The disclosed implementations relate generally to systems, methods, and devices for monitoring a person's eye and/or controlling an environment around the eye.
Adequate moisture is integral to the overall health of eyes and vision. Blinking is an important body function that provides moisture to the eyes through release of a lubricating tear film. Dry eye syndrome is a condition that occurs when a person's tears are not able to provide adequate lubrication to their eyes.
Blinking maintains the healthy functioning of the eyes by providing the eyes with moisture. Typically, most people blink their eyes every ten seconds or so. However, the rate of blinking reduces with increased screen time. When people interact with their device screens (e.g., computers, tablets, smart phones, etc.) or watch television, they tend not to blink as much. Prolonged use of the devices can lead to dryness in the eyes, fatigue of the eyes, stinging in the eyes, sensitivity to light, and other irritations. Furthermore, in some circumstances, certain ambient conditions can also cause or aggravate the dry eye syndrome.
For example, air-conditioned environments can have lower humidity levels compared to outdoor environments, thus worsening the condition of the eyes.
Because devices with display screens (e.g., computers, laptops, tablets, mobile phones, television etc.) have become indispensable in one's everyday life, users will continue to utilize the devices despite experiencing fatigue and/or discomfort in their eyes. Accordingly, there is a need for improved systems, devices, and methods that monitor an external environment surrounding the eyes of a user and the condition of the eyes themselves. There is also a need for improved systems, devices, and methods that proactively mitigate the condition of the eyes in accordance with the monitoring. Ideally, the systems, devices, and methods should allow a user to continue using their eyes for their tasks (e.g., working, reading, watching television, cooking etc.) while the mitigation is being carried out.
As disclosed herein, an apparatus (e.g., a device, such as an electronic device) is equipped with sensors that actively monitor a surrounding environment of the eye(s) of a user. The apparatus is also equipped with a camera (e.g., an imaging device) that monitors the condition of the eyes themselves. In some embodiments, the apparatus determines a state of the eye(s) in accordance with the data from the camera. In some embodiments, in accordance with the determined state of the eye(s), the apparatus may take one or more actions to mitigate, maintain, or optimize the condition of the eye(s). For example, the apparatus may regulate the humidity of the environment surrounding the eye(s), and/or dispense one or more fluids to the eyes to maintain the amount of moisture in the eye(s), and/or display an alert to the user, either via a display and/or one or more lenses of the apparatus. In some embodiments, the apparatus can also send the alert to a display device of the user, for display on the device. In some embodiments, the apparatus can also mitigate the surrounding environment of the eye(s), for example by controlling one or more operating conditions (e.g., a temperature, a humidity level etc.) external devices in the vicinity of the user which can affect the level of moisture in the eyes.
According to some embodiments disclosed herein, an apparatus (e.g., device) for mitigating the surrounding environment of the eye(s) includes a support structure for mounting onto a user's head.
According to some embodiments disclosed herein, an apparatus (e.g., device) for mitigating the surrounding environment of the eye(s) includes a modular device that is designed (e.g., configured) to be affixed onto existing eyewear of a user, such as eyeglasses, cleanroom goggles, virtual reality headsets, and/or augmented reality headsets.
In accordance with some embodiments of the present disclosure, an apparatus comprises a support structure. The apparatus also comprises a plurality of sensors positioned on the support structure. The apparatus further comprises a camera positioned on the support structure. The camera has a field of view that includes an eye of a user of the apparatus. The apparatus further comprises one or more processors and memory. The memory stores instructions that, when executed by the one or more processors, cause the processors to detect ambient condition data using the plurality of sensors. The processors also capture imaging data that includes the eye using the camera. The processors determine a first predefined state of the eye based on the detected ambient condition data and the captured imaging data. The processors also dispense a fluid proximate to the eye of the user in accordance with the first predefined state of the eye.
In some embodiments, the apparatus further comprises one or more liquid reservoirs positioned on the support structure. Dispensing the fluid proximate to the eye of the user comprises dispensing the fluid from the one or more liquid reservoirs.
In some embodiments, the apparatus further comprises one or more agitators positioned in proximity to the one or more liquid reservoirs. Dispensing the fluid proximate to the eye of the user further comprises agitating the fluid in the one or more liquid reservoirs prior to the dispensing the fluid.
In some embodiments, the one or more agitators include one or more of: a radio frequency resonator, a magnetic mixer, and an ultrasonic vibrator.
In some embodiments, the one or more liquid reservoirs include one or more micro-heaters. The memory further includes instructions that, when executed by the one or more processors, cause the processors to adjust a temperature of the fluid in the one or more liquid reservoirs using the one or more micro-heaters.
In some embodiments, the memory further includes instructions that, when executed by the one or more processors, cause the processors to dispense the fluid from the one or more liquid reservoirs by evaporating the fluid using the one or more micro heaters.
In some embodiments, the one or more liquid reservoirs comprise a plurality of liquid reservoirs. Each of the plurality of liquid reservoirs contains a distinct fluid having a corresponding fluid type. In accordance with the determined first predefined state of the eye, the processors identify one or more fluid types corresponding to the first predefined state. The processors also dispense from the plurality of liquid reservoirs fluids one or more fluids corresponding to the identified fluid types.
In some embodiments, the ambient condition data includes two or more of: a light level, an air pressure, humidity, an air flow, and temperature. The plurality of sensors includes two or more of: a light sensor for measuring the light level; an ambient pressure sensor for measuring the air pressure; a humidity sensor for measuring the humidity; an airflow sensor for measuring the air flow; and a temperature sensor for measuring the temperature.
In some embodiments, the apparatus further comprises a tonometer for measuring a pressure of the eye.
In some embodiments, the tonometer comprises a first component for deflecting a cornea of the eye. The tonometer also comprises a second component for measuring the deflection.
In some embodiments, the apparatus further comprises a refractor for measuring an intraocular pressure of the eye.
In some embodiments, the memory further includes instructions that, when executed by the one or more processors, cause the processors to determine one or more parameters from the imaging data. In some embodiments, the one or more parameters include: a blinking rate of the eye; a color of the eye; secretion from the eye; swelling of the eye; a size of a pupil of the eye; and cloudiness of the eye.
In some embodiments, the support structure includes an engagement mechanism for engaging the support structure in a vicinity of the eye.
In some embodiments, the apparatus further comprises one or more lenses mounted on the support structure.
In some embodiments, the one or more lenses include photochromic lenses. The memory further includes instructions that, when executed by the one or more processors, cause the processors to vary a shade of the photochromic lenses in accordance with the determined first predefined state of the eye.
In some embodiments, the one or more lenses are configured to display one or more indications to the user, including: light signals, text, and/or images.
In some embodiments, the apparatus further comprises communication circuitry for communicatively connecting the apparatus with an electronic device. The memory further includes instructions that, when executed by the one or more processors, cause the processors to transmit the ambient condition data and/or the images to the electronic device for display on the electronic device.
In some embodiments, the memory further includes instructions that, when executed by the one or more processors, cause the processors to store the ambient condition data and the images on the apparatus.
In some embodiments, the apparatus further comprises a battery and a charging port.
In accordance with another aspect of the present disclosure, a method is performed at an apparatus. The apparatus includes a support structure, a plurality of sensors positioned on the support structure, and a camera positioned on the support structure. The camera has a field of view that includes an eye of a user. The apparatus also includes comprises one or more processors and memory. The memory stores one or more programs configured for execution by the one or more processors. The method comprises detecting ambient condition data using the plurality of sensors. The method also comprises capturing imaging data that includes the eye using the camera. The method also comprises determining a first predefined state of the eye based on the detected ambient condition data and the captured imaging data. The method further comprises dispensing a fluid proximate to the eye in accordance with the first predefined state of the eye.
In accordance with some embodiments, a non-transitory computer-readable storage medium stores one or more programs configured for execution by an apparatus (e.g., an electronic device) having one or more processors and memory. The one or more programs include instructions for performing any of the methods described herein.
In accordance with some embodiments, an apparatus for controlling an environment surrounding an eye of a user includes a substrate, a microheater positioned on the substrate, and a liquid reservoir positioned on the microheater. The liquid reservoir includes one or more openings and is at least partially filled with a fluid and including one or more openings. The apparatus includes a power source configured to provide power to the microheater. Heat generated by the microheater causes the fluid to be evaporated from the liquid reservoir through the one or more openings.
In some embodiments, the apparatus includes a switch configured to control the power source.
In some embodiments, the apparatus includes one or more sensors, one or more processors, and memory. The memory stores instructions that, when executed by the one or more processors, cause the one or more processors to: detect ambient condition data via the one or more sensors; and control the power source in accordance with the detected ambient condition data.
In some embodiments, the one or more sensors include a humidity sensor. The memory includes instructions that, when executed by the one or more processors, cause the one or more processors to: detect, via the humidity sensor, a humidity of an environment proximate to the apparatus; and in accordance with a determination that the detected humidity exceeds a first threshold humidity level, deactivate the power to the microheater.
In some embodiments, the memory includes instructions that, when executed by the one or more processors, cause the one or more processors to: in accordance with a determination that the detected humidity is below a second threshold humidity level, activate the power to the microheater.
In some embodiments, the one or more sensors include a relative humidity sensor. The memory includes instructions that, when executed by the one or more processors, cause the one or more processors to measure, via the relative humidity sensor, a relative humidity proximate to the apparatus; and in accordance with a determination that the detected relative humidity exceeds a threshold relative humidity level, deactivate the power to the microheater.
In some embodiments, the memory includes instructions that, when executed by the one or more processors, cause the one or more processors to: in accordance with a determination that the detected relative humidity is below a second threshold relative humidity level, activate the power to the microheater.
In some embodiments, the one or more sensors, the one or more processors, and the memory are positioned on (or within) the substrate.
In some embodiments, the memory includes instructions that, when executed by the one or more processors, cause the one or more processors to adjust a temperature of the fluid in the liquid reservoir using the microheater.
In some embodiments, the substrate includes a flexible substrate.
In some embodiments, the apparatus is configured to be attached onto an eyewear of a user by bending at least a portion of the flexible substrate.
In some embodiments, the flexible substrate is made of silicone, polyimide, a plastic material, and/or an organic material.
In some embodiments, the substrate includes a ceramic material, an epoxy laminate material and/or a glass material.
In some embodiments, the power source includes a battery.
In some embodiments, the power source includes a battery and a charging port.
In some embodiments, the apparatus includes an engagement mechanism for engaging the apparatus in a vicinity of the eye.
In some embodiments, the engagement mechanism includes one or more through holes. The apparatus is configured to be mounted onto a temple of a pair of eyeglasses via the one or more through holes.
In some embodiments, the engagement mechanism includes a magnet. The apparatus is configured to magnetically adhere to an eyewear of the user based on magnetic coupling between the magnet and a magnetic component of the eyewear.
In some embodiments, the engagement mechanism includes adhesive tape. The apparatus is configured to adhere to an eyewear of the user via the adhesive tape.
In some embodiments, the microheater is positioned on a first side of the substrate. The adhesive tape is positioned on a second side of the substrate, distinct from the first side.
In some embodiments, the engagement mechanism includes a mechanical component. The apparatus is configured to mechanically adhere to an eyewear of the user based on mechanical coupling between the mechanical component and a component of the eyewear.
In some embodiments, the liquid reservoir includes a first side and a second side opposite to the first side. The microheater is positioned adjacent to the first side, and the one or more openings are positioned on the second side.
In some embodiments, the liquid reservoir includes a fluid opening for filling the liquid reservoir with fluid.
Note that the various embodiments described above can be combined with any other embodiments described herein. The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter.
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements.
Reference will now be made to implementations, examples of which are illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one of ordinary skill in the art that the present invention may be practiced without requiring these specific details.
Apparatus with Support Structure
In some embodiments, the apparatus 100 comprises a support structure 102. In some embodiments, and as illustrated in
In some embodiments, the support structure 102 includes one or more engagement mechanisms for engaging one or more portions of a user's head to the apparatus 100. For example, in some embodiments the engagement mechanisms include temples 110 (e.g., a left temple 110-1 and a right temple 110-2), which are “arm” pieces coupled to the support structure 102 that extend over and/or behind the ears of the user, to hold the support structure 102 in place. In some embodiments, the engagement mechanisms include a bridge 112 that arches over the nose of the user, between lenses 108. In some embodiments, the bridge 112 supports a majority of the weight of the apparatus 100.
In some embodiments, the support structure 102 also includes one or more lenses 108, such as a left lens 108-1 and a right lens 108-2, which are mounted on the support structure 102. In some embodiments, the lenses 108 comprise non-prescription lenses that do not contain a prescription correction. In some embodiments, the lenses 108 comprise prescription lenses that are customized for the eyes of the user.
In some embodiments, the lenses 108 comprise photochromic lenses that vary in shade in accordance with the surrounding environment. For example, in some embodiments, the lenses 108 darken in the presence of sunlight and lighten when there is reduced or no light in accordance with some embodiments. In some embodiments, the lenses 108 comprise photochromic lenses that vary in shade in accordance with a determined state of the eye. In another example, the lenses 108 can turn dark in accordance with a determination (e.g., via the processor(s) 602 analyzing images acquired by a camera 618,
In some embodiments, the lenses 108 includes basic display functions, and are capable of displaying text and/or light. For example, in some instances, in accordance with a determination that the user has been using their computer for an extended period of time, the apparatus 100 can display via the lenses 108 an alert (e.g., in the form of text and/or flashing light) to the user to take a break, and/or reduce the brightness level of the computer screen. In some embodiments, the apparatus 100 also includes one or more processors and one or more communication interfaces (e.g., processor(s) 602 and communication interface(s) 604,
In some embodiments, the apparatus 100 includes the support structure 102 and not the lenses 108 (e.g., the apparatus comprises a frame without lens). For example, in some circumstances, a user may not require corrective eyeglasses would like a means of introducing some form of relief to the eye. In some embodiments, one or more eye patches may be placed on or over the support structure 102 to protect the eye(s).
In some embodiments, the apparatus 100 includes various components (e.g., devices, units, modules, etc.) that are affixed on (e.g., coupled to, held on) the support structure 102 at certain positions relative to the user's head. The components can measure parameters of an environment surrounding the eye(s), and/or measure parameters of the eye(s) themselves, in accordance with some embodiments.
In some embodiments, the apparatus 100 includes a moisture control unit 114 for monitoring (e.g., measuring) an amount of (e.g., a level of) moisture in an area proximate to the user's eye(s). The moisture control unit 114 can also adjust the amount of moisture in the environment surrounding the user's eye(s) in accordance with the amount of measured moisture, to prevent the eye(s) from drying up.
In some embodiments, the moisture control unit 114 (e.g., the apparatus 100) includes sensors for detecting ambient conditions in a surrounding environment of the user.
In some embodiments, the sensors 620 include humidity sensor(s) 626 (e.g., hygrometer, psychrometer etc.), which are used to monitor the humidity near the eye (e.g., inside the enclosure of the apparatus 100, or between the eyes and the lenses 108 of the apparatus 100, etc.) and a humidity of the environment (e.g., outside the enclosure of the apparatus 100, in front of the apparatus 100, etc.). In some embodiments, the apparatus 100 (e.g., the moisture control unit 114) includes a plurality of humidity sensors 626 positioned at different locations (e.g., at different locations on the interior side 106 and the exterior side 104) of the apparatus 100, for measuring humidity in the immediate vicinity and the surrounding environment of the user's eye, and to adjust a humidity level when necessary. For example, in one scenario, the moisture control unit 114 can increase the humidity in accordance with a determination that a lower humidity is measured on the exterior side 104 than on the interior side 106, because the difference in humidity indicates that the immediate vicinity of the user's eye will likely become drier over time. In another scenario, the moisture control unit 114 can maintain the humidity (e.g., maintain the amount of moisture that is dispensed) in accordance with a determination that humidity is measured on the exterior side 104 and the interior side 106 are about equal, and/or if a lower humidity is measured on the interior side 106 than on the exterior side 104.
In some embodiments, the sensors 620 also include airflow sensor(s) 628 for measuring air flowing in the vicinity of the apparatus 102. In some circumstances, higher airflow can lead to increased evaporation rates, and therefore lower moisture levels.
The sensors 620 also include temperature sensor(s) 630, in accordance with some embodiments. The temperature sensor(s) 630 are used to monitor the temperature near the eye (e.g., inside the enclosure of the apparatus 100, or between the eyes and the lenses 108 of the apparatus 100, etc.) and a temperature of the environment surrounding the eye (e.g., outside enclosure of the apparatus 100 or in front of the apparatus 100, etc.). In some embodiments, the moisture control unit 114 (e.g., the apparatus 100) includes a plurality of temperature sensors 630 positioned at different locations (e.g., at different locations on the interior side 106 and exterior side 104) of the apparatus 100).
With continued reference to
In some embodiments, the apparatus 100 includes two or more liquid reservoirs 634, each containing a respective type of liquid. The apparatus 100 can dispense one or more respective liquids, or pre-mix at least two of the liquids prior to dispensing.
Various details of a liquid reservoir for dispensing artificial tears or other liquid to the eye are described in U.S. patent application Ser. No. 16/464,631, filed May 28, 2019, titled “Systems and Methods for Generating and Applying Biomimicry Tear Films,” which is hereby incorporated by reference herein in its entirety. Similar mechanisms can be utilized to add moisture to the area near the eye by the apparatus 100, in some embodiments.
In some embodiments, the moisture control unit 114 also includes one or more agitators (e.g., agitator(s) 636,
In some embodiments, the moisture control unit 114 also includes one or more micro heaters (e.g., micro heater(s) 638,
In some embodiments, and as illustrated in
As further illustrated in
In some embodiments, and as illustrated in
The apparatus 100 includes a support structure 102 and lenses 108 as described with respect to
The apparatus 100 also includes one or more processor(s) 602, one or more communication interface(s) 604 (e.g., network interface(s)), memory 606, and one or more communication buses 608 for interconnecting these components (sometimes called a chipset).
In some embodiments, the apparatus 100 includes input interface(s) 610 that facilitates user input. For example, in some embodiments, the input interface(s) 610 include(s) charging port(s) 118 (e.g.,
In some embodiments, the apparatus 100 includes a camera 618. The camera 618 has a field of view that includes the eye(s) of the user of the apparatus. In some embodiments, the camera 618 is configured to capture images in color. In some embodiments, the camera 618 is configured to capture images in black and white.
In some embodiments, the apparatus 100 also optionally includes a micro lens for anterior segments imaging or fundus photography, as discussed with respect to
In some embodiments, the apparatus 100 includes a battery 612. The apparatus 100 also includes sensors 620, such as light sensor(s) 622, pressure sensor(s) 624, humidity sensor(s) 626, airflow sensor(s) 628, and/or temperature sensor(s) 630, as discussed with respect to
In some embodiments, the apparatus 100 includes radios 630. The radios 630 enable one or more communication networks, and allow the apparatus 100 to communicate with other devices, such as the electronic device 500 in
In accordance with some embodiments, the apparatus 100 also includes a tonometer 632 (e.g., a tonometer unit). The tonometer 632 can be either a component that is part of the apparatus 100 (e.g., embedded in the support structure 102) or as external unit that is added onto (e.g., attached to) the apparatus 100 to be used as needed. The tonometer 632 measures an intraocular pressure of the eye (e.g., fluid pressure inside the eye). Eye pressure is a critical parameter for establishing the presence of chronical eye disease, such as glaucoma, cataract, etc., which can lead to vision loss if untreated. In some embodiments, the tonometer 632 is used for detecting the presence of chronical eye disease and/or for monitoring the progression of the disease. The tonometer 632 can comprise non-contact air puff tonometry, applanation tonometry, or probe contact tonometry technology etc. In some embodiments, the tonometer 632 can include a micro-pressure sensor that is coupled with an optical system.
In some embodiments, the tonometer 632 optionally includes functions of alignment. The tonometer 632 includes components that cause deflection of the eye cornea, and/or components to measure the deflection, in accordance with some embodiments.
For example, in some embodiments, the tonometer 632 includes a micro probe with precision position control, which contacts a cornea surface and applies a pressure to the eye, thereby causing cornea deflection. In some embodiments, the tonometer 632 includes a micro pump that generates an air puff, which is directed through a micro nozzle to apply pressure to the eye, thereby causing cornea deflection. The cornea surface deflection can be measured by an optical system, which includes an IR light source and a light detector. The light received by the detector varies along with the cornea surface deflection. Here, an IR sensor and a photodetector can be used for serving these functions. In air puff non-contact tonometry, a micro reflected air pressure sensor can be used to measure the reflect air to measure the cornea deflection, in accordance with some embodiments.
In some embodiments, the tonometer 632 also includes a CCD camera, which is used for aligning the center of the eye with the probe or air tube. In some embodiments, a CMOS camera sensor is used to capture the image of the eye surface and to align the center of the eye with the micro probe or air nozzle mentioned above, in accordance with some embodiments.
In some embodiments, the apparatus 100 also includes an ophthalmic liquid delivery module (OLDM) 639. The OLDM 639 can be embedded in the support structure 102 or as external add-on module to be used as needed. The OLDM 639 can be made by an inkjet printing apparatus, or a fluid spray ejector device. Here, instead of conventional inkjet printing technology whereby ink is printed on paper, the inkjet printing apparatus or fluid spray ejector device is used to dispense ophthalmic liquid onto the eye, in accordance with some embodiments.
The OLDM 639 can include an actuation motor and an ophthalmic liquid module (OLM) for delivering ophthalmic liquid, in accordance with some embodiments. The OLM can include a motor, such as a micro piezo motor or piston motor, for providing actuation to pump (e.g., push) the liquid inside OLM to dispense/spray towards the eye through a micro nozzle or micro muzzle array. The angle and dispense range of OLDM 639 can be designed based on the distance and angle between the micro nozzle to the eye. In some embodiments, the motor also facilitates removal and disposal of the liquid after each use. In some embodiments, the OLDM is either embedded in or mounted on the support structure 102; accordingly the OLDM is positioned close to the eye (e.g., within a range of few millimeters to a few centimeters).
The memory 606 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and, optionally, includes non-volatile memory, such as one or more magnetic disk storage devices, one or more optical disk storage devices, one or more flash memory devices, or one or more other non-volatile solid state storage devices. The memory 606, optionally, includes one or more storage devices remotely located from one or more processor(s) 602. The memory 606, or alternatively the non-volatile memory within the memory 906, includes a non-transitory computer-readable storage medium. In some implementations, the memory 606, or the non-transitory computer-readable storage medium of the memory 606, stores the following programs, modules, and data structures, or a subset or superset thereof:
Each of the above identified executable modules, applications, or sets of procedures may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various implementations. In some implementations, the memory 606 stores a subset of the modules and data structures identified above. Furthermore, the memory 606 may store additional modules or data structures not described above. In some embodiments, a subset of the programs, modules, and/or data stored in the memory 606 are stored on and/or executed by a server system, and/or by an external device (e.g., electronic device 500).
The apparatus 100 comprises a support structure (e.g., support structure 102,
The apparatus 100 detects (702) (e.g., senses and measures) (e.g., in real time) ambient condition data using the plurality of sensors, in accordance with some embodiments.
For example, in some embodiments, the ambient condition data includes a light level, air pressure, humidity, air flow, and/or temperature.
In some embodiments, the ambient condition data includes two or more of: a light level, an air pressure, humidity, an air flow (e.g., air velocity), and temperature. The plurality of sensors include two or more of: a light sensor (e.g., an ambient light sensor, light sensor(s) 622,
In some embodiments, the apparatus 100 captures (704) imaging data that includes the eye using the camera (e.g., camera 618). For example, the imaging data includes images and video data.
In some embodiments, the apparatus 100 determines (706) a first predefined state of the eye based on the detected ambient condition data and the captured imaging data. For example, the first state of the eye is a first predefined state of a plurality of predefined states. In some embodiments, the predefined states include: a dry eye state (e.g., based on dryness of the eye), a pink eye state (e.g., based on a color of eye), a discharge eye state (e.g., discharge from the eye), and a swollen eye state (e.g., based on swelling of the eye).
In some embodiments, the apparatus 100 dispenses (708) (e.g., automatically, without user invention etc.) a fluid proximate to the eye of the user in accordance with the first predefined state of the eye. For example, fluid includes moisture, air, water, water vapor, artificial tears, prescription medicine, ophthalmic liquid, tear film, distinct layers of the tear film (e.g., lipid layer, aqueous layer, and mucin layer etc.), and/or any substance that flows.
In some embodiments, the apparatus 100 further comprises one or more liquid reservoirs (e.g., liquid reservoir(s) 634,
In some embodiments, the apparatus 100 further comprises one or more agitators (e.g., agitator(s) 636,
In some embodiments, the one or more agitators include one or more of: a radio frequency resonator, a magnetic mixer (e.g., a magnetic agitator resonator, magnetic stirrer etc.), and an ultrasonic vibrator.
In some embodiments, the one or more liquid reservoirs include one or more micro-heaters (e.g., micro heater(s) 638,
In some embodiments, the memory further includes instructions that, when executed by the one or more processors, cause the processors to dispense the fluid from the one or more liquid reservoirs by evaporating the fluid using the one or more micro heaters.
In some embodiments, the one or more liquid reservoirs comprise a plurality of liquid reservoirs. Each of the plurality of liquid reservoirs contains a distinct fluid having a corresponding fluid type (e.g., artificial tears, water, air, lipid etc.). In some embodiments, in accordance with the determined first predefined state of the eye, the processors identify one or more fluid types corresponding to the first predefined state. The processors also dispense from the plurality of liquid reservoirs fluids one or more fluids corresponding to the identified fluid types.
In some embodiments, the memory 606 also stores mapping relationships between each of the predefined states of the user's eye and the fluid to use for each of the states (e.g., as eye data 664). For example, dryness of the eye may be mapped to artificial tears, redness of the eye can be correlated to prescription medicine, ophthalmic liquid, etc.
In some embodiments, the apparatus 100 further comprises a tonometer (e.g., tonometer 632,
In some embodiments, the tonometer comprises a first component for deflecting a cornea (e.g., a cornea surface) of the eye. The tonometer also comprises a second component for measuring the deflection.
For example, in some embodiments, the tonometer 632 includes a micro probe with precision position control, which contacts a cornea surface and applies a pressure to the eye, thereby causing cornea deflection. In some embodiments, the tonometer 632 includes a micro pump that generates an air puff, which is directed through a micro nozzle to apply pressure to the eye, thereby causing cornea deflection.
In some embodiments, the deflection of a cornea surface can be measured by an optical system that includes an IR light source and a light detector. The light received by the light detector varies along with the cornea surface deflection. In some embodiments, an IR sensor and a photodetector can be used for serving these functions. In air puff non-contact tonometry, a micro reflected air pressure sensor can be used to measure the reflect air to measure the cornea deflection, in accordance with some embodiments. In some embodiments, a CCD camera is used for aligning the center of the eye with the probe or air tube. In some embodiments, a CMOS camera sensor is used to capture the image of the eye surface and used for alignment with the micro probe or air nozzle mentioned above, in accordance with some embodiments.
In some embodiments, the apparatus 100 further comprises a refractor for measuring an intraocular pressure of the eye.
In some embodiments, the memory further includes instructions that, when executed by the one or more processors, cause the processors to determine one or more parameters from the imaging data. In some embodiments, the one or more parameters include: a blinking rate of the eye; a color of the eye (e.g., in particular, redness of the eye); secretion from the eye (e.g., secretion includes tears, discharge of the eye etc.); swelling of the eye; a size of a pupil of the eye (e.g., dilation or contraction of the pupil); and cloudiness of the eye. In some embodiments, the camera 618 is configured to capture images in color. In some embodiments, the camera 618 is configured to capture images in black and white. In this instance when a camera captures images in black and white, all the parameters except the color of the eye can be captured.
In some embodiments, the support structure 102 includes an engagement mechanism for engaging the support structure in a vicinity of the eye. For example, as illustrated in
In some embodiments, the apparatus 100 further comprises one or more lenses (e.g., lenses 108,
In some embodiments, the one or more lenses include photochromic lenses. The memory further includes instructions that, when executed by the one or more processors, cause the processors to vary (e.g., change, adjust, etc.) a shade of the photochromic lenses in accordance with the determined first predefined state of the eye.
In some embodiments, the one or more lenses are configured to display one or more indications to the user, including: light signals (e.g., blinking, flashing lights etc.), text, and/or images.
In some embodiments, the apparatus 100 further comprises communication circuitry (e.g., communication interface(s) 604, a communication module 642, radios 630 etc.,
In some embodiments, the memory further includes instructions that, when executed by the one or more processors, cause the processors to store the ambient condition data and the images on the apparatus 100 (e.g., as sensor data 660 and/or camera data 662,
In some embodiments, the apparatus further comprises a battery (e.g., battery 612,
In accordance with some implementations, a non-transitory computer-readable storage medium (e.g., within the memory 606) stores one or more programs, the one or more programs comprising instructions, which when executed by an apparatus (e.g., apparatus 100), cause the apparatus to perform any of the above methods and/or operations.
Clause 1. An apparatus, comprising: a support structure; a plurality of sensors positioned on the support structure; a camera positioned on the support structure, the camera having a field of view that includes an eye of a user of the apparatus; one or more processors; and memory storing instructions that, when executed by the one or more processors, cause the processors to: (1) detect via the plurality of sensors ambient condition data; (2) capture via the camera imaging data that includes the eye; (3) determine a first predefined state of the eye based on the detected ambient condition data and the captured imaging data; and (4) dispense a fluid proximate to the eye of the user in accordance with the first predefined state of the eye
Clause 2. The apparatus of clause 1, further comprising one or more liquid reservoirs positioned on the support structure; wherein dispensing the fluid proximate to the eye of the user comprises dispensing the fluid from the one or more liquid reservoirs.
Clause 3. The apparatus of clause 2, further comprising one or more agitators positioned in proximity to the one or more liquid reservoirs; wherein dispensing the fluid proximate to the eye of the user further comprises agitating the fluid in the one or more liquid reservoirs prior to the dispensing the fluid
Clause 4. The apparatus of clause 3, wherein the one or more agitators include one or more of: a radio frequency resonator, a magnetic mixer, and an ultrasonic vibrator.
Clause 5. The apparatus of clause 2 or clause 3, wherein the one or more liquid reservoirs include one or more micro-heaters; and the memory further includes instructions that, when executed by the one or more processors, cause the processors to adjust a temperature of the fluid in the one or more liquid reservoirs using the one or more micro-heaters.
Clause 6. The apparatus of clause 5, wherein the memory further includes instructions that, when executed by the one or more processors, cause the processors to: dispense the fluid from the one or more liquid reservoirs by evaporating the fluid using the one or more micro heaters.
Clause 7. The apparatus of clause 2, wherein: the one or more liquid reservoirs comprise a plurality of liquid reservoirs, each of the liquid reservoirs containing a distinct fluid having a corresponding fluid type; and the memory further includes instructions that, when executed by the one or more processors, cause the processors to: (1) in accordance with the determined first predefined state of the eye: (a) identify one or more fluid types corresponding to the first predefined state; and (b) dispense from the plurality of liquid reservoirs fluids one or more fluids corresponding to the identified fluid types.
Clause 8. The apparatus of any of clauses 1-7, wherein: the ambient condition data includes two or more of: a light level, an air pressure, humidity, an air flow, and temperature; and the plurality of sensors include two or more of: a light sensor for measuring the light level; an ambient pressure sensor for measuring the air pressure; a humidity sensor for measuring the humidity; an airflow sensor for measuring the air flow; and a temperature sensor for measuring the temperature.
Clause 9. The apparatus of any of clauses 1-8, further comprising: a tonometer for measuring a pressure of the eye.
Clause 10. The apparatus of any of clause 9, wherein the tonometer comprises: a first component for deflecting a cornea of the eye; and a second component for measuring the deflection.
Clause 11. The apparatus of any of clauses 1-10, further comprising a refractor for measuring an intraocular pressure of the eye.
Clause 12. The apparatus of any of clauses 1-11, wherein the memory further includes instructions that, when executed by the one or more processors, cause the processors to: determine one or more parameters from the imaging data, the one or more parameters including: (1) a blinking rate of the eye; (2) a color of the eye; (3) secretion from the eye; (4) swelling of the eye; (5) a size of a pupil of the eye; and (6) cloudiness of the eye.
Clause 13. The apparatus of any of clauses 1-12, wherein the support structure includes an engagement mechanism for engaging the support structure in a vicinity of the eye.
Clause 14. The apparatus of any of clauses 1-13, further comprising one or more lenses mounted on the support structure.
Clause 15. The apparatus of clause 14, wherein the one or more lenses include photochromic lenses; and the memory further includes instructions that, when executed by the one or more processors, cause the processors to vary a shade of the photochromic lenses in accordance with the determined first predefined state of the eye.
Clause 16. The apparatus of clause 14 or clause 15, wherein the one or more lenses are configured to display one or more indications to the user, including: light signals, text, and/or images.
Clause 17. The apparatus of any of clauses 1-13, further comprising: communication circuitry for communicatively connecting the apparatus with an electronic device; and the memory further includes instructions that, when executed by the one or more processors, cause the processors to transmit the ambient condition data and/or the images to the electronic device for display on the electronic device.
Clause 18. The apparatus of clause 17, wherein the memory further includes instructions that, when executed by the one or more processors, cause the processors to store the ambient condition data and the images on the apparatus.
Clause 19. The apparatus of any of clauses 1-18, further comprising a battery and a charging port.
Clause 20. A method, comprising: at an apparatus having a support structure, a plurality of sensors positioned on the support structure, a camera positioned on the support structure, the camera having a field of view that includes an eye of a user, one or more processors, and memory storing one or more programs configured for execution by the one or more processors, the method comprising: (1) detecting via the plurality of sensors ambient condition data; (2) capturing via the camera imaging data that includes the eye; (3) determining a first predefined state of the eye based on the detected ambient condition data and the captured imaging data; and (4) dispensing a fluid proximate to the eye in accordance with the first predefined state of the eye.
Clause 21. The method of clause 20, wherein the apparatus further comprises one or more liquid reservoirs positioned on the support structure, the method further comprising: dispensing the fluid from the one or more liquid reservoirs.
Clause 22. The method of clause 21, wherein the apparatus further comprises one or more agitators positioned in proximity to the one or more liquid reservoirs, the method further comprising: prior to dispensing the fluid, agitating the fluid in the one or more liquid reservoirs.
Clause 23. The method of clause 21 or clause 22, wherein the one or more liquid reservoirs include one or more micro-heaters, the method further comprising: adjusting a temperature of the fluid in the one or more liquid reservoirs using the one or more microheaters.
Clause 24. The method of clause 23, further comprising: dispensing the fluid from the one or more liquid reservoirs by evaporating the fluid using the one or more micro heaters.
Clause 25. The method of any of clauses 21-24, wherein the one or more liquid reservoirs comprise a plurality of liquid reservoirs, each of the liquid reservoirs containing a distinct fluid having a corresponding fluid type, the method further comprising: in accordance with the determined first predefined state of the eye: identifying one or more fluid types corresponding to the first predefined state; and dispensing from the plurality of liquid reservoirs fluids one or more fluids corresponding to the identified fluid types.
Clause 26. The method of any of clauses 20-25, wherein the ambient condition data includes two or more of: a light level, an air pressure, humidity, an air flow and temperature; and the plurality of sensors include two or more of: (1) a light sensor for measuring the light level; (2) an ambient pressure sensor for measuring the air pressure; (3) a humidity sensor for measuring the humidity; (4) an airflow sensor for measuring the air flow; and (5) a temperature sensor for measuring the temperature.
Clause 27. The method of any of clauses 20-26, wherein the apparatus further includes a tonometer for measuring a pressure of the user's eye.
Clause 28. The method of clause 27, wherein the tonometer includes a first component and a second component, the method further comprising: deflecting a cornea of the eye via the first component; and measuring the deflection via the second component
Clause 29. The method of any of clauses 20-28, further comprising determining one or more parameters from the imaging data, the one or more parameters including: a blinking rate of the eye; a color of the eye; secretion from the eye; swelling of the eye; a size of a pupil of the eye; and cloudiness of the eye.
Clause 30. The method of any of clauses 20-29, wherein the support structure includes one or more photochromic lenses, the method further comprising: varying a shade of the photochromic lenses in accordance with the determined first predefined state of the eye.
Clause 31. The method of any of clauses 20-30, wherein the frame includes one or more lenses, the method further comprising: displaying on the one or more lenses one or more indications to the user, including: light signals, text, and/or images.
Clause 32. The method of any of clauses 20-31, wherein the apparatus is communicatively connected to an electronic device, the method further comprising: transmitting the ambient condition data and/or the images to the electronic device for display on the electronic device.
Clause 33. The method of clause 32, further comprising: storing the ambient condition data and the images on the apparatus.
Clause 34. A non-transitory computer-readable storage medium storing one or more programs, the one or more programs comprising instructions that, when executed by an apparatus, cause the apparatus to perform the method of any of clauses 20-33.
According to some embodiments of the present disclosure, a device (e.g., apparatus) for mitigating the surrounding environment (e.g., moisture, relative humidity, etc.) of the eye(s) includes a modular device that is configured to emit water vapor. The device can be attached onto a user's eyeglasses, goggles, augmented reality (AR) headsets, virtual reality (VR) headsets, and/or mixed reality (MR) headsets.
In some embodiments, the modular device offers several advantages compared to a support structure-based apparatus. For example, a user does not have to wear a specially designed structure (e.g., eyeglasses, headgear, goggles, etc.) that is mounted onto the user's head in order to control the environment surrounding their eyes. Instead, the portable nature of the modular device enables it to be easily attached (e.g., affixed) to existing eyewear (e.g., eyeglasses, cleanroom goggles, work goggles, safety goggles, virtual reality headsets, and/or augmented reality headsets) of a user. In some circumstances, depending on the severity of the user's dry eye condition or the dryness of the ambient environment, a user can simultaneously deploy multiple modular devices to mitigate the condition of their eyes.
As an exemplary scenario, a cleanroom environment maintains a very low concentration of airborne particulates. Oftentimes, a cleanroom has low relative humidity. Cleanroom users have to wear safety goggles when they are in the cleanroom. The modular nature of the device enables one or more devices to be mounted inside the safety goggles of a cleanroom user. Water vapor that is emitted from the modular device(s) will increase the relative humidity near the eyes, thereby reducing the discomforts caused by the dry environment.
In some embodiments, the device 200 includes a length (L) between 5 mm and 50 mm. In some embodiments, the device 200 includes a height (H) between 5 mm and 10 mm.
In some embodiments, the device 200 is designed to be a disposable device (e.g., discarded after it has been used once or a few times). In some embodiments, the deice 200 is designed to be used repeatedly.
In some embodiments, the device 200 includes a switch 207 configured to control (e.g., activate or deactivate) the power source 205.
During a typical operation, a user can fill at least a portion of the liquid reservoir(s) with liquid 209 (e.g., water, a fluid which is substantially water, etc.) via the opening 206. The user can then activate the power source 205 (e.g., by activating the switch 207). The power source 205 supplies power to the microheater(s) 638, which in turn heats the liquid in the liquid reservoir(s) 634. In some embodiments, the microheater(s) 638 can be configured to heat the liquid to a temperature that is safe and unnoticeable to a user (e.g., 38° C., 40° C., 42° C., or 45° C.) while increasing a rate of evaporation the liquid in the liquid reservoir(s) 634. Liquid that is evaporated from the liquid reservoir(s) 634 is emitted to the ambient environment (e.g., the environment surrounding a user's eyes) via the openings 204.
In some embodiments, instead of microheater(s) 638, the apparatus 200 can include one or more ultrasonic vibrators (e.g., resonators) to evaporate the liquid from the liquid reservoir 634.
In some embodiments, the combination of liquid reservoir 634, microheater 638, and power source 205 is adapted such that the device 200 is capable of operating continuously (e.g., by evaporating liquid) for about 12 to 15 hours.
In some embodiments, the device 200 includes a printed circuit board (PCB) 211 that is positioned on or within the substrate 202. The PCB 211 may be electronically coupled via one of a plurality of wired connections 213 to one or more sensors 210, the microheater 638 and the power source 205.
The device 200 includes a substrate 202, microheater(s) 634, liquid reservoir(s) 634, a power source 205 and a switch 207, as described with respect to
In some embodiments, the device 200 includes the PCB 211, as described with respect to
In some embodiments, the sensors 210 include one or more humidity sensors 626. In some embodiments, the humidity sensor 626 is an absolute humidity sensor that measures absolute humidity (e.g., expressed as grams of water vapor per cubic meter volume of air), which is a measure of the actual amount of water vapor (moisture) in the air, regardless of the air's temperature. In some embodiments, the humidity sensor 626 is a relative humidity sensor, which measures (e.g., calculates, determines) relative humidity by comparing a live humidity reading at a given temperature to the maximum amount of humidity for air at the same temperature. In some embodiments, the relative humidity sensor includes a temperature sensor (since a relative humidity must measure temperature in order to determine relative humidity).
In some embodiments, the sensors 210 include one or more temperature sensors 630 that are used to measure (e.g., determine, monitor) the temperature of the apparatus 200. For example, the temperature sensor can be positioned in proximity to the microheater(s) 638. to measure the temperature of the microheater(s) as power is being supplied.
The memory 216 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and, optionally, includes non-volatile memory, such as one or more magnetic disk storage devices, one or more optical disk storage devices, one or more flash memory devices, or one or more other non-volatile solid state storage devices. The memory 216, optionally, includes one or more storage devices remotely located from one or more processor(s) 208. The memory 216, or alternatively the non-volatile memory within the memory 216, includes a non-transitory computer-readable storage medium. In some implementations, the memory 216, or the non-transitory computer-readable storage medium of the memory 216, stores the following programs, modules, and data structures, or a subset or superset thereof: operating logic 218 including procedures for handling various basic system services and for performing hardware dependent tasks;
a sensing module 222 for obtaining sensor data from the sensors 210. In some embodiments, the sensing module 222 compares the sensor data against data 226, such as humidity data 228 (e.g., upper threshold/cutoff humidity value, lower threshold/cutoff humidity value, etc.) and/or temperature data 230 (e.g., upper threshold/cutoff temperature value, lower threshold/cutoff temperature value, etc.);
a control module 224 for controlling the power source in accordance with obtained sensor data. For example, in some embodiments, Once the relative humidity reaches a threshold humidity level (e.g., 70 to 80%), the heating control module 224 cuts off power to the microheater 638. heater can stop working and can maintain the moisture; and data 226, including humidity data 228 and/or temperature data 230.
Each of the above identified executable modules, applications, or sets of procedures may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various implementations. In some implementations, the memory 216 stores a subset of the modules and data structures identified above. Furthermore, the memory 216 may store additional modules or data structures not described above.
In some embodiments, the engagement mechanism 240 includes one or more holes 242 (e.g., through holes) that are configured to engage with (e.g., couple to) a user's eyeglasses.
In some embodiments, the device 200 can be directly mounted onto a user's eyewear using glue, adhesive tape (e.g., sticky tape), or other direct adhesion means. For example, glue and/or adhesive tape can be applied onto the side of the substrate 202 that is opposite to the microheater 638, for adhering the device 200 directly onto the user's eyewear.
In some embodiments, the device 200 can couple to a user's eyewear by magnetic coupling. For example, in some embodiments, the device 200 includes a magnet, which can magnetically couple to a complementary magnet that is positioned on a user's eyewear.
In some embodiments, the device 200 can couple to a user's eyewear via a mechanical component, such as a clip, a snap, a latch, etc. For example, in some embodiments, the device 200 includes a clip or a latch (e.g., an engagement mechanism) that is configured to clip onto (or latch onto) a temple of the eyewear, a frame of the eyewear, etc.
In some embodiments, depending on the design of the eyewear and/or the extent to which the eyewear enclose/cover a user's face, one device 200 is enough to provide adequate moisture to the user's eyes. In some embodiments, multiple (e.g., two or more) of the devices 200 can be attached onto the eyeglasses (e.g., one on each frame) to provide adequate moisture to the user's eyes.
The examples of
Relative humidity % difference between inside the frame with moisture module and outside the frame (environment RH)
In accordance with some embodiments, an apparatus (e.g., a device, a modular device, a disposable device, etc.) (e.g., device 200) for controlling an environment (e.g., a relative humidity) surrounding an eye of a user includes a substrate (e.g., substrate 202) (e.g., a base, a support, a support structure). The apparatus includes a microheater (e.g., a heat generating element) (e.g., microheater 638) positioned on the substrate. In some embodiments, the microheater comprises a digital microheater. The apparatus includes a liquid reservoir (e.g., liquid reservoir 634) positioned on the microheater. The liquid reservoir includes one or more openings (e.g., openings 204). The liquid reservoir at least partially filled with a fluid (e.g., a liquid, such as water or largely water) (e.g., liquid 209). The apparatus includes a power source (e.g., power source 205) configured to provide (e.g., supply) power to the microheater. Heat generated by the microheater increases the temperature of the fluid in the liquid reservoir, and causes the fluid to be evaporated from the liquid reservoir through the one or more openings.
In some embodiments, the apparatus includes a switch (e.g., switch 207) configured to control (e.g., activate or deactivate) the power source.
In some embodiments, the apparatus includes one or more sensors (e.g., sensors 210), one or more processors (e.g., processing circuitry) (e.g., processor(s) 208), and memory (e.g., memory 216). The memory stores instructions that, when executed by the one or more processors, cause the one or more processors to detect (e.g., in real time) (e.g., sensed and measured) ambient condition data (e.g., proximate to the apparatus, in a vicinity of the apparatus) via the one or more sensors and control the power source (e.g., activate or deactivate the power source) in accordance with the detected ambient condition data.
In some embodiments, the one or more sensors include a humidity sensor (e.g., an absolute humidity sensor). The memory includes instructions that, when executed by the one or more processors, cause the one or more processors to detect, via the humidity sensor, a humidity of an environment proximate to the apparatus. The memory includes instructions that, when executed by the one or more processors, cause the one or more processors to, in accordance with a determination that the detected humidity exceeds a first threshold humidity level, deactivate the power to the microheater.
In some embodiments, the memory includes instructions that, when executed by the one or more processors, cause the one or more processors to: in accordance with a determination that the detected humidity is below a second threshold humidity level, activate (e.g., reactivate) the power to the microheater.
In some embodiments, the one or more sensors include a relative humidity sensor. The memory includes instructions that, when executed by the one or more processors, cause the one or more processors to measure, via the relative humidity sensor, a relative humidity proximate to the apparatus. The memory includes instructions that, when executed by the one or more processors, cause the one or more processors to, in accordance with a determination that the detected relative humidity exceeds a threshold relative humidity level (e.g., 75%, 80%), deactivate the power to the microheater.
In some embodiments, the memory includes instructions that, when executed by the one or more processors, cause the one or more processors to: in accordance with a determination that the detected relative humidity is below a second threshold relative humidity level, activate (e.g., reactivate) the power to the microheater.
In some embodiments, the one or more sensors, the one or more processors, and the memory are positioned on (e.g., in, within) the substrate.
In some embodiments, the one or more sensors are electrically coupled to a printed circuit board (e.g., PCB) of the apparatus.
In some embodiments, the memory includes instructions that, when executed by the one or more processors, cause the one or more processors to adjust (e.g., change, modify) a temperature of the fluid in the liquid reservoir using the micro-heater.
In some embodiments, the substrate includes a flexible substrate. For example, the flexible substrate can be bent and/or attached to a curved surface.
In some embodiments, the apparatus is configured to be attached (e.g., positioned, mounted, affixed) onto an eyewear (e.g., eye glasses, goggles, augmented reality (AR) glasses, virtual reality (VR) glasses, mixed reality (MR) glasses, a headset, etc.) of a user by bending at least a portion of the flexible substrate.
In some embodiments, the flexible substrate is made of silicone, polyimide, a plastic material, and/or an organic material.
In some embodiments, the substrate includes a ceramic material, an epoxy laminate material (e.g., FR4, glass-reinforced epoxy laminate material) and/or a glass material.
In some embodiments, the power source includes a battery (e.g., a rechargeable battery or a disposable battery) (e.g., battery 612).
In some embodiments, the power source includes a battery and a charging port (e.g., a micro USB, a magnetic connector, or wireless charger etc.).
In some embodiments, the apparatus includes an engagement mechanism (e.g., engagement mechanism 240) for engaging the apparatus in a vicinity of the eye.
In some embodiments, the engagement mechanism includes one or more through holes (e.g., holes 242). The apparatus is configured to be mounted onto a temple of a pair of eyeglasses via the one or more through holes (e.g., as illustrated in
In some embodiments, the engagement mechanism (or the apparatus) includes a magnet. The apparatus is configured to magnetically adhere to an eyewear of the user based on magnetic coupling between the magnet and a magnetic component of the eyewear, for example, in some embodiments, the eyewear includes a magnetic component that magnetically couples to the magnet of the apparatus.
In some embodiments, the apparatus (e.g., the engagement mechanism) includes adhesive tape (e.g., sticky tape). The apparatus is configured to adhere to an eyewear of the user via the adhesive tape.
In some embodiments, the microheater is positioned on a first side of the substrate. The adhesive tape is positioned on a second side of the substrate, distinct from the first side. In some embodiments, the first side and the second side are opposite sides of the substrate.
In some embodiments, the apparatus (e.g., the engagement mechanism) includes a mechanical component (e.g., a clip, a snap, a latch, etc.). The apparatus is configured to mechanically adhere to an eyewear of the user based on magnetic coupling between the magnet and a magnetic component of the eyewear.
In some embodiments, the liquid reservoir includes a first side and a second side opposite to the first side. The microheater is positioned adjacent to (e.g., above, directly above, slightly displaced) the first side, and the one or more openings are positioned on the second side.
In some embodiments, the liquid reservoir includes a fluid opening for filling (or refilling) the liquid reservoir with fluid.
Although some of various drawings illustrate a number of logical stages in a particular order, stages that are not order dependent may be reordered and other stages may be combined or broken out. While some reordering or other groupings are specifically mentioned, others will be obvious to those of ordinary skill in the art, so the ordering and groupings presented herein are not an exhaustive list of alternatives. Moreover, it should be recognized that the stages could be implemented in hardware, firmware, software or any combination thereof
It will also be understood that, although the terms first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first sensor could be termed a second sensor, and, similarly, a second sensor could be termed a first sensor, without departing from the scope of the various described implementations. The first sensor and the second sensor are both sensors, but they are not the same type of sensor.
The terminology used in the description of the various described implementations herein is for the purpose of describing particular implementations only and is not intended to be limiting. As used in the description of the various described implementations and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting” or “in accordance with a determination that,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event]” or “in accordance with a determination that [a stated condition or event] is detected,” depending on the context.
The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the scope of the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen in order to best explain the principles underlying the claims and their practical applications, to thereby enable others skilled in the art to best use the implementations with various modifications as are suited to the particular uses contemplated.
This application is a continuation-in-part of U.S. application Ser. No. 17/191,603, filed on Mar. 3, 2021, entitled “System, Method, and Apparatus for Controlling Environment Surrounding Eye,” which claims the benefit of U.S. Provisional Application No. 63/033,031, filed on Jun. 1, 2020, entitled “System, Method, and Apparatus for Controlling Environment Surrounding Eye,” all of which are incorporated by reference herein in their entireties. This application also claims the benefit of U.S. Provisional Application No. 63/389,301, filed on Jul. 14, 2022, entitled “System, Method, and Apparatus for Controlling Environment Surrounding Eye,” which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63033031 | Jun 2020 | US | |
63389301 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17191603 | Mar 2021 | US |
Child | 18221360 | US |