System, method and apparatus for spray-on application of a wire pulling lubricant

Information

  • Patent Grant
  • 12015251
  • Patent Number
    12,015,251
  • Date Filed
    Monday, August 22, 2022
    2 years ago
  • Date Issued
    Tuesday, June 18, 2024
    6 months ago
Abstract
A system, method, and apparatus lubricating a wire or cable during manufacturing, wherein the wire is aligned with an entry to a spraying enclosure and passes through a first seal of the spraying enclosure. Lubricant is sprayed onto the wire inside of the spraying enclosure while the unapplied, but sprayed, lubricant is collected at the bottom of the spraying enclosure. The wire passes through a second seal of the spraying enclosure, is aligned, and exits from the spraying enclosure.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.


REFERENCE TO A COMPACT DISK APPENDIX

Not applicable.


BACKGROUND OF THE INVENTION
1. Field of the Invention

This invention relates to wire and cable. More specifically, it relates to a system, method, and apparatus for spray-on application of a pulling lubricant to a wire or cable, causing a reduced coefficient of friction and reduced pulling force to aid in the installation of wire or cable.


2. Description of Related Art

Wires and cables used in housing and industrial projects typically include a core, such as an electrical conductor, surrounded by at least one additional layer of material creating an outer jacket, which is most often formed by an extrusion process. Installation of wire or cable requires the wire or cable to be threaded or passed through sections of a building, such as walls, ceilings, ducts, cable trays, or conduits. During installation of wires or cables, increased effort is required to pull the wires or cables through the conduit due to friction between the materials involved. This friction may result in damage of the wire or cable during the installation process.


Currently, various methods are used to minimize the coefficient of friction on the surface of the wire or cable to reduce the amount of pulling force required, thereby making it easier to pull through conduits, cable trays, or other building structures during installation. Such prior art methods include manually applying a lubricant to the wire or cable at the job site just prior to installation and incorporating a lubricant into the outer jacket material, prior to formation of the outer jacket. These methods, however, are only effective to varying extents and can be time consuming, wasteful, messy, complicated, expensive, and can require additional equipment at either the job site or manufacturing site. These methods can also sometimes affect aesthetic quality of the final wire or cable product.


Therefore, a need exists for a method and apparatus of applying a pulling lubricant to a wire or cable that reduces the coefficient of friction and effective pulling force required during installation that does not require hand lubricating techniques or complex mixing of lubricant and jacket material.


BRIEF SUMMARY OF THE INVENTION

The invention provides for a system, apparatus, and method to spray-on a pulling lubricant onto a wire or cable during the manufacturing process giving the wire or cable the characteristics of having a reduced coefficient of friction and a reduced pulling force during wire and cable installation. The lubricant is sprayed onto the outer surface of a wire or cable in an enclosure that prevents excess lubricant from escaping the enclosure as well as preventing contaminants from entering the enclosure. Through the prevention of excess lubricant dispersal, a safer and more efficient manufacturing area is maintained. A spraying chamber and drying chamber are formed by the enclosure. Once the wire enters the spraying chamber, adjustable nozzles spray a fine mist of lubricant onto the wire. The spraying chamber encloses the finely sprayed mist, reducing wasted lubricant. The wire then enters the drying chamber where air dries the excess moisture from the spray-on lubricant dispersed upon the wire or cable. Excess dispersant is evaporated and no lubricant exits the drying chamber other than what has been deposited onto the wire. In another embodiment of the present invention, only a spraying chamber is formed by an enclosure. Excess lubricant not deposited onto the wire is collected at the base of the enclosure and may be removed from the enclosure or reused on subsequent wire. The lubricant is sprayed by a spraying system that includes an air system and a lubricant pump system. The air system provides air to aerosolize the lubricant into a mist and to power the lubricant pump system. The lubricant pump system filters the lubricant and pumps the lubricant to spraying nozzles to be combined with air to form a mist.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The foregoing summary, as well as the following detailed description, will be better understood when read in conjunction with the appended drawings. For the purpose of illustration, there is shown in the drawings certain embodiments of the present disclosure. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.


In the drawings:



FIG. 1 depicts an overview of a wire or cable manufacturing process in accordance with one embodiment of the present invention.



FIG. 2 depicts one embodiment of the lubricant applying apparatus.



FIG. 3 depicts the lubricant applying apparatus in a closed position.



FIG. 4 depicts a spraying chamber and a drying chamber on the lubricant applying apparatus.



FIG. 5A depicts a front view of the lubricant applying apparatus.



FIG. 5B depicts a side view of the lubricant applying apparatus.



FIG. 6 depicts a spray nozzle of the lubricant spraying component.



FIG. 7 depicts an air knife of the lubricant spraying component.



FIG. 8 depicts a method of applying a spray-on lubricant according to one embodiment of the present invention.



FIG. 9A depicts one embodiment of the lubricant applying apparatus.



FIG. 9B depicts a side view of the lubricant applying apparatus.



FIG. 10 depicts an internal view of the lubricant applying apparatus.



FIG. 11A depicts an air system and lubricant pump component of the lubricant applying apparatus.



FIG. 11B depicts a back view of the lubricant applying apparatus.



FIG. 12 depicts a method of applying a spray-on lubricant according to one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Before explaining at least one disclosed embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed are for purpose of description and should not be regarded as limiting.


It should be understood that any one of the features of the invention may be used separately or in combination with other features. Other systems, methods, features, and advantages of the present invention will be or become apparent to one with skill in the art upon examination of the drawings and the detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present invention, and be protected by accompanying claims.


The present disclosure is described below with reference to the Figures in which various embodiments of the present invention are shown. The subject matter of the disclosure may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. It is also understood that the term “wire” is not limiting, and refers to wires, cables, electrical lines, or any other materials that are dispensed from a reel.


The present invention provides for a method and apparatus for spraying a pulling lubricant onto a wire during the manufacturing process. With the use of the system or apparatus or by the disclosed method, the wire or cable gains a characteristic of a reduced coefficient of friction such that when installed, by pulling through sections of building walls, ceilings, ducts, cable trays, and other conduits, the force required to pull the cable is advantageously reduced.


Referring to FIG. 1, a diagram is depicted that illustrates a system, method and apparatus of manufacturing wire or cable insulated with a composition of polymerized nylon and lubricated in accordance with one embodiment of the present invention. In this embodiment, a standard payoff reel 12 to supply an internal conductor(s) 11, such as a copper or aluminum wire is provided in system 10. The standard payoff reel 12 supplies the internal conductor(s) 11 to a first extruder 13 to apply at least an insulating material and an outer jacket over the internal conductor(s) 11. First extruder 13 may be a single extruder head, a plurality of extruders, a cross head, a co-extrusion head or any combination thereof. The insulating material may be thermoset, thermoplastic, elastomeric, polymeric dielectric, polyvinylchloride (PVC), or a semiconductor compound or any combination thereof. The outer jacket may be an additional insulating material or a composition of polymerized nylon.


A second extruder 14 can also be utilized in system 10 to apply, as necessary or desired, an additional layer of insulating material over the internal conductor(s) 11 that may similarly comprise a thermoset, thermoplastic, elastomeric, polymeric dielectric, polyvinylchloride (PVC) or a semiconductor compound or any combination thereof. The second extruder 14 can also function in the system 10 to apply a further additional layer, such as, but not limited to the pelletized composition of polymerized nylon over the wire or cable to form an outer jacket.


A third extruder 16 may also be provided in system 10 to apply a further additional layer of thermoplastic or thermoset material, elastomeric, polymeric dielectric, polyvinylchloride (PVC), or a semiconductor compound or any combination thereof. Alternatively, the third extruder 16 can also be used to extrude a further additional layer, such as, but not limited to the pelletized composition of polymerized nylon over any prior extruded layers or materials. It is contemplated by the present invention that even further additional optional extruders may be provided for additional material application to the wire and cable.


After the insulating material and the outer jacket are applied, the wire or cable is supplied to a cooling device 18 for cooling the applied insulating material and outer jacket of the wire or cable. In one disclosed embodiment, the cooling device 18 is a water trough or similar device that contains a cooling material such as water. The cooling device 18 functions to cool and lower the temperature of the insulating material and outer jacket of the wire or cable as it departs extruder 13 and/or second extruder 14 and/or the third extruder 16 and enters the cooling device 18 by removing latent heat caused by extrusion. The cooling of insulating material and outer jacket provides a more stable polymeric state for later processing. In one disclosed embodiment, the insulating material is cooled to an ambient temperature, such as a temperature of less than 85 degrees Fahrenheit.


After the wire or cable is cooled in the cooling devise 18, the wire or cable enters a spray enclosure 20. Upon entering the spray enclosure 20, the wire or cable enters a spraying chamber wherein adjustable nozzles spray a lubricant onto a wire. In one disclosed embodiment, the lubricant is a siloxane-based lubricant; however, a variety of spray-on lubricants can be utilized without detracting from the spirit of the invention. The wire or cable continues to a drying chamber where air dries the wire or cable. Passing through the drying chamber, the wire or cable exits through an air knife such that excess dispersant is further evaporated and no lubricant exits the spray enclosure 20 other than what has been deposited onto the wire or cable.


After the spray enclosure 20, a motor-driven reel 22 winds up the resulting wire or cable. The resulting wire or cable is reeled by the motor-driven reel 22 and wrapped in plastic film for distribution or storage.


Referring now to FIGS. 2, 3, 4, 5A and 5B by way of non-limiting example, one embodiment of a spray enclosure 20 is disclosed. In this one disclosed embodiment, the spray enclosure 20 is formed by a top portion 102 and bottom portion 104. In this disclosed embodiment, the top portion 102 is attached to the bottom portion 104 through hinges 115, however, a wide variety of attachment means are known to those skilled in the art, including but not limited to bolts and nuts. The enclosure is supported by a stand 112 and feet 114. In one disclosed embodiment, the feet 114 are adjustable to accommodate inclusion in an existing manufacturing assembly line. In another disclosed embodiment, the stand 112 is manufactured in a variety of heights relative to accommodate existing manufacturing lines. Additionally, the feet 114 in one disclosed embodiment are of a screw-type that are known in the art. It is understood by a person of ordinary skill in the art that a variety of structures can be used to adjust the height of the enclosure, including but not limited to locking pin-type adjustment legs, friction-based adjustment legs, or gear-crank type devices.


The wire or cable is aligned to the spray enclosure 20 prior to entry and after exit by the alignment assembly 107. The alignment assembly 107 includes an upper stop 108 and an adjustable lower guide 106 which includes guide rollers 122. The alignment assembly 107 aligns the wire or cable for entry into and exit from the spray enclosure 20. The adjustable lower guide 106 is adjusted by an adjustment wheel 110, which adjusts the distance between the upper stop 108 and the adjustable lower guide 106. It is understood by a one of ordinary skill in the art that the adjustable lower guide may be adjusted by a variety of means without detracting from the spirit of the invention. When properly aligned, the wire or cable passes through the spray enclosure 20 with limited lateral or horizontal movement.


The bottom portion 104 and top portion 102 of the spray enclosure 20 may include a gasket 118 to form a seal between the bottom portion 104 and the top portion 102 of the spray enclosure 20. This gasket may be rubber, or any other material known in the art to seal the two portions.


The spray enclosure 20 is divided into a spraying chamber 130 and a drying chamber 132. An entry opening of the spraying chamber 130 is formed by slit rubber grommets 116 that form a seal around the wire as it enters the spraying chamber 130. In one disclosed embodiment, the slit rubber grommet 116 is of a material pliable enough to accept a wide variety of wire diameters. In another disclosed embodiment, the slit rubber grommets 116 of various entry opening sizes are placed into the spraying chamber 130 dependent upon the size of the wire being manufactured. The slit rubber grommets 116 form a seal around the wire such that spraying lubricant does not escape the spraying chamber 130 through the entry opening. An additional slit rubber grommet 116, with the same properties described above, partitions the spraying chamber 130 from the drying chamber 132. As the wire exits the drying chamber 132, it passes though an air knife 120, which assists in drying and keeping aerosolized lubricant from exiting the spray enclosure 20. An exit grommet 216 forms around the air knife 120 at the exit opening of the drying chamber 132. The exit grommet 216 possesses the same properties described above regarding the slit rubber grommets 116.


Referring to FIG. 3, the spray enclosure 20 of one disclosed embodiment is shown when the spray enclosure 20 is closed and sealed. The top portion 102 is closed and latched to the bottom portion 104 such that a seal is formed between the top portion 102 and bottom portion 104. Latches 202 secure the spray enclosure 20 in the closed position. A wide variety of securing mechanisms are known to one skilled in the art and may be implemented without detracting from the spirit of the invention. The exit grommet 216 fits over the end of the air knife 120, providing a seal around the air knife 120 so that aerosolized lubricant does not escape the exit opening of the spray enclosure 20.


Referring now to FIG. 4, a spraying chamber 130 and drying chamber 132 of the spray enclosure 20, according to one disclosed embodiment of the present invention, is shown. The spraying chamber 130 and drying chamber 132 are separated by a wall 210 and the slit rubber grommet 116 is provided to seal the spraying chamber 130 from the drying chamber 132. As the wire moves through the spray enclosure 20, excess lubricant is collected at the bottom of the spray enclosure 20 while reducing the amount of lubricant transmitted to the other chambers or outside of the spray enclosure 20. Two sprayer ports 302 are provided in the spraying chamber 130 to allow for sprayer nozzles. A first sprayer port 302 is located on the front wall of the spraying chamber 130 and a second sprayer port 302 is located on the rear wall of the spray chamber 130. The two sprayer ports 302 are offset, however, a variety of locations and amounts of sprayer ports do not detract from the spirit of the invention. Sprayer grommets 306 form seals around the sprayer nozzles to reduce the amount of aerosolized lubricant escaping from the spraying chamber 130.


Referring now to FIGS. 5A and 5B, front and side views of the spray enclosure according to one disclosed embodiment of the present invention are shown. The bottom portion 104 is sloped downward from the edges to the middle such that the lubricant not attaching to the wire collects at the center of the bottom of the bottom portion 104. Connectors 402 are attached to the lowest point of the bottom of the bottom portion 104 and provide drainage connection for the spraying chamber 130 and the drying chamber 132. The connectors 402 may be push-lok tube connectors or other connectors well known in the art. The unused, collected lubricant may be withdrawn from the sprayer enclosure 20 for reuse or disposal.


Referring to FIG. 6, a spray nozzle for use in the sprayer enclosure is shown. A spraying nozzle 500 includes a lubricant connection 508 and a compressed air connection 510. A lubricant and air are combined within the spraying nozzle 500 and the combination is sprayed in the spraying chamber 130 of the sprayer enclosure 20. The spraying nozzle 500 has a flow adjustment knob 506 and a fan speed adjustment mechanism 507 to control the mixture of the lubricant and air sprayed as well as the speed of the fan. A dispersion adjustment mechanism 520 is provided to modify the dimension and granularity of the sprayed lubricant. A wide variety of commercially available nozzles may be implemented without detracting from the spirit of the invention, including but not limited to a spray nozzle, model number MCI700 manufactured by NOGA.


Referring to FIG. 7, an air knife for use in the sprayer enclosure is shown. The air knife 120 is located at the exit opening of the sprayer enclosure 20. The air knife 120 is used to blow off excessive lubricant from the wire or cable. The air knife 120 has a suction end 602 and an output end 604. Air is pulled into the suction end 602 and exits the output end 604 of the air knife 600 which is inside the drying chamber 132 of the sprayer enclosure 20. The air knife 120 has a compressed air inlet 606 in order to create additional air flow from the suction end 602 to the output end 604. The air knife 120 is installed in the sprayer enclosure 20 at the exit opening of the drying chamber 132 oriented so that the output end 604 is inside the drying chamber 132 and the suction end 602 is outside of the sprayer enclosure 20. In this configuration, a positive pressure is maintained in the drying chamber 132. The air knife 120 acts both to dry the lubricant and maintain a thin lubricant application on the wire or cable and, by maintaining a positive pressure in the drying chamber 132, preventing aerosolized lubricant from exiting the drying chamber 132. A wide variety of air knifes may be implemented without detracting from the spirit of the invention, including but not limited to, the VorTec Transvector Jet Model 903XSS. In one disclosed embodiment, an air filter is provided in the air knife 120 to remove debris or contaminants entering the air knife 120 through the suction end 602 or compressed air inlet 606.


Now referring to FIGS. 2, 3, 4, 5A and 5B, the sprayer enclosure 20 both prevents unused lubricant from exiting the sprayer enclosure 20 and prevents external contaminants from entering the sprayer enclosure 20. The slit rubber grommets 116, exit grommet 216, rubber gasket 118, and the air knife 120 seal the sprayer enclosure 20 from external contaminants and prevent the escape of lubricant which would contaminate the remainder of the manufacturing site. The downward slope of the bottom portion 104 allows unused lubricant to collect at the lowest point of the bottom portion 104. The lubricant then travels through the connectors 402 into a collection vessel such as a flexible tube and closed container. The unused lubricant is uncontaminated and may be recycled and used in later applications or disposed of in a safe, clean manner. It is a goal of the present invention to provide cost savings by allowing for the recycling of previously sprayed lubricant.



FIG. 8 illustrates a method for the spray-on application of a lubricant to a wire. The method begins with Start 701. The wire with an extruded outer jacket is aligned with the entry opening of the spraying enclosure in step 702. Next, the wire passes through a first seal designed to prevent contaminants from entering the chamber or lubricant from exiting the chamber in step 704. The lubricant is sprayed onto the jacket of the wire while inside the spraying chamber in step 706. Next, in step 708, the wire passes through a second seal. The wire enters a drying chamber in the step 710. In step 712, the wire passes through a drying device, wherein the drying device also prevents aerosolized lubricant from exiting the spraying enclosure. The wire exits the sprayer enclosure in step 713. In step 714, the unused lubricant that has been sprayed is collected in the bottom of the sprayer enclosure for reuse. The method Ends in step 716.


Referring now to FIGS. 9A, 9B, and 10 by way of non-limiting example, an alternate embodiment of a spray enclosure 901 is disclosed. In this one disclosed embodiment, the spray enclosure 901 is formed by a top portion 902 and bottom portion 904. In this disclosed embodiment, the top portion 902 is attached to the bottom portion 904 through hinges 918. As discussed herein, the enclosure may be supported by a stand 112 and feet 114. Moreover, the wire or cable may be aligned to the spray enclosure 901 prior to entry and after exit by the alignment assembly 107.


The bottom portion 902 and top portion 904 of the spray enclosure 901 may include a gasket 912 to form a seal between the bottom portion 902 and the top portion 904 of the spray enclosure 901. This gasket may be rubber, or any other material known in the art to seal the two portions. The bottom portion 902 and the top portion 904 of the spray enclosure 901 may be secured in a closed position by latches 908. A wide variety of securing mechanisms are known to one skilled in the art and may be implemented without detracting from the spirit of the invention. Further, a handle 920 is attached to the top portion 902 of the spray enclosure 901 to facilitate the opening and closing of the spray enclosure 901. The handle 920 is fastened to the top portion 902 by nuts and bolts, but may be attached in many ways which are known to those skilled in the art.


In this disclosed embodiment, the spray enclosure 901 is comprised of a single spraying chamber 910. The entry and exit openings of the spraying chamber 910 are formed by slit rubber grommets 922 that form a seal around the wire as it enters and exits the spraying chamber 910. As disclosed above, these slit rubber grommets 922 may be of a material pliable enough to accept a wide variety of wire diameters or, in another embodiment, slit rubber grommets 922 may be of various sizes and placed into the spraying chamber 910 dependent upon the diameter of the wire being manufactured. The slit rubber grommets 922 form a seal around the wire such that spraying lubricant does not escape the spraying chamber 910 through the entry or exit openings.


Sprayer ports 914 are provided in the spraying chamber 910 to allow for tubing to provide lubricant and compressed air to sprayer nozzles. In one disclosed embodiment, the sprayer ports 914 are located on the front wall of the spraying chamber 910, however, a variety of locations and amounts of sprayer ports do not detract from the spirit of the invention. The sprayer ports 914 may be of slit rubber grommets as previously disclosed such that the a seal is formed around the tubing to prevent lubricant from escaping the spraying chamber 910. In another embodiment, the sprayer ports 914 may be tubing connectors such that tubing is attached to the sprayer ports 914 on both the inside and outside of the spraying chamber 910. Such tubing connectors are well known in the art and include, but are not limited to, push-lok connectors.


Referring now to FIG. 9B, a side view of the spray enclosure 901 according to one disclosed embodiment of the present invention is shown. The bottom portion 904 is sloped downward from the edges to the middle such that lubricant not attaching to the wire collects at the center of the bottom of the bottom portion 904. A connector 916 is attached to the bottom of the bottom portion 904 and provides a drainage connection for the spraying chamber 910. The connector 916 may be push-lok tube connectors or other connectors well known in the art. The unused, collected lubricant may be withdrawn from the sprayer enclosure 901 for reuse or disposal.


Referring now to FIG. 10, an internal view of a spraying chamber 910 of the spray enclosure 901 according to one disclosed embodiment of the present invention is shown. Adjustable spraying nozzles 1002 are provided inside the spraying chamber 910 of the spray enclosure 901. Each adjustable spraying nozzle 1002 includes an intake block 1004, an adjustable arm 1006, and a spraying tip 1008. The intake block 1004 of the adjustable spraying nozzle 1002 receives lubricant and compressed air and mixes them before sending the combination down the adjustable arm 1006. The adjustable arm 1006 may be of a knuckled or jointed design and are well known in the art, however, other adjustable arms are also well known in the art. At the end of the adjustable arm 1006, a spraying tip 1008 is provided. The spraying tip 1008 may be made of brass, or other acceptable material without detracting from the spirit of the present invention. The spraying tip 1008 is adjustable to control the output of lubricant and air as well as the pattern of the sprayed mist of lubricant.


In the present embodiment, the adjustable spraying nozzles 1002 are attached to the internal wall of the spraying chamber 910 of the spray enclosure 20 by screwing the intake block 1004 onto exposed threading of the bolts securing the slit rubber grommets 922 to the wall of the spray enclosure 901, however, the adjustable spraying nozzles 1002 may be attached to the internal wall of the spraying chamber 910 in a variety of ways well known to those skilled in the art including, but not limited to, an independent mount welded to the internal wall. The adjustable spraying nozzles 1002 are positioned to ensure that lubricant is applied to the entirety of the exterior of the wire as the wire passes through the spray enclosure 901. Referring briefly to FIGS. 4, 6, and 10, lubricant may be applied in the spraying chamber 910 as disclosed in the spraying chamber 130 and with fixed sprayer nozzles 500.


Referring again to FIG. 10, the supply of lubricant and compressed air is distributed to the intake blocks 1004 of the adjustable spraying nozzles 1002 by T-connectors 1010 and tubing. As the tubing providing the lubricant and compressed air enters the spraying chamber 910 of the spray enclosure 901, each tube first connects to the input 1012 of a T-connector 1010. The T-connector 1010 may have a plurality of outputs 1014. The input 1012 and outputs 1014 may be a push-lok tubing connection, or any other tubing connection which are well known to those skilled in the art. In one embodiment, the T-connector 1010 has two outputs 1014. A tube then runs from one output 1014 to the intake block 1004 of one of the adjustable spraying nozzles 1002. Another tube runs from the remaining output 1014 to another T-connector 1010, and the connections are repeated in this second T-connector 1010 until lubricant or air is provided to each intake block 1004 of each adjustable spraying nozzle 1002. In one disclosed embodiment, there are three adjustable spraying nozzles 1002 and, for each supply of compressed air and lubricant, two T-Connectors 1012, however, a variety of distributing connectors and adjustable spraying nozzles 1002 do not detract from the spirit of the invention.


Referring now to FIGS. 11A and 11B, by way of a non-limiting example, one embodiment of a spraying system 1102 is disclosed. The spraying system 1102 includes an air system 1104 and a lubricant pump system 1106. The spraying system 1102 is powered by compressed air, which is often readily available by way of a plant-wide compressed air distribution system or may be available by an independent air compressor.


Referring now to FIGS. 9A, 9B, 10, 11A, and 11B, compressed air from plant compressors is first supplied with the desired pressure to an air filter or dryer 1108 and then is provided to solenoid valves 1110. Solenoid valves 1110 are well known to those having ordinary skill in the art. The solenoid valves 1110 split the flow of compressed air into two paths, one path entering the spray enclosure 901 to be split among adjustable spray nozzles 1002 and the other path provides air to the power the lubricant pump system 1106.


Tubing connects one output of the solenoid valve 1110 to the air pressure regulator 1112 that regulates the air down to the desired pressure. Air pressure regulators 1112 are widely commercially available and well known to those skilled in the art. After the air pressure is regulated to the desired level in the air pressure regulator 1112, tubing directs the compressed air to the lubricant pump 1114. The lubricant pump 1114 includes an input for air from the air pressure regulator 1112 and an input for lubricant from a lubricant tank or tote. The lubricant pump 1114 is an air-power pump well known to those skilled in the art. The lubricant pump 1114 pulls lubricant from the tank or tote, through the lubricant pump 1114, and into the lubricant pump system 1106. Tubing then directs the lubricant from the output of the lubricant pump 1114 to the input of the primary lubricant filter 1116. The primary lubricant filter 1116 is one well known to those skilled in the art to remove contaminants from lubricants.


Tubing then connects the output of the primary lubricant filter 1116 to the input of the lubricant pressure regulator 1118. The lubricant pressure regulator 1118 has an adjustment valve 1122 and a gauge 1120, and is widely commercially available and well known to one having the ordinary skill in the art. Tubing the directs the lubricant from the lubricant pressure regulator 1118 to the secondary lubricant filter 1124. The secondary lubricant filter 1124 may be of the same type as the primary lubricant filter 1116 or may be of a different type and designed to filter different or smaller contaminants. The lubricant then exits the secondary lubricant filter 1124 and, via tubing, is directed into a sprayer port 914 to provide lubricant to each of the adjustable spraying nozzles 1002 as previously disclosed.



FIG. 12 illustrates a method for the spray-on application of a lubricant to a wire. The method begins with Start 1201. The wire with an extruded outer jacket is aligned with the entry opening of the spraying enclosure in step 1202. Next, the wire passes through a first seal designed to prevent contaminants from entering the chamber or lubricant from exiting the chamber in step 1204. The lubricant is sprayed onto the jacket of the wire while inside the spraying chamber in step 1206. In step 1208, the wire passes through a second seal designed to prevent contaminants from entering the chamber or lubricant from exiting the chamber. The wire exits the sprayer enclosure in step 1210. In step 1212, the unused lubricant that has been sprayed is collected in the bottom of the sprayer enclosure for reuse. The method ends in step 1214.


One skilled in the art will recognize that different embodiments may be formed in a similar manner having different characteristics depending on the need, performance, or some other criteria. It will thus be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that the invention disclosed herein is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A lubricant application system for applying a lubricant onto a wire, the system comprising: a spraying enclosure, wherein the spraying enclosure comprises a first portion and a second portion and wherein the first portion is moveably connected to the second portion by a hinge;a lubricant sprayer within the spraying enclosure; anda drainage connector connected to the first portion.
  • 2. The system of claim 1 further comprising a first seal attached to the spraying enclosure, wherein the first seal allows the wire to enter the spraying enclosure.
  • 3. The system of claim 2 further comprising a second seal attached to the spraying enclosure, wherein the second seal allows the wire to exit the spraying enclosure.
  • 4. The system of claim 3, wherein the first and second seals further comprise grommets.
  • 5. The system of claim 4, wherein the first and second seals comprise slit grommets.
  • 6. The system of claim 5, wherein the slit grommets comprise slit rubber grommets.
  • 7. The system of claim 1, wherein the spraying enclosure comprises a spraying chamber and a drying chamber.
  • 8. The system of claim 7 further comprising a third seal, wherein the third seal allows the wire to pass from the spraying chamber to the drying chamber.
  • 9. The system of claim 8, wherein the third seal further comprises grommets.
  • 10. The system of claim 9, wherein the third seal comprises slit grommets.
  • 11. The system of claim 10, wherein the slit grommets comprise slit rubber grommets.
  • 12. The system of claim 1, wherein the lubricant sprayer includes an adjustable spray nozzle to spray lubricant onto the wire and further wherein the adjustable spray nozzle comprises a flow adjustment device.
  • 13. The system of claim 1 further comprising a securing mechanism attached to the first portion and second portion, wherein the securing mechanism secures the spraying enclosure in a closed position.
  • 14. The system of claim 13, wherein the securing mechanism comprises a latch.
  • 15. The system of claim 1, wherein the spraying enclosure impedes the lubricant from escaping the spraying enclosure.
  • 16. The system of claim 1, wherein the spraying enclosure impedes outside contaminants from entering the spraying enclosure.
  • 17. The system of claim 1 further comprising an alignment assembly to align the wire with the first seal of the spraying enclosure.
  • 18. The system of claim 17, wherein the alignment assembly aligns the wire after the wire exits the second seal of the spraying enclosure.
  • 19. The system of claim 1 further comprising a drying device connected to the second seal of the spraying enclosure.
  • 20. The system of claim 19, wherein the drying device comprises an air knife to disperse excess lubricant from the wire as the wire exits the spraying enclosure.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/079,165, filed Oct. 23, 2020, now issued as U.S. Pat. No. 11,444,440, issued Sep. 13, 2022, which is a continuation of U.S. patent application Ser. No. 16/016,640, filed Jun. 24, 2018, now issued as U.S. Pat. No. 10,847,955, issued on Nov. 24, 2020, which is a divisional of U.S. patent application Ser. No. 14/211,540, filed Mar. 14, 2014, which issued as U.S. Pat. No. 10,056,742, issued on Aug. 21, 2018, which claims the benefit of U.S. Provisional Application Ser. No. 61/788,176, filed Mar. 15, 2013, all of which the entirety is incorporated herein by reference.

US Referenced Citations (248)
Number Name Date Kind
2276437 Vaala Mar 1942 A
2685707 Llewellyn et al. Aug 1954 A
2930838 Chizallet et al. Mar 1960 A
3064073 Downing et al. Nov 1962 A
3108981 Clark et al. Oct 1963 A
3191005 Cox, II Jun 1965 A
3258031 French Jun 1966 A
3333037 Humphrey et al. Jul 1967 A
3378628 Garner Apr 1968 A
3433884 Cogelia et al. Mar 1969 A
3668175 Sattler Jun 1972 A
3747428 Waner et al. Jul 1973 A
3775175 Merian Nov 1973 A
3822875 Schmedemann Jul 1974 A
3849221 Middleton Nov 1974 A
3852875 McAmis et al. Dec 1974 A
3868436 Ootsuji et al. Feb 1975 A
3877142 Hamano et al. Apr 1975 A
3885286 Hill May 1975 A
3936572 MacKenzie, Jr. et al. Feb 1976 A
4002797 Hacker et al. Jan 1977 A
4043851 Holladay et al. Aug 1977 A
4057956 Tolle Nov 1977 A
4099425 Moore Jul 1978 A
4100245 Horikawa et al. Jul 1978 A
4137623 Taylor Feb 1979 A
4273806 Stechler Jun 1981 A
4273829 Perreault Jun 1981 A
4274509 Thomson et al. Jun 1981 A
4275096 Taylor Jun 1981 A
4299256 Bacehowski et al. Nov 1981 A
4356139 Rowland et al. Oct 1982 A
4360492 Rowland et al. Nov 1982 A
4414917 Bentley et al. Nov 1983 A
4416380 Flum Nov 1983 A
4447569 Brecker et al. May 1984 A
4449290 Saunders et al. May 1984 A
4454949 Flum Jun 1984 A
4461712 Jonnes Jul 1984 A
4475629 Jonnes Oct 1984 A
4522733 Jonnes Jun 1985 A
4537929 Nangrani Aug 1985 A
4547246 Viriyayuthakorn et al. Oct 1985 A
4565725 Spamer et al. Jan 1986 A
4568420 Nonni Feb 1986 A
4569420 Pickett et al. Feb 1986 A
4605818 Arroyo et al. Aug 1986 A
4650073 Young Mar 1987 A
4673516 Berry Jun 1987 A
4684214 Goldmann et al. Aug 1987 A
4693936 McGregor et al. Sep 1987 A
4749059 Jonnes et al. Jun 1988 A
4751261 Miyata et al. Jun 1988 A
4761445 Chiba Aug 1988 A
4773954 Starnes, Jr. Sep 1988 A
4781847 Weitz Nov 1988 A
4806425 Chu-Ba Feb 1989 A
4868054 Kartheiser Sep 1989 A
4902749 Akkapeddi et al. Feb 1990 A
4937142 Ogushi et al. Jun 1990 A
4940504 Starnes, Jr. Jul 1990 A
4952021 Aoki et al. Aug 1990 A
4965249 De With et al. Oct 1990 A
5036121 Coaker et al. Jul 1991 A
5055522 Ikeda et al. Oct 1991 A
5063272 Sasse Nov 1991 A
5074640 Hardin et al. Dec 1991 A
5106701 Kurosaka et al. Apr 1992 A
5130184 Ellis Jul 1992 A
5156715 Starnes, Jr. Oct 1992 A
5182784 Hager et al. Jan 1993 A
5190679 McDonald Mar 1993 A
5213644 Phillips et al. May 1993 A
5217795 Sasse et al. Jun 1993 A
5225635 Wake et al. Jul 1993 A
5227080 Berry Jul 1993 A
5252676 Suyama et al. Oct 1993 A
5324588 Rinehart et al. Jun 1994 A
5326638 Mottine, Jr. et al. Jul 1994 A
5346383 Starnes, Jr. Sep 1994 A
5356710 Rinehart Oct 1994 A
5383799 Fladung Jan 1995 A
5416269 Kemp et al. May 1995 A
5451718 Dixon Sep 1995 A
5460885 Chu-Ba Oct 1995 A
5462601 Falcoff et al. Oct 1995 A
5492760 Sarma et al. Feb 1996 A
5505900 Suwanda et al. Apr 1996 A
5519172 Spencer et al. May 1996 A
5561730 Lochkovic et al. Oct 1996 A
5565242 Buttrick, Jr. et al. Oct 1996 A
5614288 Bustos Mar 1997 A
5614482 Baker et al. Mar 1997 A
5654095 Yin et al. Aug 1997 A
5656371 Kawahigashi et al. Aug 1997 A
5660932 Durston Aug 1997 A
5707468 Arnold et al. Jan 1998 A
5707770 Tanikawa et al. Jan 1998 A
5708084 Hauenstein et al. Jan 1998 A
5733823 Sugioka et al. Mar 1998 A
5735528 Olsson Apr 1998 A
5741858 Brann et al. Apr 1998 A
5753861 Hansen et al. May 1998 A
5759926 Pike et al. Jun 1998 A
5795652 Bell et al. Aug 1998 A
5846355 Spencer et al. Dec 1998 A
5852116 Cree et al. Dec 1998 A
5856405 Hofmann Jan 1999 A
5886072 Linsky et al. Mar 1999 A
5912436 Sanchez et al. Jun 1999 A
5925601 McSherry et al. Jul 1999 A
5965263 Tatematsu et al. Oct 1999 A
5981008 Hofmann Nov 1999 A
6039024 Carlson et al. Mar 2000 A
6054224 Nagai et al. Apr 2000 A
6057018 Schmidt May 2000 A
6060162 Yin et al. May 2000 A
6060638 Paul et al. May 2000 A
6063496 Jozokos et al. May 2000 A
6064073 Hoogenraad May 2000 A
6080489 Mehta Jun 2000 A
6101804 Gentry et al. Aug 2000 A
6106741 Heimann et al. Aug 2000 A
6114036 Rinehart et al. Sep 2000 A
6114632 Planas, Sr. et al. Sep 2000 A
6137058 Moe et al. Oct 2000 A
6146699 Bonicel et al. Nov 2000 A
6157874 Cooley et al. Dec 2000 A
6159617 Foster et al. Dec 2000 A
6160940 Summers et al. Dec 2000 A
6184473 Reece et al. Feb 2001 B1
6188026 Cope et al. Feb 2001 B1
6214462 Andre et al. Apr 2001 B1
6222132 Higashiura et al. Apr 2001 B1
6228495 Lupia et al. May 2001 B1
6242097 Nishiguchi et al. Jun 2001 B1
6270849 Popoola et al. Aug 2001 B1
6281431 Cumley Aug 2001 B1
6319604 Xu Nov 2001 B1
6327841 Bertini et al. Dec 2001 B1
6329055 Higashiura et al. Dec 2001 B1
6347561 Uneme et al. Feb 2002 B2
6359231 Reece et al. Mar 2002 B2
6395989 Lecoeuvre et al. May 2002 B2
6416813 Valls Prats Jul 2002 B1
6418704 Bertini et al. Jul 2002 B2
6424768 Booth et al. Jul 2002 B1
6430913 Gentry et al. Aug 2002 B1
6437249 Higashiura et al. Aug 2002 B1
6461730 Bachmann et al. Oct 2002 B1
6474057 Bertini et al. Nov 2002 B2
6495756 Burke et al. Dec 2002 B1
6530205 Gentry et al. Mar 2003 B1
6534717 Suzuki et al. Mar 2003 B2
6565242 Dai May 2003 B2
6596945 Hughey et al. Jul 2003 B1
6598645 Larson Jul 2003 B1
6640533 Bertini et al. Nov 2003 B2
6646205 Hase et al. Nov 2003 B2
6728206 Carlson Apr 2004 B1
6734361 Mesaki et al. May 2004 B2
6766091 Beuth et al. Jul 2004 B2
6810188 Suzuki et al. Oct 2004 B1
6850681 Lepont et al. Feb 2005 B2
6903264 Watanabe et al. Jun 2005 B2
6906258 Hirai et al. Jun 2005 B2
6912222 Wheeler et al. Jun 2005 B1
6977280 Lee et al. Dec 2005 B2
6997280 Minoura et al. Feb 2006 B2
6997999 Houston et al. Feb 2006 B2
6998536 Barusseau et al. Feb 2006 B2
7053308 Prats May 2006 B2
7087843 Ishii et al. Aug 2006 B2
7129415 Bates et al. Oct 2006 B1
7135524 Breitscheidel et al. Nov 2006 B2
7136556 Brown et al. Nov 2006 B2
7144952 Court et al. Dec 2006 B1
7158707 Will et al. Jan 2007 B2
7208684 Fetterolf, Sr. et al. Apr 2007 B2
7247266 Bolcar Jul 2007 B2
7267571 Twigg et al. Sep 2007 B1
7302143 Ginocchio et al. Nov 2007 B2
7411129 Kummer et al. Aug 2008 B2
7485810 Bates et al. Feb 2009 B2
7490144 Carlson et al. Feb 2009 B2
7491889 Dinkelmeyer et al. Feb 2009 B2
7549474 Valenziano et al. Jun 2009 B2
7555542 Ayers et al. Jun 2009 B1
7557301 Kummer et al. Jul 2009 B2
7642451 Bonn Jan 2010 B2
7678311 Bolcar Mar 2010 B2
7749024 Chambers et al. Jul 2010 B2
7776441 Mhetar et al. Aug 2010 B2
7934311 Varkey May 2011 B2
8043119 Kummer et al. Oct 2011 B2
8088997 Picard et al. Jan 2012 B2
8382518 Chambers et al. Feb 2013 B2
8616918 Chambers et al. Dec 2013 B2
8658576 Bigbee, Jr. et al. Feb 2014 B1
8701277 Kummer et al. Apr 2014 B2
9431152 Sasse et al. Aug 2016 B2
20020002221 Lee Jan 2002 A1
20020139559 Valls Prats Oct 2002 A1
20030076011 Brownfiel, Jr. Apr 2003 A1
20030195279 Shah et al. Oct 2003 A1
20040001682 Beuth et al. Jan 2004 A1
20040045735 Varkey et al. Mar 2004 A1
20040254299 Lee et al. Dec 2004 A1
20050019353 Prinz et al. Jan 2005 A1
20050023029 Mammeri et al. Feb 2005 A1
20050092025 Fridrich May 2005 A1
20050107493 Amizadeh-Asl May 2005 A1
20050180725 Carlson et al. Aug 2005 A1
20050180726 Carlson et al. Aug 2005 A1
20060065428 Kummer et al. Mar 2006 A1
20060065430 Kummer et al. Mar 2006 A1
20060068085 Reece et al. Mar 2006 A1
20060068086 Reece et al. Mar 2006 A1
20060088657 Reece et al. Apr 2006 A1
20060151196 Kummer et al. Jul 2006 A1
20060157303 Reece et al. Jul 2006 A1
20060167158 Yagi et al. Jul 2006 A1
20060191621 Kummer et al. Aug 2006 A1
20060249298 Reece et al. Nov 2006 A1
20060249299 Kummer et al. Nov 2006 A1
20060251802 Kummer et al. Nov 2006 A1
20070098340 Lee et al. May 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20080015122 Student et al. Jan 2008 A1
20080066946 Kummer et al. Mar 2008 A1
20080244925 Shin Oct 2008 A1
20080268218 Lee Oct 2008 A1
20090250238 Picard et al. Oct 2009 A1
20090250239 Picard et al. Oct 2009 A1
20100044071 Murao et al. Feb 2010 A1
20100105583 Garmier Apr 2010 A1
20100163273 Smedberg Jul 2010 A1
20100230134 Chambers et al. Sep 2010 A1
20100236811 Sasse et al. Sep 2010 A1
20100255186 Montes et al. Oct 2010 A1
20100285968 Gregory Nov 2010 A1
20110034357 Kawata et al. Feb 2011 A1
20110144244 Lee Jun 2011 A1
20110290528 Honda et al. Dec 2011 A1
20120012362 Kim et al. Jan 2012 A1
20130168126 Kuchta et al. Jul 2013 A1
20130168128 Lopez-Gonzalez Jul 2013 A1
20150027365 Shutic Jan 2015 A1
Foreign Referenced Citations (44)
Number Date Country
2726607 Dec 2009 CA
202917210 May 2013 CN
105837997 Aug 2016 CN
0283132 Sep 1988 EP
0364717 Apr 1990 EP
0544411 Jun 1993 EP
1524294 Apr 2005 EP
2674364 Sep 1992 FR
9500996 Mar 2010 IN
61133506 Jun 1986 JP
61133507 Jun 1986 JP
01110013 Apr 1989 JP
01144504 Jun 1989 JP
01166410 Jun 1989 JP
01307110 Dec 1989 JP
05266720 Oct 1993 JP
06057145 Mar 1994 JP
9045143 Feb 1997 JP
09251811 Sep 1997 JP
1012051 Jan 1998 JP
1086207 Apr 1998 JP
2001264601 Sep 2001 JP
2002231065 Aug 2002 JP
2003323820 Nov 2003 JP
198900763 Jan 1989 WO
1991008262 Jun 1991 WO
1995012885 May 1995 WO
2000040653 Jul 2000 WO
2001081969 Nov 2001 WO
2001090230 Nov 2001 WO
2002043391 May 2002 WO
2003086731 Oct 2003 WO
2005042226 May 2005 WO
2006015345 Feb 2006 WO
2006016895 Feb 2006 WO
2006016896 Feb 2006 WO
2006118702 Nov 2006 WO
2006127711 Nov 2006 WO
2007081372 Jul 2007 WO
2007084745 Jul 2007 WO
2009126613 Oct 2009 WO
2009126619 Oct 2009 WO
2010107932 Sep 2010 WO
2010113004 Oct 2010 WO
Non-Patent Literature Citations (30)
Entry
American Polywater Corporation, “Laboratory Report—American Polywater Spurt Spray Lubricant Test Compared to Polywater J and NN”, Aug. 9, 2005, 6 pages.
American Polywater Corporation, “Polywater J Specification”, Aug. 2010, 4 pages.
American Polywater Corporation, “Polywater SPY Cable Lubricant—Technical Specification”, May 2008, 4 pages.
American Polywater Corporation, “Polywater SPY Lubricant—Technical Report”, Feb. 26, 2008, 4 pages.
Axel Plastics Research Laboratories, Inc., Product Data Sheet re “Mold Wiz. INT-40DHT” (Approx. 2001) (1 p).
CSA Standards Update Service, “Thermoplastic-Insulated Wires and Cables”, UL 83, Thirteenth Edition, Nov. 15, 2003, 186 pages.
Decoste, “Friction of Vinyl Chloride Plastics”, SPE Journal, vol. 25, Oct. 1969, pp. 67-71.
Domininghaus, “Les Matieres plastiques les plus usuelles,” Informations Chimie No. 158, pp. 179-194, 1976.
Dow Corning article “Siloxane additive minimizes friction in fibre optic cable conduit”, 2000 (2 pp) (http://www.dowcorning.com).
Dow Corning Material Safety Data Sheet re Dow Corning MB50-011 composition, Mar. 4, 2008 (1 p) (http://www.dowcorning.com).
Dow Corning Material Safety Data Sheet sheet re Dow Corning MB50-320 composition, Mar. 4, 2008 (I pp) (http://www.dowcorning.com).
Dow Corning Material Safety Data Sheet: re Dow Corning MB50-008 composition, Mar. 4, 2008 (1 pp) (http://www.dowcorning.com).
Dow Corning Product Information sheet re Dow Corning MB40-006 composition. 1997-2005(1 p) (http://www.downcorning.com).
Dow Corning Product Information sheet re Dow Corning MB50-001 composition. Jan. 15, 2001 (6 pp) (http://www.dowcorning.com).
Dow Corning Product Information sheet re Dow Corning MB50-002 composition, 1997-2014 (4 pp) (http://www.dowcorning.com).
Dow Corning Product Information sheet re Dow Corning MB50-004 composition, Jan. 15, 2001 (4 pp) (http://www.dowcorning.com).
Dow Corning Product Information sheet re Dow Corning MB50-010 composition, Jan. 16, 2001 (2pp) (http://www.dowcorning.com).
Dow Corning Product Information sheet re Dow Corning MB50-321 composition, Jan. 15, 2001 (2pp) (http://www.dowcorning.com).
Dow Corning Product information sheets re Dow Corning MB50-313 composition, Nov. 5, 2001 (4 pp) (http://www.dowcorning.com).
Dow Corning Product information sheets re Dow Corning MB50-314 composition, Nov. 5, 2001 (4 pp) (http://www.dowcorning.com).
Dow Corning, “Dow Corning MB50-011 Masterbatch Material Safety Data Sheet Information”, 1997-2001.
Dow Corning, “Dow Corning MB50-011 Masterbatch Product Information”, Ultra-high Molecular Weight Siloxane Polymer Dispersed in Polymide 6, 1999, pp. 1-3.
European Patent Office, “Extended Search Report for Application No. 06739714.1”, dated Nov. 12, 2009.
European Patent Office, Opposition to European Patent EP 1899988 and accompanying documentation, filed Oct. 22, 2013 (23 pages).
General Electric Company, Brochure entitled “GE Silicones—Fluids, Emulsions & Specialties”, (2001) (19 pp).
Ideal Industries GmbH, “Yellow 77” Document, 2003, 1 page.
Trotignon et al., “Extrusion des Thermoplastiques”, in “Matieres Plastiques”, Editions Nathan, 1996, p. 148.
Underwriters Laboratories, Inc., Safety for Nonmetallic-Sheathed Cables, UL 719, 12th Edition, Feb. 9, 2006, pp. 1-42.
Wild, Frank, “The Effects of Silicone Polymer Additions on the Processing and Properties of an Isotactic Propylene Homopolymer”, Sep. 1995, 102 pages.
Wiles, John, “Clarifying Confusing Cables”, Home Power #66, Aug./Sep. 1998.
Provisional Applications (1)
Number Date Country
61788176 Mar 2013 US
Divisions (1)
Number Date Country
Parent 14211540 Mar 2014 US
Child 16016640 US
Continuations (2)
Number Date Country
Parent 17079165 Oct 2020 US
Child 17893063 US
Parent 16016640 Jun 2018 US
Child 17079165 US