Grube et al. Oct 2001 B1
6307363 Anderson Oct 2001 B1
6307672 DeNure Oct 2001 B1
6310483 Taura et al. Oct 2001 B1
6310755 Kholodenko et al. Oct 2001 B1
6313649 Harwood et al. Nov 2001 B2
6320372 Keller Nov 2001 B1
6320396 Nikawa Nov 2001 B1
6327034 Hoover et al. Dec 2001 B1
6329827 Beaman et al. Dec 2001 B1
6330164 Khandros et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6335625 Bryant et al. Jan 2002 B1
6335628 Schwindt et al. Jan 2002 B2
6339338 Eldridge et al. Jan 2002 B1
6340568 Hefti Jan 2002 B2
6340895 Uher et al. Jan 2002 B1
6351885 Suzuki et al. Mar 2002 B2
6352454 Kim et al. Mar 2002 B1
6359456 Hembree et al. Mar 2002 B1
6362636 Peters et al. Mar 2002 B1
6362792 Sawamura et al. Mar 2002 B1
6366247 Sawamura et al. Apr 2002 B1
6369776 Leisten et al. Apr 2002 B1
6376258 Hefti Apr 2002 B2
6380751 Harwood et al. Apr 2002 B2
6384614 Hager et al. May 2002 B1
6384615 Schwindt May 2002 B2
6388455 Kamieniecki et al. May 2002 B1
6395480 Hefti May 2002 B1
6396296 Tarter et al. May 2002 B1
6396298 Young et al. May 2002 B1
6400168 Matsunaga et al. Jun 2002 B2
6404213 Noda Jun 2002 B2
6407560 Walraven et al. Jun 2002 B1
6407562 Whiteman Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
6414478 Suzuki Jul 2002 B1
6415858 Getchel et al. Jul 2002 B1
6418009 Brunette Jul 2002 B1
6420722 Moore et al. Jul 2002 B2
6424141 Hollman et al. Jul 2002 B1
6424316 Leisten Jul 2002 B1
6429029 Eldridge et al. Aug 2002 B1
6441315 Eldridge et al. Aug 2002 B1
6442831 Khandros et al. Sep 2002 B1
6445202 Cowan et al. Sep 2002 B1
6447339 Reed et al. Sep 2002 B1
6448788 Meaney et al. Sep 2002 B1
6448865 Miller Sep 2002 B1
6452406 Beaman et al. Sep 2002 B1
6452411 Miller et al. Sep 2002 B1
6456099 Eldridge et al. Sep 2002 B1
6456103 Eldridge et al. Sep 2002 B1
6459343 Miller Oct 2002 B1
6459739 Vitenberg Oct 2002 B1
6468098 Eldridge Oct 2002 B1
6469746 Maida Oct 2002 B1
6475822 Eldridge Nov 2002 B2
6476333 Khandros et al. Nov 2002 B1
6476442 Williams et al. Nov 2002 B1
6476630 Whitten et al. Nov 2002 B1
6479308 Eldridge Nov 2002 B1
6480013 Nayler et al. Nov 2002 B1
6480978 Roy et al. Nov 2002 B1
6481939 Gillespie et al. Nov 2002 B1
6482013 Eldridge et al. Nov 2002 B2
6483327 Bruce et al. Nov 2002 B1
6483336 Harris et al. Nov 2002 B1
6486687 Harwood et al. Nov 2002 B2
6488405 Eppes et al. Dec 2002 B1
6489789 Peters et al. Dec 2002 B2
6490471 Svenson et al. Dec 2002 B2
6491968 Mathieu et al. Dec 2002 B1
6492822 Schwindt et al. Dec 2002 B2
6496024 Schwindt Dec 2002 B2
6499121 Roy et al. Dec 2002 B1
6501289 Takekoshi Dec 2002 B1
6501343 Miller Dec 2002 B2
6509751 Mathieu et al. Jan 2003 B1
6512482 Nelson et al. Jan 2003 B1
6520778 Eldridge et al. Feb 2003 B1
6525555 Khandros et al. Feb 2003 B1
6526655 Beaman et al. Mar 2003 B2
6528984 Beaman et al. Mar 2003 B2
6528993 Shin et al. Mar 2003 B1
6529844 Kapetanic et al. Mar 2003 B1
6534856 Dozier, II et al. Mar 2003 B1
6538214 Khandros Mar 2003 B2
6538538 Hreish et al. Mar 2003 B2
6539531 Miller et al. Mar 2003 B2
6548311 Knoll Apr 2003 B1
6549022 Cole, Jr. et al. Apr 2003 B1
6549026 DiBattista et al. Apr 2003 B1
6549106 Martin Apr 2003 B2
6551884 Masuoka Apr 2003 B2
6559671 Miller et al. May 2003 B2
6566079 Hefti May 2003 B2
6572608 Lee et al. Jun 2003 B1
6573702 Marcuse et al. Jun 2003 B2
6578264 Gleason et al. Jun 2003 B1
6580283 Carbone et al. Jun 2003 B1
6582979 Coccioli et al. Jun 2003 B2
6587327 Devoe et al. Jul 2003 B1
6597187 Eldridge et al. Jul 2003 B2
6603322 Boll et al. Aug 2003 B1
6603323 Miller et al. Aug 2003 B1
6603324 Eldridge et al. Aug 2003 B2
6605941 Abe Aug 2003 B2
6605951 Cowan Aug 2003 B1
6605955 Costello et al. Aug 2003 B1
6606014 Miller Aug 2003 B2
6606575 Miller Aug 2003 B2
6608494 Bruce et al. Aug 2003 B1
6608496 Strid et al. Aug 2003 B1
6611417 Chen Aug 2003 B2
6615485 Eldridge et al. Sep 2003 B2
6616966 Mathieu et al. Sep 2003 B2
6617862 Bruce Sep 2003 B1
6617866 Ickes Sep 2003 B1
6621082 Morita et al. Sep 2003 B2
6621260 Eldridge et al. Sep 2003 B2
6622103 Miller Sep 2003 B1
6624648 Eldridge et al. Sep 2003 B2
6624891 Marcus et al. Sep 2003 B2
6627461 Chapman et al. Sep 2003 B2
6627483 Ondricek et al. Sep 2003 B2
6627980 Eldridge Sep 2003 B2
6628503 Sogard Sep 2003 B2
6628980 Atalar et al. Sep 2003 B2
6633174 Satya et al. Oct 2003 B1
6636059 Harwood et al. Oct 2003 B2
6636182 Mehltretter Oct 2003 B2
6639415 Peters et al. Oct 2003 B2
6639461 Tam et al. Oct 2003 B1
6640415 Eslamy et al. Nov 2003 B2
6640432 Mathieu et al. Nov 2003 B1
6642625 Dozier, II et al. Nov 2003 B2
6642732 Cowan et al. Nov 2003 B2
6643597 Dunsmore Nov 2003 B1
6644982 Ondricek et al. Nov 2003 B1
6646520 Miller Nov 2003 B2
6653903 Leich et al. Nov 2003 B2
6655023 Eldridge et al. Dec 2003 B1
6657455 Eldridge et al. Dec 2003 B2
6657601 McLean Dec 2003 B2
6661316 Hreish et al. Dec 2003 B2
6664628 Khandros et al. Dec 2003 B2
6669489 Dozier, II et al. Dec 2003 B1
6672875 Mathieu et al. Jan 2004 B1
6677744 Long Jan 2004 B1
6678850 Roy et al. Jan 2004 B2
6678876 Stevens et al. Jan 2004 B2
6680659 Miller Jan 2004 B2
6685817 Mathieu Feb 2004 B1
6686753 Kitahata Feb 2004 B1
6686754 Miller Feb 2004 B2
6690185 Khandros et al. Feb 2004 B1
6693518 Kumata et al. Feb 2004 B2
6701265 Hill et al. Mar 2004 B2
6701612 Khandros et al. Mar 2004 B2
6707548 Kreimer et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6710265 Hill et al. Mar 2004 B2
6710798 Hershel et al. Mar 2004 B1
6713374 Eldridge et al. Mar 2004 B2
6714828 Eldridge et al. Mar 2004 B2
6717426 Iwasaki Apr 2004 B2
6720501 Henson Apr 2004 B1
6720782 Schwindt et al. Apr 2004 B2
6722032 Beaman et al. Apr 2004 B2
6724205 Hayden et al. Apr 2004 B1
6724928 Davis Apr 2004 B1
6727579 Eldridge et al. Apr 2004 B1
6727580 Eldridge et al. Apr 2004 B1
6727716 Sharif Apr 2004 B1
6729019 Grube et al. May 2004 B2
6731804 Carrieri et al. May 2004 B1
6734687 Ishitani et al. May 2004 B1
6737920 Jen et al. May 2004 B2
6741085 Khandros et al. May 2004 B1
6741092 Eldridge et al. May 2004 B2
6741129 Corsi et al. May 2004 B1
6744268 Hollman Jun 2004 B2
6753679 Kwong et al. Jun 2004 B1
6753699 Stockstad Jun 2004 B2
6759311 Eldridge et al. Jul 2004 B2
6759859 Deng et al. Jul 2004 B2
6764869 Eldridge et al. Jul 2004 B2
6765609 Kinoshita Jul 2004 B1
6768328 Self et al. Jul 2004 B2
6770955 Coccioli et al. Aug 2004 B1
6771090 Harris et al. Aug 2004 B2
6771806 Satya et al. Aug 2004 B1
6774651 Hembree Aug 2004 B1
6777319 Grube et al. Aug 2004 B2
6777964 Navratil et al. Aug 2004 B2
6778140 Yeh Aug 2004 B1
6778406 Eldridge et al. Aug 2004 B2
6780001 Eldridge et al. Aug 2004 B2
6784674 Miller Aug 2004 B2
6784677 Miller Aug 2004 B2
6784679 Sweet et al. Aug 2004 B2
6788093 Aitren et al. Sep 2004 B2
6788094 Khandros et al. Sep 2004 B2
6791176 Mathieu et al. Sep 2004 B2
6791344 Cook et al. Sep 2004 B2
6794888 Kawaguchi et al. Sep 2004 B2
6794934 Betti-Berutto et al. Sep 2004 B2
6794950 du Toit et al. Sep 2004 B2
6798225 Miller Sep 2004 B2
6798226 Altmann et al. Sep 2004 B2
6801047 Harwood et al. Oct 2004 B2
6806724 Hayden et al. Oct 2004 B2
6806836 Ogawa et al. Oct 2004 B2
6807734 Eldridge et al. Oct 2004 B2
6809533 Anlage et al. Oct 2004 B1
6811406 Grube Nov 2004 B2
6812691 Miller Nov 2004 B2
6812718 Chong et al. Nov 2004 B1
6815963 Gleason et al. Nov 2004 B2
6816031 Miller Nov 2004 B1
6816840 Goodwin, III Nov 2004 B1
6817052 Grube Nov 2004 B2
6818840 Khandros Nov 2004 B2
6822463 Jacobs Nov 2004 B1
6822529 Miller Nov 2004 B2
6825052 Eldridge et al. Nov 2004 B2
6825422 Eldridge et al. Nov 2004 B2
6827582 Mathieu al. Dec 2004 B2
6835898 Eldridge et al. Dec 2004 B2
6836135 Harris et al. Dec 2004 B2
6836962 Khandros et al. Jan 2005 B2
6838885 Kamitani Jan 2005 B2
6838893 Khandros et al. Jan 2005 B2
6839964 Henson Jan 2005 B2
6842024 Peters et al. Jan 2005 B2
6843024 Nozaki et al. Jan 2005 B2
6845491 Miller et al. Jan 2005 B2
6847219 Lesher et al. Jan 2005 B1
6850082 Schwindt Feb 2005 B2
6856129 Thomas et al. Feb 2005 B2
6856150 Sporck et al. Feb 2005 B2
6861856 Dunklee et al. Mar 2005 B2
6862727 Stevens Mar 2005 B2
6864105 Grube et al. Mar 2005 B2
6864694 McTigue Mar 2005 B2
6870381 Grube Mar 2005 B2
6873167 Goto et al. Mar 2005 B2
6882239 Miller Apr 2005 B2
6882546 Miller Apr 2005 B2
6885197 Harris et al. Apr 2005 B2
6887723 Ondricek et al. May 2005 B1
6888362 Eldridge et al. May 2005 B2
6891385 Miller May 2005 B2
6900646 Kasukabe et al. May 2005 B2
6900647 Yoshida et al. May 2005 B2
6900652 Mazur May 2005 B2
6900653 Yu et al. May 2005 B2
6902416 Feldman Jun 2005 B2
6902941 Sun Jun 2005 B2
6903563 Yoshida et al. Jun 2005 B2
6906506 Reano et al. Jun 2005 B1
6906539 Wilson et al. Jun 2005 B2
6906542 Sakagawa et al. Jun 2005 B2
6906543 Lou et al. Jun 2005 B2
6907149 Slater Jun 2005 B2
6908364 Back et al. Jun 2005 B2
6909297 Ji et al. Jun 2005 B2
6909300 Lu et al. Jun 2005 B2
6909983 Sutherland Jun 2005 B2
6910268 Miller Jun 2005 B2
6911814 Miller et al. Jun 2005 B2
6911826 Plotnikov et al. Jun 2005 B2
6911834 Mitchell et al. Jun 2005 B2
6911835 Chraft et al. Jun 2005 B2
6912468 Marin et al. Jun 2005 B2
6913468 Dozier, II et al. Jul 2005 B2
6914244 Alani Jul 2005 B2
6914427 Gifford et al. Jul 2005 B2
6914430 Hasegawa et al. Jul 2005 B2
6914580 Leisten Jul 2005 B2
6917195 Hollman Jul 2005 B2
6917210 Miller Jul 2005 B2
6917211 Yoshida et al. Jul 2005 B2
6917525 Mok et al. Jul 2005 B2
6919732 Yoshida et al. Jul 2005 B2
6922069 Jun Jul 2005 B2
6924653 Schaeffer et al. Aug 2005 B2
6924655 Kirby Aug 2005 B2
6927078 Saijyo et al. Aug 2005 B2
6927079 Fyfield Aug 2005 B1
6927586 Thiessen Aug 2005 B2
6927587 Yoshioka Aug 2005 B2
6927598 Lee et al. Aug 2005 B2
6930498 Tervo et al. Aug 2005 B2
6933713 Cannon Aug 2005 B2
6933717 Dogaru et al. Aug 2005 B1
6933725 Lim et al. Aug 2005 B2
6933736 Kobayashi et al. Aug 2005 B2
6933737 Sugawara Aug 2005 B2
6937020 Munson et al. Aug 2005 B2
6937037 Eldridge et al. Aug 2005 B2
6937040 Maeda et al. Aug 2005 B2
6937042 Yoshida et al. Aug 2005 B2
6937045 Sinclair Aug 2005 B2
6937341 Woollam et al. Aug 2005 B1
6940264 Ryken, Jr. et al. Sep 2005 B2
6940283 McQueeney Sep 2005 B2
6943563 Martens Sep 2005 B2
6943571 Worledge Sep 2005 B2
6943574 Altmann et al. Sep 2005 B2
6944380 Hideo et al. Sep 2005 B1
6946859 Karavakis et al. Sep 2005 B2
6946860 Cheng et al. Sep 2005 B2
6948391 Brassell et al. Sep 2005 B2
6948981 Pade Sep 2005 B2
6949942 Eldridge et al. Sep 2005 B2
6970001 Chheda et al. Nov 2005 B2
6987483 Tran Jan 2006 B2
7001785 Chen Feb 2006 B1
7002133 Beausoleil et al. Feb 2006 B2
7002363 Mathieu Feb 2006 B2
7002364 Kang et al. Feb 2006 B2
7003184 Ronnekleiv et al. Feb 2006 B2
7005842 Fink et al. Feb 2006 B2
7005868 McTigue Feb 2006 B2
7005879 Robertazzi Feb 2006 B1
7006046 Aisenbrey Feb 2006 B2
7007380 Das et al. Mar 2006 B2
7009188 Wang Mar 2006 B2
7009383 Harwood et al. Mar 2006 B2
7009415 Kobayashi et al. Mar 2006 B2
7011531 Egitto et al. Mar 2006 B2
7012425 Shoji Mar 2006 B2
7012441 Chou et al. Mar 2006 B2
7013221 Friend et al. Mar 2006 B1
7014499 Yoon Mar 2006 B2
7015455 Mitsuoka et al. Mar 2006 B2
7015689 Kasajima et al. Mar 2006 B2
7015690 Wang et al. Mar 2006 B2
7015703 Hopkins et al. Mar 2006 B2
7015707 Cherian Mar 2006 B2
7015708 Beckous et al. Mar 2006 B2
7015709 Capps et al. Mar 2006 B2
7015710 Yoshida et al. Mar 2006 B2
7015711 Rothaug et al. Mar 2006 B2
7019541 Kittrell Mar 2006 B2
7019544 Jacobs et al. Mar 2006 B1
7019701 Ohno et al. Mar 2006 B2
7020360 Satomura et al. Mar 2006 B2
7020363 Johannessen Mar 2006 B2
7022976 Santana, Jr. et al. Apr 2006 B1
7022985 Knebel et al. Apr 2006 B2
7023225 Blackwood Apr 2006 B2
7023226 Okumura et al. Apr 2006 B2
7023229 Maesaki et al. Apr 2006 B2
7023231 Howland, Jr. et al. Apr 2006 B2
7025628 LaMeres et al. Apr 2006 B2
7026832 Chaya et al. Apr 2006 B2
7026833 Rincon et al. Apr 2006 B2
7026834 Hwang Apr 2006 B2
7026835 Farnworth et al. Apr 2006 B2
7030599 Douglas Apr 2006 B2
7030827 Mahler et al. Apr 2006 B2
7032307 Matsunaga et al. Apr 2006 B2
7034553 Gilboe Apr 2006 B2
7035738 Matsumoto et al. Apr 2006 B2
7088981 Chang Aug 2006 B2
7096133 Martin et al. Aug 2006 B1
7101797 Yuasa Sep 2006 B2
7161363 Gleason et al. Jan 2007 B2
7187188 Andrews et al. Mar 2007 B2
7188037 Hidehira Mar 2007 B2
7417445 Sakagawa et al. Aug 2008 B2
20010002794 Draving et al. Jun 2001 A1
20010009061 Gleason et al. Jul 2001 A1
20010009377 Schwindt et al. Jul 2001 A1
20010010468 Gleason et al. Aug 2001 A1
20010020283 Sakaguchi Sep 2001 A1
20010024116 Draving Sep 2001 A1
20010030549 Gleason et al. Oct 2001 A1
20010043073 Montoya Nov 2001 A1
20010044152 Burnett Nov 2001 A1
20010045511 Moore et al. Nov 2001 A1
20010054906 Fujimura Dec 2001 A1
20020005728 Babson et al. Jan 2002 A1
20020008533 Ito et al. Jan 2002 A1
20020009377 Shafer Jan 2002 A1
20020009378 Obara Jan 2002 A1
20020011859 Smith et al. Jan 2002 A1
20020011863 Takahashi et al. Jan 2002 A1
20020050828 Seward, IV et al. May 2002 A1
20020070743 Felici et al. Jun 2002 A1
20020070745 Johnson et al. Jun 2002 A1
20020075027 Hollman et al. Jun 2002 A1
20020079911 Schwindt Jun 2002 A1
20020109088 Nara et al. Aug 2002 A1
20020118009 Hollman et al. Aug 2002 A1
20020118034 Laureanti Aug 2002 A1
20020149377 Hefti et al. Oct 2002 A1
20020153909 Petersen et al. Oct 2002 A1
20020163769 Brown Nov 2002 A1
20020168659 Hefti et al. Nov 2002 A1
20020176160 Suzuki et al. Nov 2002 A1
20020180466 Hiramatsu et al. Dec 2002 A1
20020197709 Van der Weide et al. Dec 2002 A1
20030010877 Landreville et al. Jan 2003 A1
20030030822 Finarov Feb 2003 A1
20030032000 Liu et al. Feb 2003 A1
20030040004 Hefti et al. Feb 2003 A1
20030057513 Leedy Mar 2003 A1
20030062915 Arnold et al. Apr 2003 A1
20030071631 Alexander Apr 2003 A1
20030072549 Facer et al. Apr 2003 A1
20030076585 Ledley Apr 2003 A1
20030077649 Cho et al. Apr 2003 A1
20030088180 Van Veen et al. May 2003 A1
20030119057 Gascoyne et al. Jun 2003 A1
20030139662 Seidman Jul 2003 A1
20030139790 Ingle et al. Jul 2003 A1
20030141861 Navratil et al. Jul 2003 A1
20030155939 Lutz et al. Aug 2003 A1
20030170898 Gundersen et al. Sep 2003 A1
20030184332 Tomimatsu et al. Oct 2003 A1
20040015060 Samsoondar et al. Jan 2004 A1
20040021475 Ito et al. Feb 2004 A1
20040061514 Schwindt et al. Apr 2004 A1
20040066181 Thies Apr 2004 A1
20040069776 Fagrell et al. Apr 2004 A1
20040075837 Maeda et al. Apr 2004 A1
20040090223 Yonezawa May 2004 A1
20040095145 Boudiaf et al. May 2004 A1
20040095641 Russum et al. May 2004 A1
20040100276 Fanton May 2004 A1
20040100297 Tanioka et al. May 2004 A1
20040108847 Stoll et al. Jun 2004 A1
20040113639 Dunklee et al. Jun 2004 A1
20040113640 Cooper et al. Jun 2004 A1
20040130787 Thome-Forster et al. Jul 2004 A1
20040132222 Hembree et al. Jul 2004 A1
20040134899 Hiramatsu et al. Jul 2004 A1
20040147034 Gore et al. Jul 2004 A1
20040162689 Jamneala et al. Aug 2004 A1
20040170312 Soenksen Sep 2004 A1
20040175294 Ellison et al. Sep 2004 A1
20040186382 Modell et al. Sep 2004 A1
20040193382 Adamian et al. Sep 2004 A1
20040197771 Powers et al. Oct 2004 A1
20040199350 Blackham et al. Oct 2004 A1
20040201388 Barr Oct 2004 A1
20040207072 Hiramatsu et al. Oct 2004 A1
20040207424 Hollman Oct 2004 A1
20040239338 Jonsson et al. Dec 2004 A1
20040246004 Heuermann Dec 2004 A1
20040251922 Martens et al. Dec 2004 A1
20050024069 Hayden et al. Feb 2005 A1
20050026276 Chou Feb 2005 A1
20050030047 Adamian Feb 2005 A1
20050054029 Tomimatsu et al. Mar 2005 A1
20050062533 Vice Mar 2005 A1
20050083130 Grilo Apr 2005 A1
20050099192 Dunklee et al. May 2005 A1
20050101846 Fine et al. May 2005 A1
20050156675 Rohde et al. Jul 2005 A1
20050164160 Gunter et al. Jul 2005 A1
20050165316 Lowery et al. Jul 2005 A1
20050168722 Forstner et al. Aug 2005 A1
20050174191 Brunker et al. Aug 2005 A1
20050178980 Skidmore et al. Aug 2005 A1
20050195124 Puente Baliarda et al. Sep 2005 A1
20050227503 Reitinger Oct 2005 A1
20050236587 Kodama et al. Oct 2005 A1
20050237102 Tanaka Oct 2005 A1
20060030060 Noguchi et al. Feb 2006 A1
20060052075 Galivanche et al. Mar 2006 A1
20060114012 Reitinger Jun 2006 A1
20060155270 Hancock et al. Jul 2006 A1
20060158207 Reitinger Jul 2006 A1
20060184041 Andrews et al. Aug 2006 A1
20060226864 Kramer Oct 2006 A1
20070024506 Hardacker Feb 2007 A1
20070030021 Cowan et al. Feb 2007 A1
Foreign Referenced Citations (173)
Number Date Country
1083975 Mar 1994 CN
29 12 826 Oct 1980 DE
2951072 Jul 1981 DE
31 14 466 Mar 1982 DE
31 25 552 Nov 1982 DE
3426565 Jan 1986 DE
3637549 May 1988 DE
288 234 Mar 1991 DE
288234 Mar 1991 DE
41 09 908 Oct 1992 DE
4223658 Jan 1993 DE
9313420 Oct 1993 DE
43 16 111 Nov 1994 DE
94 06 227 Oct 1995 DE
195 41 334 Sep 1996 DE
196 16 212 Oct 1996 DE
19522774 Jan 1997 DE
19542955 May 1997 DE
196 18 717 Jan 1998 DE
19618717 Jan 1998 DE
19749687 May 1998 DE
29809568 Oct 1998 DE
693 22 206 Jan 1999 DE
10000324 Jul 2001 DE
20220754 May 2004 DE
0 087 497 Sep 1983 EP
0230766 Dec 1985 EP
0195520 Sep 1986 EP
0 201 205 Dec 1986 EP
0230348 Jul 1987 EP
0259163 Mar 1988 EP
0259183 Mar 1988 EP
0259942 Mar 1988 EP
0261986 Mar 1988 EP
0270422 Jun 1988 EP
0 314 481 May 1989 EP
0 333 521 Sep 1989 EP
0333521 Sep 1989 EP
0 460 911 Dec 1991 EP
0460911 Dec 1991 EP
0 505 981 Sep 1992 EP
0 574 149 Dec 1993 EP
0 706 210 Apr 1996 EP
0846476 Jun 1998 EP
0 573 183 Jan 1999 EP
0 945 736 Sep 1999 EP
0945736 Sep 1999 EP
579665 Aug 1946 GB
2014315 Aug 1979 GB
2179458 Mar 1987 GB
2 197 081 May 1988 GB
52-19046 Feb 1977 JP
53-037077 Apr 1978 JP
53037077 Apr 1978 JP
53-052354 May 1978 JP
55-115383 Sep 1980 JP
55115383 Sep 1980 JP
56-007439 Jan 1981 JP
56-88333 Jul 1981 JP
5691503 Jul 1981 JP
56088333 Jul 1981 JP
57-075480 May 1982 JP
57075480 May 1982 JP
57-163035 Oct 1982 JP
57163035 Oct 1982 JP
57171805 Oct 1982 JP
58-130602 Aug 1983 JP
594189 Jan 1984 JP
60-5462 Apr 1984 JP
61142802 Jun 1986 JP
62-011243 Jan 1987 JP
62-11243 Jan 1987 JP
62-51235 Mar 1987 JP
62-098634 May 1987 JP
62-107937 May 1987 JP
62098634 May 1987 JP
62107937 May 1987 JP
62239050 Sep 1987 JP
62-239050 Oct 1987 JP
62295374 Dec 1987 JP
63-108736 May 1988 JP
63-129640 Jun 1988 JP
63-143814 Jun 1988 JP
63-160355 Jul 1988 JP
63-318745 Dec 1988 JP
1-165968 Jun 1989 JP
1-178872 Jul 1989 JP
1-209380 Aug 1989 JP
1-214038 Aug 1989 JP
01209380 Aug 1989 JP
1-219575 Sep 1989 JP
1-296167 Nov 1989 JP
2-22836 Jan 1990 JP
2-22837 Jan 1990 JP
2-22873 Jan 1990 JP
2-124469 May 1990 JP
02124469 May 1990 JP
02135804 May 1990 JP
2-191352 Jul 1990 JP
2-220453 Sep 1990 JP
3-67187 Mar 1991 JP
3-175367 Jul 1991 JP
3-196206 Aug 1991 JP
3196206 Aug 1991 JP
3-228348 Oct 1991 JP
03228348 Oct 1991 JP
4-732 Jan 1992 JP
4-130639 May 1992 JP
04130639 May 1992 JP
4-159043 Jun 1992 JP
04159043 Jun 1992 JP
4-206930 Jul 1992 JP
04206930 Jul 1992 JP
4-340248 Nov 1992 JP
5-082631 Apr 1993 JP
05082631 Apr 1993 JP
5-157790 Jun 1993 JP
51-57790 Jun 1993 JP
5157790 Jun 1993 JP
5-166893 Jul 1993 JP
51-66893 Jul 1993 JP
5166893 Jul 1993 JP
6-85044 Mar 1994 JP
60-71425 Mar 1994 JP
6-102313 Apr 1994 JP
6-132709 May 1994 JP
6154238 Jun 1994 JP
7-005078 Jan 1995 JP
7-5197 Jan 1995 JP
7-12871 Jan 1995 JP
7005078 Jan 1995 JP
7012871 Jan 1995 JP
7-273509 Oct 1995 JP
8-35987 Feb 1996 JP
8035987 Feb 1996 JP
8-261898 Oct 1996 JP
8-330401 Dec 1996 JP
08330401 Dec 1996 JP
09127432 May 1997 JP
10-116866 May 1998 JP
10116866 May 1998 JP
10-339743 Dec 1998 JP
11-023975 Jan 1999 JP
11004001 Jan 1999 JP
11023975 Jan 1999 JP
11-031724 Feb 1999 JP
2000-329664 Nov 2000 JP
2001-124676 May 2001 JP
2001-189285 Jul 2001 JP
2001-189378 Jul 2001 JP
2002033374 Jan 2002 JP
2002-164396 Jun 2002 JP
2002-203879 Jul 2002 JP
2002-243502 Aug 2002 JP
2002243502 Aug 2002 JP
20030090158 Nov 2003 KR
843040 Jun 1981 SU
1195402 Nov 1985 SU
1327023 Jul 1987 SU
1392603 Apr 1988 SU
WO8000101 Jan 1980 WO
WO 8000101 Jan 1980 WO
WO 8607493 Dec 1986 WO
WO 8904001 May 1989 WO
WO9410554 May 1994 WO
WO9807040 Feb 1998 WO
WO0107207 Feb 2001 WO
WO 0169656 Sep 2001 WO
WO 2004049395 Jun 2004 WO
WO 2004065944 Aug 2004 WO
WO 2004079299 Sep 2004 WO
WO 2005062025 Jul 2005 WO
WO 2006083581 Aug 2006 WO
Related Publications (1)
Number Date Country
20060184041 A1 Aug 2006 US
Provisional Applications (1)
Number Date Country
60648952 Jan 2005 US