U.S. patent application Ser. No. 13/540,878, by Evensen, published Jan. 9, 2014 as U.S. Publication No. 2014/0007734, issued Aug. 2, 2016 as U.S. Pat. No. 9,404,302, is incorporated by reference herein in its entirety.
U.S. patent application Ser. No. 13/663,798, by Evensen, published Jan. 9, 2014 as U.S. Publication No. 2014/0007720, issued Mar. 1, 2016 as U.S. Pat. No. 9,273,763, is incorporated by reference herein in its entirety.
[Not Applicable]
[Not Applicable]
Certain embodiments of the invention relate to systems and methods for unlocking/locking and opening/closing windows without excessive force and twisting. More specifically, certain embodiments provide a lever mechanism configured to unlock and open an operable vent sash by pivoting approximately one hundred and eighty (180) degrees in a first radial direction on a single plane, and configured to lock and close the operable vent sash by pivoting approximately one hundred and eighty (180) degrees in a second radial direction on the single plane. The force required to pivot the lever mechanism for any operation does not exceed five (5) pounds (lbs.).
The Americans with Disabilities Act (ADA), which affects many public and private commercial buildings, is intended to ensure equal access to all persons regardless of physical disabilities. Section 309.4 of the ADA accessibility guidelines related to window and door hardware sets forth that “[o]perable parts shall be operable with one hand and shall not require tight grasping, pinching, or twisting of the wrist. The force required to activate operable parts shall be 5 pounds (22.2 N) maximum.” The Department of Justice Standards for Accessible Design (4.27.4) and the International Building Code (ANSI 309.4) set forth similar guidelines.
Architects prefer larger vents for exterior window designs to meet fresh air ventilation requirements. Using a larger quantity of smaller vents is typically more expensive than using a fewer quantity of larger vents. Additionally, current energy codes and specifications require low thermal insulating values for windows. Insulated glass has a better insulating value than metal, so the more metal used in a window system, the lower the insulating value. Because the exterior seal of a vent is subject to lower insulating values by nature and is a weak thermal point in the window system, a larger vent size helps to offset the overall insulating value due to the greater percentage of glass. A larger vent helps in the insulating performance but a larger vent takes more force to open.
Although using larger vents may improve insulating performance and decrease costs for architects, larger vents are typically more difficult to open and close. More specifically, an insulated glass unit weighs approximately seven (7) lbs. per square foot and can weigh as much as eight and one half (8.5) lbs. per square foot for insulated laminated glass. When aluminum and other materials are added to construct the vent frame and sash, a vent can weigh around nine (9) lbs. per square foot or more. As such, a four (4) foot by five (5) foot vent may weigh approximately one hundred and eighty-nine (189) lbs. or more, which may be difficult to open using not more than five (5) lbs. of operational force as required by applicable ADA and other guidelines.
In addition to generally being more difficult to open and close, larger vents are also typically more difficult to lock and unlock. Vents, like other window systems, are manufactured and installed to meet strict air and water performance specifications. As such, to compress a sash to a vent frame of the window system, a great deal of compressive force can be needed to make the system air and water tight. The compression of the sash to the vent frame is commonly achieved by the locking of the sash using the vent handle, which moves one or more transmission bars inside a euro-grove (or vent track) around the perimeter of the sash when the vent handle is rotated in one direction.
For example,
The handle connectors 102 may couple to the underside of the handle 101 at the outer portion of the sash and slidably fit in a euro-grove (not shown) that extends around an outer perimeter of the sash. Transmission bars 103 can attach to the handle connectors 102 at one end and corner transmission device connectors 104 at the other end, and may slidably fit in the euro-grove. The corner transmission device connectors 104 may slidably fit into corner transmission device housings 106. An outward, horizontal force on corner transmission device connectors 104 may cause the corner transmission device connectors 104 to extend into the corner transmission device housings 106, which in turn may cause the corner transmission device connectors 105 to extend vertically in the exemplary awning vent illustrated in
Referring still to
Locking points 108 may be attached to, or integrated with, one or more transmission bars 103, 109, or other components of the vent locking mechanism such as the transmission device connectors 104, 105, and 110, and may engage (or mate) with keepers 107, positioned at corresponding points on the vent frame, when moved by the handle 101 to the locking position. The engaging of the locking points 108 with the keepers 107 results in compression of the sash to the vent frame to make a tight seal. The larger the vent 100, the more locking points 108 and keepers 107 are needed to achieve an adequate seal. Further, the more locking points 108 and keepers 107, the more force is needed to lock and unlock the vent.
Many current vent designs for exterior windows require in excess of five (5) lbs. of force to open/close a sash. For example, many current vent designs do not use any mechanisms to open/close a sash (e.g., push open and pull closed), which may require more than five (5) lbs. of force, particularly for larger vents. Further, current vent designs that do have mechanisms for opening/closing a sash may not alleviate the force necessary to open/close the sash to meet the ADA guidelines. Instead, some mechanisms, such as cranks, not only may require more force to open, but also require excessive twisting. Additionally, many current vent designs for exterior windows require in excess of five (5) lbs. of force to lock/unlock a sash, particularly for larger vents having locking mechanisms with more locking points. Also, many current vent designs that do have mechanisms for opening/closing a sash use different mechanisms to unlock/lock a sash. Further, several existing vent designs require separate, independent movements in different planes to unlock/lock and/or open/close a sash.
As such, there is a need for providing systems and methods for unlocking/locking and opening/closing windows without excessive force and twisting by combining operations (e.g., unlocking and opening, or locking and closing) into a single fluid movement in a single plane (i.e., a single axis movement) using a single mechanism.
Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with some aspects of the present invention as set forth in the remainder of the present application with reference to the drawings.
Systems and methods for unlocking/locking and opening/closing windows without excessive force and twisting is provided, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
These and other advantages, aspects and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, may be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, certain embodiments are shown in the drawings. It should be understood, however, that the present invention is not limited to the arrangements and instrumentality shown in the attached drawings.
Certain embodiments of the invention may be found in systems and methods for unlocking/locking and opening/closing windows without excessive force and twisting. More specifically, certain embodiments provide a lever mechanism 1 configured to unlock and open an operable vent sash 27 by pivoting substantially one hundred and eighty (180) degrees in a first radial direction on a single plane, and configured to lock and close the operable vent sash 27 by pivoting substantially one hundred and eighty (180) degrees in a second radial direction on the single plane. The force required to pivot the lever mechanism 1 for any operation does not exceed five (5) pounds (lbs.).
Various embodiments provide a lever mechanism system 1 for unlocking, opening, closing and locking a vent sash 27. The lever mechanism system 1 may comprise push arms 5, drive arms 3, 4, gears 11, 12, a locking gear slide 20, and a handle 10. Each of the push arms 5 comprises a first push arm end and a second push arm end. Each of the push arms 5 pivotably couples to the vent sash 27 at the second push arm end. Each of the drive arms 3, 4 comprises a first drive arm end and a second drive arm end. Each of the drive arms 3, 4 pivotably couples at the second drive arm end to the first push arm end of a corresponding one of the push arms. Each of the gears 11, 12 is coupled to the first drive arm end of a corresponding one of the drive arms 3, 4. The locking gear slide 20 is operable to interface with a locking mechanism of the vent sash 27. The handle 10 is operable to radially rotate approximately one hundred eighty degrees in a first direction on a single plane to pivot the locking gear slide 20 to move the locking mechanism of the vent sash 27 to an unlocked position, and rotate the gears 11, 12 to extend the drive arms 3, 4, and the push arms 5 such that the vent sash 27 is pushed to an open position. The handle 10 is operable to radially rotate approximately one hundred eighty degrees in a second direction on the single plane to rotate the gears 11, 12 to retract the drive arms 3, 4 and the push arms 5 such that the vent sash 27 is pulled to a closed position, and pivot the locking gear slide 20 to move the locking mechanism of the vent sash 27 to a locked position.
As used herein, the terms “exemplary” or “example” means serving as a non-limiting example, instance, or illustration. As used herein, the term “e.g.” introduces a list of one or more non-limiting examples, instances, or illustrations.
As used herein, an element recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of the elements, unless such exclusion is explicitly stated. Furthermore, references to “an embodiment,” “one embodiment,” “a representative embodiment,” “an exemplary embodiment,” “various embodiments,” “certain embodiments,” and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising,” “including,” or “having” an element or a plurality of elements having a particular property may include additional elements not having that property.
Although certain embodiments in the foregoing description may be described in reference to awning vents, unless so claimed, the scope of various aspects of the present invention should not be limited to awning vents and may additionally and/or alternatively be applicable to casement vents, hopper vents, or any suitable vent. Further, although the viewpoint of
As used in the present application, the term “approximately 45 degrees” refers to a range of between 30 and 60 degrees of handle 10 rotation. The term “approximately 135 degrees” refers to a range between 120 and 150 degrees of handle 10 rotation. The term “approximately 180 degrees” refers to a range between 170 and 190 degrees of handle 10 rotation. The sum of the “approximately 45 degrees” and the “approximately 135 degrees” equals the “approximately 180 degrees.”
The locking mechanism may comprise, for example, a transmission bar 36, locking points 43, rack 34, and rack gear 29. The locking points 43 may be attached to, or integrated with, the transmission bar 36 and are configured to disengagably coupling to corresponding keepers 42 (shown in
Still referring to
The handle 10 may be telescopic and/or otherwise collapsible, foldable, or the like. In various embodiments and as discussed in more detail below, the handle 10 may be grasped and rotated or pivoted to unlock and open, or lock and close, the vent sash 27. The force required to pivot the handle 10 for any operation does not exceed five (5) pounds (lbs.). The handle 10 rotates or pivots a shoulder screw 9 that couples the handle 10 at its pivot point to the components of the lever mechanism 1 housed in the frame 52 via the aperture in the frame 52. A cap 22 may be attached to the handle 10 over the shoulder screw 9 to provide a clean finish and prevent the shoulder screw from snagging passerby. The shoulder screw 9 may extend through and rotate a drive gear 13, cam gear 14, and locking arm 19. The gears 13, 14 and locking arm 19 can be held on the shoulder screw 9 with a nut 16. Roller bearings 2 and spacers 17 can also be held on the shoulder screw between the gears 13, 14 and locking arm 19 to properly position and reduce friction between the gears 13, 14 and locking arm 19.
Still referring to
The gear 12 may be integrated with a first end of a drive arm 3 and/or coupled to the first end of the drive arm 3 with a pin 33 that extends through the gear 12 and drive arm 3 and mates with a slot of the locking gear slide 20. One or more roller bearings 2 can also be placed on the pin 33 to reduce friction, such as between the gear 12 and the locking gear slide 20. The second end of the drive arm 3 pivotably couples to a first end of a push arm 5 by a hinged pin 23. The hinged pin 23 allows for the drive arm 3 and push arm 5 to pivot with respect to each other in a horizontal plane as the combination of the drive arm 3 and push arm 5 extend to push open the vent sash 27 or retract to pull close the vent sash 27. The hinged pin 23 may also allow the push arm 5 to pivot in a vertical plane with respect to the stationary drive arm 3 to accommodate the change in vertical plane created by the vent sash 27 swinging out to open or in to close. The horizontal and vertical planes described above assume an embodiment where the lever mechanism 1 is attached at a base or top of a window frame 26 and vent sash 27. The lever mechanism 1 can alternatively be positioned at the sides of the window frame 26 and vent sash 27 as disclosed above.
The gear 12, which is aligned with and driven by drive gear 13, may also mate with and drive gear 11. For example, the gear 12 may have a thickness that allows its teeth to engage teeth of both gear 11 and drive gear 13. The gear 11 may be integrated with a first end of a drive arm 4 and/or coupled to the first end of the drive arm 4 with a pin 39 that extends through the gear 11, drive arm 4, a slot of the locking gear slide 20, and into locking hook 18. The gear 11 includes a pin 32 that extends toward the locking gear slide 20 and is configured to slidably engage a central open slot of the gear slide 20 to prevent rotation of the gear 11 during the first 45 degrees when opening the vent sash 27 and during the last 45 degrees with closing the vent sash 27.
The gear 11 and drive arm 4 are integrated or attached such that they rotate in unison when the gear 11 is driven by the gear 12. The gear slide 20 and locking hook 18 independently rotate on the pin 39. In an exemplary embodiment, one or more roller bearings 2 can be placed on the pin 39 to reduce friction, such as between the gear 11 and the locking gear slide 20. The second end of the drive arm 4 pivotably couples to a first end of a second push arm 5 by a second hinged pin 23. The hinged pin 23 allows for the drive arm 4 and push arm 5 to pivot with respect to each other in one or more of horizontal and vertical planes as the combination of the drive arm 3 and push arm 5 extend to push open the vent sash 27 or retract to pull close the vent sash 27.
Various embodiments provide retaining rings 44 and/or quick release locks 28 that may hold the hinged pins 23 in place. The quick release locks 28 can be configured to be pulled away from each of the hinged pins 23 such that the push arms 5 can be released from the drive arms 3, 4. The second ends of the push arms 5 can be integrated with or attached to hinge tops 6 that pivotably attach to the hinge bottoms 8 via the pins 7 of
The locking gear slide 20 comprises a protrusion, gear teeth, a locking gear spring 25, slots at each end, and a central open slot. The protrusion of the gear slide 20 engages the locking spindle 30 of
The locking arm 19 comprises a locking pin 31 and is configured to rotate in unison with the handle 10 and shoulder screw 9. The locking pin 31 is configured to catch and pivot the locking hook 18 to a closed position as the locking arm 19 rotates during the last approximately 45 degrees of an approximately 180 degree handle 10 rotation when locking the vent sash 27. Conversely, the locking pin 31 is configured to release the looking hook 18 as the locking arm 19 rotates during the first approximately 45 degrees of an approximately 180 degree handle 10 rotation when unlocking the vent sash 27. The locking hook 18 is biased in an open position by spring 24 such that the locking hook 18 is in an open position when not engaged with the locking pin 31 of the locking arm 19. The purpose of the locking hook 18 is to wrap behind the locking spindle 30 of the vent sash 27 shown in
The vent sash 27 comprises infill 38, glazing beading 41, and a locking mechanism. The locking mechanism can include a rack gear 29, locking spindle 30, and keepers 42, among other things, as described above with respect to
Still referring to
As illustrated in
The vent sash 27 comprises infill 38, glazing beading 41, and a locking mechanism. The locking mechanism can include a rack gear 29, locking spindle 30, and keepers 42, among other things, as described above with respect to
The lever mechanism 1 comprises a frame 52, drive arms, 3, 4, push arms 5, a hinge mechanism 6-8, gears 11, 12, and a handle 10. The hinge mechanism 6-8 couples the lever mechanism 1 to the vent sash 27 and includes a hinge bottom 8, hinge top 6, and a pin 7 coupling the hinge bottom 8 to the hinge top 6. The gears 11, 12 can be configured to drive arms 3-5 to push a vent sash 27 open or pull it closed. The drive arms 3, 4 may be pivotably attached to push arms 5 by hinged pins 23. In various embodiments, quick release locks 28 may be provided to provide a mechanism for releasing the push arms 5 from the drive arms 3, 4. The handle 10 can include a cap 22 to provide a clean finish by hiding the connection between the handle 10 and the other components of the lever mechanism 1. The frame 52 houses and protects components of the lever mechanism 1 while providing an aesthetically-pleasing clean finish. The frame 52 may include caps 21 for covering sides of the frame 52.
As illustrated in
The vent sash 27 comprises infill 38 and glazing beading 41. The glazing beading 41 can include a flip cover 45 for allowing access to a locking mechanism when the vent sash 27 is closed and to provide a clean finish by hiding the locking mechanism when the vent sash 27 is open. The lever mechanism 1 comprises a frame 52, drive arms, 3, 4, push arms 5, gears 11, 12, locking hook 18, and a handle 10. The drive arms 3, 4 may be pivotably attached to push arms 5. The gears 11, 12 can be configured to drive arms 3-5 to push a vent sash 27 open or pull it closed. The locking hook 18 may seal the vent sash 27 when the vent sash 27 is in a closed position. The handle 10 can include a cap 22 to provide a clean finish by hiding the connection between the handle 10 and the other components of the lever mechanism 1. The frame 52 may attach to the window frame 26 and houses and protects components of the lever mechanism 1.
As illustrated in
The vent sash 27 comprises infill 38 and glazing beading 41. The lever mechanism 1 comprises a frame 52 and a handle 10. The handle 10 can include a cap 22 to provide a clean finish by hiding the connection between the handle 10 and the other components of the lever mechanism 1. The frame 52 may attach to the window frame 26 and houses and protects components of the lever mechanism 1.
As illustrated in
The vent sash 27 comprises infill 38 and a glazing beading 41. The infill 38 may be held in place by glazing beading 41. The glazing beading 41 can include a flip cover 45 for allowing access to a locking mechanism when the vent sash 27 is closed and to provide a clean finish by hiding the locking mechanism when the vent sash 27 is open. The lever mechanism 1 comprises a frame 52, drive arms, 3, 4, push arms 5, and a handle 10. The drive arms 3, 4 may be pivotably attached to push arms 5 by hinged pins 23. The handle 10 is rotated in a first direction to drive the components of the lever mechanism 1 to unlock and open the vent sash 27. The handle 10 is rotated in a second direction, opposite the first direction, to close and lock the vent sash 27. The handle 10 can include a cap 22 to provide a clean finish by hiding the connection between the handle 10 and the other components of the lever mechanism 1. The frame 52 houses and protects components of the lever mechanism 1 while providing an aesthetically-pleasing clean finish.
As illustrated in
Although
At step 202, a handle 10 is radially pivoted approximately forty-five (45) degrees in a first direction on a single plane from a locked and closed position to an unlocked and closed position. For example, when unlocking and opening the vent sash 27 from a closed and locked position, the handle 10 is grasped and rotated in a first direction. As the handle 10 is rotated, the shoulder screw 9 rotates the drive gear 13, cam gear 14, and locking arm 19. During the first approximately 45 degrees of rotation, the locking arm 19 rotates away from the locking hook 18 causing the locking pin 31 to release the locking hook 18. The locking hook 18 is biased by spring 24 to an open position causing the locking hook 18 to unlatch from behind the locking spindle 30 thereby releasing the sealed vent sash 27.
The cam gear 14 rotates in unison with the locking arm 19 on the shoulder screw 9. The cam gear 14 engages the locking gear slide 20 teeth during the first approximately 45 degrees of handle 10 rotation to slide the gear slide 20 protrusion thereby rotating the locking spindle 30 to an unlocked position. As the locking spindle 30 rotates to an unlocked position, it pivots rack gear 29. The rack gear 29 slides the rack 34 coupled to the transmission bar 36 such that the locking points 43 of the transmission bar 36 are released from keepers 42 of the window frame 26, unlocking the vent sash 27. Although drive gear 13 rotates on the shoulder screw 9 as the handle is rotated, the teeth of the drive gear 13 are configured so as not to engage the gear 12 until after the vent sash is unlocked (i.e., not until after the first approximately 45 degrees of rotation). The pin 32 of gear 11 is engaged with the central open slot of the locking gear slide 20 during the first approximately 45 degrees of rotation to prevent the rotation of gear 11. After the first approximately 45 degrees, the pin 32 is released through the opening in the central open slot of the gear slide 20 thereby allowing rotation of the gear 11.
At step 204, the handle 10 is radially pivoted approximately one hundred thirty-five (135) degrees in the first direction on the single plane from the unlocked and closed position to an unlocked and open position. Once the vent sash is unlocked by rotating the handle 10 the first approximately 45 degrees, the vent sash 27 is opened as the handle 10 is rotated the remaining approximately 135 degrees of a complete approximately 180 degree handle 10 rotation. The shoulder screw 9 continues to rotate the drive gear 13, cam gear 14, and locking arm 19 as the handle 10 is rotated. The cam gear 14 and locking arm 19, however, do not engage other components while the vent sash 27 is moving open. The drive gear 13, on the other hand, meshes with gear 12 to drive the gear 12 and the gear 11 that is engaged with the gear 12. Gears 11, 12 are rotated to extend the drive arms 3, 4 and the push arms 5 that are attached to the drive arms 3, 4 via hinged pins 23. The push arms 5, attached to the vent sash 27 by hinge mechanisms 6-8, push the vent sash 27 to an open position. As the vent sash 27 is pushed open, the flip cover 45 is biased to a closed position by torsion spring 49 to provide a clean finish by hiding the locking spindle 30.
At step 206, the handle 10 is radially pivoted approximately one hundred thirty-five (135) degrees in a second direction, opposite the first direction, on the single plane from the unlocked and open position to the unlocked and closed position. For example, when closing and locking the vent sash 27 from an open and unlocked position, the handle 10 is grasped and rotated in a second direction that is opposite from the first direction used to unlock and open the vent sash 27. The vent sash 27 is closed as the handle 10 is rotated the first approximately 135 degrees of a complete approximately 180 degree handle 10 rotation in the second direction. The shoulder screw 9 rotates the drive gear 13, cam gear 14, and locking arm 19 as the handle 10 is rotated. The cam gear 14 and locking arm 19 may not engage other components while the vent sash 27 is moving closed (i.e., during the first approximately 135 degrees of handle 10 rotation in the second direction). As the drive gear 13 rotates on the shoulder screw 9, the teeth of the drive gear 13 are configured to engage the gear 12 during the first approximately 135 degrees of rotation in the second direction. The drive gear 13 meshes with gear 12 to drive the gear 12 and the gear 11 that is engaged with the gear 12. Gears 11, 12 are rotated to retract the drive arms 3, 4 and the push arms 5 that are attached to the drive arms 3, 4 via hinged pins 23. The push arms 5, attached to the vent sash 27 by hinge mechanisms 6-8, pull the vent sash 27 to a closed position. After the first approximately 135 degrees of handle 10 rotation, the pin 32 of gear 11 slides into the opening in the central open slot of the gear slide 20 to prevent rotation of the gear 11.
As the vent sash 27 is pulled closed, the flip cover 45 is forced open by a flip cover rotation mechanism to provide access to the locking spindle 30 by the protrusion of the locking gear slide 20. The flip cover rotation mechanism may be bevel gears, a key 47 and key shaft 51, or any suitable mechanism for rotating the flip cover 45 to an open position. For example, a key 47 may extend into an aperture in the flip cover 45 and be attached to a push arm 5 by a key shaft 51. As the push arm 5 is pivoted to pull the vent sash 27 closed, the key 47 may be partially pulled out of the flip cover 45 aperture to force the flip cover 45 open.
At step 208, the handle 10 is radially pivoted approximately forty-five (45) degrees in the second direction on the single plane from the unlocked and closed position to the locked and closed position. The vent sash 27 is locked as the handle 10 is rotated the last approximately 45 degrees of handle 10 rotation. The cam gear 14 engages the locking gear slide 20 teeth during the last approximately 45 degrees of handle 10 rotation to slide the gear slide 20 protrusion. The gear slide 20 protrusion rotates the locking spindle 30 to a locked position. As the locking spindle 30 rotates to a locked position, it pivots rack gear 29. The rack gear 29 slides the rack 34 coupled to the transmission bar 36 such that the locking points 43 of the transmission bar 36 are engaged with keepers 42 of the window frame 26, locking the vent sash 27. During the last approximately 45 degrees of rotation, the locking arm 19 rotates toward the locking hook 18 causing the locking pin 31 to engage the locking hook 18. The locking pin 31 pushes the locking hook 18 to a closed position such that the locking hook 18 latches behind the locking spindle 30 to seal the vent sash 27.
In certain embodiments, by configuring the handle 10 length, the force required to pivot the lever mechanism 1, to both unlock/open and close/lock the vent sash 27, does not exceed five (5) pounds (lbs.), irrespective of the size and weight of the vent sash 27. In various embodiments, pivoting the lever mechanism 1 approximately one hundred eighty (180) degrees on a single plane in a first direction to unlock/open a vent sash 27, and pivoting the lever mechanism 1 approximately one hundred eighty (180) degrees on the same single plane in a second direction to close/lock the vent sash 27 does not involve excessive twisting or turning of an operator's wrist.
Aspects of the present invention provide that the lever mechanism 1 may be retrofitted to replace an existing vent handle 101 such that the lever mechanism 1 operates with an existing locking mechanism of a vent sash 27. Additionally and/or alternatively, the lever mechanism 1 may be manufactured as a part of a locking mechanism of a vent sash 27. Additionally and/or alternatively, the lever mechanism 1 may be manufactured to be integrated within a window frame 26 and attached to a locking mechanism of a vent sash 27.
In various embodiments, the drive arms 3, 4, and/or push arms 5 may restrict or limit the distance the vent sash 27 may open. Further, the drive arms 3, 4, and/or push arms 5 can help secure and support the vent sash 27 such that it does not blow out from negative pressure when in an open position.
In certain embodiments, the lever mechanism 1 may be operable to pivot approximately one hundred eighty (180) degrees in substantially the horizontal plane (i.e., within ten degrees in either direction of a plane that is parallel to the base of the vent sash 27 or window frame 26, for example) such that the lever mechanism 1 is accessible at a particular height for all operations (e.g., unlocking, opening, closing and locking).
Aspects of the present invention provide a lever mechanism system 1 for unlocking, opening, closing and locking a vent sash 27. The lever mechanism system 1 may comprise push arms 5, drive arms 3, 4, gears 11, 12, a locking gear slide 20, and a handle 10. Each of the push arms 5 comprises a first push arm end and a second push arm end. Each of the push arms 5 pivotably couples to the vent sash 27 at the second push arm end. Each of the drive arms 3, 4 comprises a first drive arm end and a second drive arm end. Each of the drive arms 3, 4 pivotably couples at the second drive arm end to the first push arm end of a corresponding one of the push arms. Each of the gears 11, 12 is coupled to the first drive arm end of a corresponding one of the drive arms 3, 4. The locking gear slide 20 is operable to interface with a locking mechanism of the vent sash 27. The handle 10 is operable to radially rotate approximately one hundred eighty degrees in a first direction on a single plane to pivot the locking gear slide 20 to move the locking mechanism of the vent sash 27 to an unlocked position, and rotate the gears 11, 12 to extend the drive arms 3, 4, and the push arms 5 such that the vent sash 27 is pushed to an open position. The handle 10 is operable to radially rotate approximately one hundred eighty degrees in a second direction on the single plane to rotate the gears 11, 12 to retract the drive arms 3, 4 and the push arms 5 such that the vent sash 27 is pulled to a closed position, and pivot the locking gear slide 20 to move the locking mechanism of the vent sash 27 to a locked position.
In a representative embodiment, the lever mechanism system 1 comprises a frame 52 configured to mount to a window frame 26 and house at least a portion of the lever mechanism system 1. In certain embodiments, the second direction is opposite the first direction. In various embodiments, the handle 10 is at least one of telescopic, collapsible, and foldable.
In certain embodiments, the locking gear slide 20 is pivoted to move the locking mechanism of the vent sash 27 to the unlocked position during a first approximately forty-five degrees of the approximately one hundred eighty degrees rotation in the first direction. In a representative embodiment, the gears 11, 12 are rotated to extend the drive arms 3, 4 and the push arms 5 such that the vent sash 27 is pushed to the open position during a second approximately one hundred thirty-five degrees after the first approximately forty-five degrees of the approximately one hundred eighty degrees rotation in the first direction.
In various embodiments, the gears 11, 12 are rotated to retract the drive arms 3, 4 and the push arms 5 such that the vent sash 27 is pulled to the closed position during a first approximately one hundred thirty-five degrees of the approximately one hundred eighty degrees rotation in the second direction. In certain embodiments, the locking gear slide 20 is pivoted to move the locking mechanism of the vent sash 27 to the locked position during a second approximately forty-five degrees after the first approximately one hundred thirty-five degrees of the approximately one hundred eighty degrees rotation in the second direction.
In a representative embodiment, the locking mechanism comprises a locking spindle 30 that is pivotable by a protrusion of the locking gear slide 20. In various embodiments, the lever mechanism system 1 comprises a locking hook 18 operable to wrap behind the locking spindle 30 to seal the vent sash 27 in the closed position. In certain embodiments, the lever mechanism system 1 comprises a locking arm 19 operable to engage and move the locking hook 18 to a closed position where the locking hook 18 wraps behind the locking spindle 30 when the handle 10 is rotated in the second direction. In a representative embodiment, the lever mechanism system 1 comprises a spring 24 operable to bias the locking hook 18 to an open position when the handle 10 is rotated in the first direction causing the locking arm 19 to disengage the locking hook 18.
In certain embodiments, the lever mechanism system 1 comprises a hinged pin 23 pivotably coupling each of the drive arms 3, 4 at the second drive arm end to the first push arm end of each of the corresponding one of the push arms 5. The hinged pin 23 allows each of the push arms 5 to pivot both parallel and perpendicular to each of the corresponding one of the drive arms 3, 4. In various embodiments, the lever mechanism system 1 comprises a quick release lock 28 detachably coupling each of the drive arms 3, 4 at the second drive arm end to the first push arm end of each of the corresponding one of the push arms 5. In a representative embodiment, the lever mechanism system 1 comprises a hinge 6-8 pivotably coupling each of the push arms 5 to the vent sash 27 at the second push arm end.
In various embodiments, at least one of the gears 11, 12 comprises a pin 32 releasably coupling with the locking gear slide 20 to prevent rotation of the at least one of the gears 11, 12 during a first approximately forty-five degrees of the approximately one hundred eighty degrees of rotation of the handle 10 in the first direction and during the last approximately forty-five degrees of the approximately one hundred eighty degrees of rotation of the handle 10 in the second direction. In certain embodiments, the lever mechanism system 1 comprises a shoulder screw 9 coupled to the handle 10 at a pivot point of the handle 10 and operable to rotate with rotation of the handle 10.
In a representative embodiment, the lever mechanism system 1 comprises a drive gear 13 and a cam gear 14. The drive gear 13, the cam gear 14, and the locking arm 19 attach to and rotate with the shoulder screw 9. In certain embodiments, the drive gear 13 is operable to mate with and rotate at least one of the gears 11, 12 during a last approximately one hundred thirty-five degrees of the approximately one hundred eighty degrees of rotation of the handle 10 in the first direction and during the first approximately one hundred thirty-five degrees of the approximately one hundred eighty degrees of rotation of the handle 10 in the second direction. In various embodiments, the cam gear 14 is operable to mate with and pivot the locking gear slide 20 during a first approximately forty-five degrees of the approximately one hundred eighty degrees of rotation of the handle 10 in the first direction and during the last approximately forty-five degrees of the approximately one hundred eighty degrees of rotation of the handle 10 in the second direction.
In certain embodiments, the lever mechanism system 1 comprises a flip cover 45 pivotably mounted to the vent sash 27. The flip cover 45 pivots between a flip cover open position to provide access to the locking mechanism when the vent sash 27 is in the closed position and a flip cover closed position when the vent sash 27 is in the open position. In a representative embodiment, the flip cover 45 is pivoted by one or more of a torsion spring 49, a key 47 and a key shaft 51, and bevel gears.
Although devices, methods, and systems according to the present invention may have been described in connection with a preferred embodiment, it is not intended to be limited to the specific form set forth herein, but on the contrary, it is intended to cover such alternative, modifications, and equivalents, as can be reasonably included within the scope of the invention as defined by this disclosure and appended diagrams.
While the present invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present invention without departing from its scope. Therefore, it is intended that the present invention not be limited to the particular embodiment disclosed, but that the present invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2767979 | Hummert | Oct 1956 | A |
5435103 | Lauesen | Jul 1995 | A |
5907926 | Sosa | Jun 1999 | A |
6044587 | Vetter | Apr 2000 | A |
6230457 | Brautigam | May 2001 | B1 |
6354639 | Minter | Mar 2002 | B1 |
7614184 | Rebel | Nov 2009 | B2 |
7807945 | Ostby | Oct 2010 | B2 |
9273763 | Evensen | Mar 2016 | B2 |
20070095804 | Ostby | May 2007 | A1 |
20070144072 | Hansel | Jun 2007 | A1 |
20080066382 | Erickson | Mar 2008 | A1 |
20130255155 | Tang | Oct 2013 | A1 |
20140007720 | Evensen | Jan 2014 | A1 |
20140007734 | Evensen | Jan 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20160333623 A1 | Nov 2016 | US |