The present invention relates to electromagnetic radiation, and more particularly to apparatus and methods for coupling an electronic device to an electromagnetic field.
Various devices, known generally as antennas, are advantageously employ to couple an electronic device to a time varying electromagnetic field. In diverse applications, antennas are used to couple power into and out of an electromagnetic field and to transmit and receive signalingly modulated electromagnetic fields. Circular spiral antennas have been used in a number of such applications. They are desirable for, among other characteristics, the production of circularly polarized electromagnetic radiation. A circularly polarized receiving antenna will receive a portion of an incoming signal regardless of the spatial orientation of the receiving antenna. Consequently, circular polarization is used extensively in communications applications where an orientation of a transmitting or receiving antenna may be altered in a way that is unpredictable or otherwise undesirable. For example, systems for communicating with orbiting and extra-orbital spacecraft typically employ circular polarization.
A square spiral antenna is a known variant of a circular spiral antenna. Square spiral antennas have certain advantages over circular spiral antennas. These advantages are particularly evident with respect to relatively low frequencies of electromagnetic radiation.
Notwithstanding their long use and well understood theory, circular and square spiral antennas exhibit deficiencies for which no satisfactory remedy has previously been presented. The corresponding long-felt, but unsatisfied need for improved devices is at last addressed in the substance of the present disclosure. Indeed, the present invention emerges from new insights and understanding of these deficiencies developed by the present inventors and reflected in the novelty of the corresponding inventions.
Having thus examined and understood a range of previously available devices, the inventors of the present invention have developed a new and important understanding of the problems associated with the prior art and, out of this novel understanding, have developed new and useful solutions and improved devices, including solutions and devices yielding surprising and beneficial results.
The invention encompassing these new and useful solutions and improved devices is described below in its various aspects with reference to several exemplary embodiments including a preferred embodiment.
Planar Archimedean spiral antennas are most often designed to operate in two principal configurations, i.e. circular and rectangular. Based on the requirements of a specific application, both configurations have their advantages and disadvantages. For instance, square spirals have the advantage of operating with similar gain performance at lower frequencies than their circular counterparts.
In accordance with the current band theory, the first radiation band of a spiral antenna occurs when the circumference of the spiral is one current wavelength at the operating frequency. This circumference corresponds to:
D=γ
e/π 1)
for the circular case, where D is diameter and γe is effective wavelength and, for the square case:
W=γ
e/4 2)
where W is the side length of the square and where γe is the effective wavelength. Therefore, the first operating frequency is approximately 22% lower for a square spiral than that of a circular one when they both have the same diameter. This means that for a given frequency, the first radiation mode of a square spiral antenna will occur at a smaller radius than for the corresponding circular spiral, allowing for better utilization of available aperture. The longer circumference of square spirals provide an inherent miniaturization factor MF =4/π. Consequently, square spiral antennas can be packaged closer together than circular spirals in an array configuration when constrained to the same space or whenever a square mounting footprint is required.
The fundamental advantage, however, of using spiral antenna systems is the radiation of circularly polarized waves over ultra-wide bandwidths. Although square spirals allow for compact packaging, they often demonstrate irregular performance across the band and commonly have poor axial ratio performance compared to their circular Archimedean counterparts. A commonly accepted figure of merit for circularly polarized antennas (antennas can be either circular or rectangular spiral antennas) is that their axial ratios should remain below 3 dB across their entire frequency range of operation.
In recent work, modified logarithmic and modified hybrid rectangular geometries have been proposed to improve the performance of conventional square Archimedean spirals. Such devices, however, generally have axial ratios greater than 4 dB over a significant portion of their operational bandwidths. In other work, the use of high-contrast dielectric materials in slot spirals has been shown to improve the axial ratio to some extent at ultra high frequencies (UHF: 0.5-2 GHz). The above-noted deterioration of axial ratio for square spirals operating at ultra wideband (UWB) frequencies, (i.e. UWB: 2-18 GHz) is effectively overcome by various antennas prepared according to principles of the present invention, while maintaining the advantages of the square spiral.
One of the several exemplary embodiments and variants of the present invention presented below is a wideband spiral antenna having a 16 turn generally polygonal spiral structure. The structure includes innermost loops with 32 sides each, as well as four additional loops having 16 sides each. In addition the structure includes four further loops of eight sides each and another four outermost loops having four sides each.
Of course, it will be understood that the corresponding spiral slot antenna would also fall within the scope of the invention. Such antenna includes, as an example, an electrically conductive body member, such as a copper plate, having first and second substantially planar surfaces, i.e., flat sides disposed substantially parallel to one another. Polygonal spiral slots through the copper plate are arranged in loops like those described immediately above to form radiating spiral apertures.
The slots or members (depending on the embodiment) are arranged in an Archimedean spiral, or in a modified Archimedean spiral according to the requirements of a particular embodiment. As will be discussed in additional detail below, the loops may include interpolated loops, including single interpolated loops and/or a progression of interpolated loops providing a transition between polygonal spiral loops of different configurations. In one exemplary embodiment, an overall linear dimension of about 2 inches characterizes a spiral antenna according to the invention. Antennas having a wide variety of other dimensions are also contemplated. In other embodiments, a plurality of such antennas forms an array.
One of skill in the art will anticipate a wide variety of performance characteristics according to the particular dimensions and features of corresponding embodiments. That said, certain embodiments of the invention can be expected to exhibit a radiating bandwidth from at least about 2 GHz to at least about 18 GHz. Likewise, certain embodiments of the invention can be expected to exhibit an axial ratio over such a radiating bandwidth of at most about 3.5 dB, and in some cases less than 3 dB over most of the radiating bandwidth. Similarly, a voltage standing wave ratio (VSWR) over the radiating bandwidth of at most about 2.5 can be anticipated.
While different embodiments will exhibit a corresponding variety of input impedance characteristics, preparing an antenna having an input impedance of about 188Ω will be within the skill of the ordinary practitioner in light of the present disclosure. In addition, the practitioner of ordinary skill in the art will appreciate that providing an absorbing cavity or other absorbing device proximate to one face of the spiral will substantially limit an effective transmission or reception lobe to the opposite side of the spiral.
These and other advantages and features of the invention will be more readily understood in relation to the following detailed description of the invention, which is provided in conjunction with the accompanying drawings.
It should be noted that, while the various figures show respective aspects of the invention, no one figure is intended to show the entire invention. Rather, the figures together illustrate the invention in its various aspects and principles. As such, it should not be presumed that any particular figure is exclusively related to a discrete aspect or species of the invention. To the contrary, one of skill in the art would appreciate that the figures taken together reflect various embodiments exemplifying the invention.
The following description is provided to enable any person skilled in the art to make and use the disclosed inventions and sets forth the best modes presently contemplated by the inventors of carrying out their inventions. In the following description, for purposes of explanation, many specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the substance disclosed.
The present invention relates to a system, apparatus and method for producing electromagnetic radiation, including an antenna device having a generally spiral aspect. Certain embodiments of a device prepared according to principles of the invention include a modified polygonal Archimedean spiral antenna well adapted to radiate in a 2-18 GHz bandwidth. Also disclosed is a spiral antenna having performance which approximates a circular spiral antenna (like that shown 100 in
It is well-known that self-complementary structures tend to have a constant input impedance and hence are good candidates for ultra-wideband antennas. Among the advantages of the invention described herewith, many embodiments of antennas prepared according to principles of the invention are substantially self-complementary.
First 206 and second 206 spiral arms have respective original ends 210, 212 proximate to a normal central axis 214 of the support surface 204. In addition, the spiral arms 206, 208 have further respective terminal ends 216, 218 comparatively distal to the normal central axis 214. Between the respective original ends 210, 212 and terminal ends 216, 218, each spiral arm describes a generally polygonal spiral wherein radially adjacent loops, e.g. 220, 222 of one arm are disposed substantially co-axial to one another about central axis 214.
In the illustrated embodiment, an absorbing device 224 is disposed in proximity to substrate member 202 and adjacent to a reverse side of the substrate, taken with respect to support surface 204. In other embodiments, the absorbing device 224 is integral to substrate member 202. As will be understood by one of ordinary skill in the art, the absorbing device serves to substantially absorb and prevent the radiation of a rear primary lobe by the spiral antenna device 200.
In the illustrated embodiment, the antenna device 200 is substantially square and has an overall linear dimension 226 of approximately 2 inches. One of skill in the art will appreciate, however, that other dimensions and configurations are possible according to the requirements (e.g., desired radiation wavelength band) of a particular application. In particular, in certain embodiments it will be advantageous to employ an Electromagnetic Band Gap (EBG) material and/or a metamaterial such as is known, or may be developed, in the art in proximity to the spiral device.
In certain embodiments, the absorbing device 224 includes a shallow, multi-layer absorptive cavity with three constituent commercially available absorbing materials. In this demonstration, a front layer at the air-absorber interface (AN series, Emerson and Cumming) includes a carbon-loaded polyurethane foam absorber. A second layer (LS-10055, ARC technologies) includes a flexible, low-density and high loss carbon loaded foam. A metal-backed 3rd layer includes an iron-loaded, magnetic thermoplastic elastomer (WT-BPJA-010, ARC technologies. The illustrated embodiment, according to principles of the invention, includes a cavity depth 228 that ensures 2-18 GHz absorption for maximum gain-bandwidth performance. In certain embodiments, depth 228 is at least about 0.625 inch, including an air-gap between the radiator and the absorbing layers. The cavity is used for unidirectional operation of the spiral antenna and the constituent materials and cavity depth can be adjusted according to application requirements.
It should be noted that loop 334 is not precisely polygonal, because the respective lengths of the substantially linear segments diminish monotonically between terminal end 316 and vertex 332. For purposes of this application, the term monotonic is intended to refer to a series of values which either remain equal or change in only one sense (i.e., decrease or increase) from value to value through the series. For example, the sequence 10, 9, 8, 8, 8, 6, 5, 4, 4, 4, 3, 0, −7 is considered to be monotonically decreasing. This sequential diminution of segment length results in a radial offset 336 between vertex 332 and terminal end 316, and in a corresponding gap 338 between successive polygonal loops (e.g., between first polygonal loop 334 and a second polygonal loop 340). Nevertheless, for purposes of this disclosure and as noted above, loop 334 is considered to be substantially polygonal.
The region of gap 338 defined between first linear segment 318 and a fifth linear segment 342 is generally rectangular in form. Other regions of the gap will have other configurations, however. For example, the gap 338 is generally triangular at region 344.
Like loop 334, loop 340 may be considered substantially square for purposes of the present application. Similarly, loops 345 and 346 are considered to be substantially square for purposes of the application, and all of loops 334, 340, 345 and 346 are considered to be substantially concentric with respect to each other about a centerpoint 348 of the spiral.
It is worth noting that, where a particular antenna device of the invention has more than one arm, the spiral arms are generally interleaved with one another. Accordingly, a second spiral arm would embody a geometric curve substantially similar in configuration to curve 300. The second spiral arm would be disposed within gap 338 and substantially concentric with spiral 300 about centerpoint 348. Such an arm would divide gap 348 and thus define additional gaps in which still further arms might be disposed, where appropriate. In certain embodiments, the second spiral arm would be disposed such that a linear segment of the second spiral arm would be disposed substantially equidistant between adjacent segments of the first spiral arm. In certain embodiments, the spiral arm is disposed in an orientation that is rotated in the plane of the spiral by approximately 180° with respect to the first spiral arm.
It should also be noted that each of loops 334, 340, 345 and 346 is considered to be substantially square in the illustrated embodiment. Curve 300 includes additional loops 350, 352, 354 and 356, which for purposes of the present disclosure are deemed to be substantially octagonal. Accordingly, curve 300 maybe regarded as having groups of loops 358, 360, 362 and 364; the loops of group 358 being four-sided (i.e., substantially square), the loops of group 360 being eight-sided (i.e., substantially octagonal), the loops of group 362 being 16-sided and the loops of group 364 being 32-sided.
In the illustrated embodiment, the number of sides of the groups are related by powers of 2. Thus, whereas each loop of the outermost group 358 has four sides (2 exponent 2), each loop of group 360 has eight sides (2 exponent 3), each loop of group 362 has 16 sides (2 exponent 4), and each loop of group 364 has 32 sides (2 exponent 5).
A further notable aspect of exemplary curve 300 is that, while the vertices within a group are substantially radially aligned with one another, the vertices of adjacent groups are offset from one another. Thus vertices 328, 366, 368 and 370 are substantially radially aligned along radial axis 372. Likewise, vertices 374, 376, 378 and 380 are substantially radially aligned along radial axis 382. Axes 372 and 382 are not, however, aligned but are disposed at an oblique angle with respect to one another.
The reader will note that, while radial alignment of all vertices within a group is found in certain devices prepared according to the invention, it is absent from other embodiments of the invention. For example,
Referring again to
r=a*θ, where θ≧0. 3)
The system of parametric equations corresponding to the polar curve is:
x=aθ cos(θ) and 4)
y=aθ sin(θ), 5)
where a is any real number denoting the growth rate of the spiral.
For the polygonal spiral case, when one increases the angle dθ to construct a next group of polygons with half the number of sides of the previous group, if the radius is not appropriately adjusted, the inner polygons will intersect with the outer polygons at some distance along the curve. To correct for the distance between adjacent sides and to ensure that the linear end portion of the next turn of the spiral does not come any nearer than the vertex of the previous side, the parametric equations are modified as:
r′=aθ/cos (dθ/2), x=r′ cos(θ) and 6)
y=r′ sin(θ). 7)
In this way, since cos (dθ/2) is always ≦1, the radius is modified to be slightly larger than the true Archimedean spiral as shown in
In order to create a particular polygonal loop, the angle of rotation to create the sides is determined from:
dθ=(2×π)/(# of sides) 8)
where dθ is the angle of rotation.
When making a transition from a group of 2n sided polygons to 2n-1 sided polygons, one may choose to make either the flat sides of different polygons parallel to each other or make the vertices group of an inner set of polygons line up with the vertices and centers of an outer group of polygons. The former reduces the irregularity in the transition from 2n side polygon to 2n-1 sided polygon and best preserves the self-complimentary form of the two-arm spiral. Hence, to ensure a substantially symmetric spiral polygonal structure, with regular transitions from 2n to 2n-1 sides, the flat sides are preferably designed parallel and centered about the next larger group of sides. Curve 300 of
Reference is now made to
Spiral antennas follow the principles of a slow-wave structure. The two current bands in
For every differential group of elements that have shifted 180 degrees in phase at the diameter of radiation, there is another group that is in time and space quadrature (of equal amplitude and 90° out of phase) since the phase of the groups varies as a function of the spiral growth rate. This causes a 90 degree phase shift making the spiral response circular.
Curve 604 has an original end 606 disposed proximate to a centerpoint 608 and a terminal end 610 relatively radially distant from the centerpoint. In like fashion, curve 602 has an original end 612 and a terminal end 614. Progressing outwardly from the origin along curve 602, one reaches, for example, a transition point 616 where vertex 618 of curve 604 is not matched by a corresponding vertex of curve 602. Rather, curve 602 proceeds in linear fashion to vertex 620, thereby affecting a transition from an octagonal loop to a square loop.
180° away from transition 616, curve 604 effects a similar transition 622. Instead of matching vertex 624 of curve 602, curve 604 proceeds straight to vertex 626 and transitions, from an octagonal loop to a square loop. Depending on the arrangement of a particular antenna, additional transition points will be found wherever loops transition from one polygonal configuration to another. Thus, for example, additional transition points are found in curves 602 and 604 at locations 628 and 630 respectively.
In the illustrated polygonal spiral antenna 600, and others of the present invention, as the two current bands are rotating with time, when the effective wavelength is such that the current band or the same phase currents between the adjacent arms reaches a point where one arm is transitioning the antenna geometry from a 2n side polygon to a to a 2n-1 side polygon, while the other arm remains in a 2n sided polygonal turn, the currents are no longer in phase in the vicinity of the transition point. Furthermore, another differential group of currents in phase quadrature may not be available. This absence or diminution of currents in phase quadrature can result in an elevated axial ratio (e.g., above 3 dB) at corresponding radiation frequencies. Consequently, it is preferable to reduce the effect of transition points to the extent practical. As will be discussed below in additional detail, one approach to minimizing the effects of transitions between groups of loops is to provide extrapolated loops. Such extrapolated loops serve to make the transition between groups more gradual.
The spiral arms 702, 704 have respective original ends 712, 714 and terminal ends 716, 718. Between the respective original ends 712, 714 and terminal ends 716, 718, each spiral arm describes a generally polygonal spiral wherein radially adjacent loops of one arm are disposed substantially co-axial to one another about centerpoint 720. As previously noted, the loops on antenna 700 may be grouped according to polygonal configuration, e.g., groups 722 and 724.
Antenna 700 includes first 726 and second 728 exemplary interpolated loops between groups 722 and 724. In the context of antenna 700, the term interpolated indicates that the loops are modified at every last turn of each set of n-sided polygons. In the illustrated embodiment, each arm of the spiral antenna consists of 16 turns with 4 turns of n-sided polygons. Here, each 4 turns are such that instead of a regular n-sided polygon, the 4th turn is an n-sided polygon interpolated from an n-sided to an (n-1)-sided polygon. The arrangement of the interpolated loops is more clearly seen in
Viewing curve 730 along a radially outward orientation along the spiral, an exemplary transition point 736 is found where the curve continues along a linear segment 738 to vertex 740, rather than having a vertex at transition point 736. It should be noted that vertex 740 is not disposed at location 742, and that curve 730 therefore differs from exemplary curve 610 of
In the illustrated curve 730, vertex 740 is disposed substantially halfway between transition point 736 and location 742. This location is particularly advantageous, although other intermediate locations are possible and fall within the scope of the invention. Because vertex 740 falls partway between transition point 736 and location 742, the loop 748 is referred to as an interpolated loop (i.e., between the loops of group 734 and the loops of group 732). As noted above, interpolated loops tend to improve the axial ratio performance of the antenna.
Characteristically, portions of the interpolated loop traverse what would otherwise be open gap between groups of loops, thus diminishing the size of such open gaps. The consequent smaller gaps, e.g. 750, 752, result in an antenna having improved complementarity.
While curve 730 has a single interpolated loop 748, it will be evident in light of the present disclosure that additional interpolated loops may be provided within the scope of the invention. An example of an antenna including additional interpolated loops is discussed below with respect to
The spiral arms of antenna 800 have first interpolated loops 812 and second interpolated loops 814. These interpolated loops are more clearly seen on
As with antenna 700, each arm of antenna 800 has a single interpolated loop, e.g., 812 between adjacent groups. In light of the present disclosure, however, one of skill in the art will appreciate that other arrangements are possible and fall within the scope of the invention. Such arrangements may include, for example, multiple loops of similar interpolation, and/or loops exhibiting further interpolation.
In contrast, exemplary group 934 includes a plurality of loops 950, 952, 954 and 956 that are progressively interpolated between loop 956 and loop 950. This progressive interpolation corresponds to a ratio between a long side of the loop and a short side of the loop becoming progressively larger as one moves outward from loop to loop across the group. Correspondingly, a radial axis 958 through centerpoint 948 and vertex 960 of loop 952 is disposed at an angle halfway between radial axis 962, which intersects centerpoint 948 and vertex 964 of loop 956 and radial axis 966, which intersects centerpoint 948 and corner vertex 968. Similarly, radial axis 970 (through centerpoint 948 and vertex 972 of loop 954) is disposed at an angle bisecting the angle between radial axes 962 and 958. Likewise, radial axis 974 (through centerpoint 948 and vertex 976 of loop 950) is disposed at an angle bisecting the angle between radial axes 958 and 968.
Again, it should be noted that the substantially equal angular displacement between axes 962, 970, 958, 974 and 968 are merely exemplary of certain desirable embodiments, and alternative spacings and arrangements clearly fall within the scope of the invention. It also merits notice that each of exemplary vertices 980, 982, 984, 986 and 988 are substantially aligned 990 while each of exemplary vertices 992, 994, 996, 998 and 990 are also substantially aligned 999.
In antenna device 900, the loops of groups 936 and 938 are progressively interpolated, in the fashion described above with respect to group 934. The resulting polygonal curves of antenna 900 consequently change relatively smoothly from loop the loop and polygonal form to polygonal form between the original ends and terminal ends of each loop. As a further consequent of these smooth transitions the interstitial gaps e.g., 920 are relatively small as compared with the corresponding gap of an un-interpolated antenna (e.g., 344 of
In a further embodiment of the invention, an antenna device may include a combination of substantially polygonal loops and smoothly curved loops. That is, for example, substantially circular spiral loops would be provided inwardly of, and, e.g., in series connection with, the previously discussed substantially polygonal loops.
Having reviewed the foregoing disclosure, the practitioner of ordinary skill in the art will appreciate that the scope of the present invention is not limited to antenna devices having a square perimeter. Rather, the approaches and methods disclosed above suggest and allow a wide variety of combinations of polygonal forms in respective antennas according to the requirements and objectives of a particular application. Moreover, these approaches and methods allow for the combination of polygonal antennas according to the present invention in antenna arrays having new and beneficial arrangements.
In the illustrated embodiment, the first and second hybrid polygonal spiral arms are adapted to be driven with a radiofrequency electrical signal at respective original ends 1112, 1114, thereof. Correspondingly, in the illustrated embodiment, original ends 1112 and 1114 are coupled to respective conductors 1116, 1118 of a coupling device 1120. In the illustrated embodiment, the coupling device is shown as a coaxial conducting device having a substantially insulating dielectric material 1122 disposed between the conductors 1116, 1118. It will be understood, however, that alternative conducting arrangements will be employed in other embodiments of the invention. For example substantially parallel strip lines and/or tapered line impedance transformers may be employed.
In the embodiment shown, conductors 1116, and 1118 are coupled at further ends 1124, 1126 to an impedance transformer 1128 which is, in turn, coupled to a further coaxial cable 1130. In the illustrated embodiment, the impedance transformer device serves to match an impedance of cable 1130 of approximately 50 ohms to an impedance of the antenna of approximately 188 ohms. In one embodiment, the impedance transformer device includes a balun device. In another embodiment of the invention, the impedance transformer includes a tapered line device.
The practitioner of ordinary skill in the art will be aware of a variety of manufacturing methods appropriate to the manufacturing of an antenna according to principles of the invention. For example, the antenna may be manufactured by providing an insulating substrate, such as, e.g., a ceramic substrate, having a generally planar upper surface. A layer of metallic material, such as copper, is deposited on the upper surface. A photoresist is deposited on an outer surface of the copper material. The photoresist layer is imaged and developed to provide a layer of the photoresist having a geometry corresponding to the desired antenna. An etching process removes excess copper material leaving behind the desired substantially polygonal spiral arms supported by the substrate.
Also shown is an exemplary terminating impedance 1132 coupled to a distal end of one of the substantially polygonal spiral arms. In still other embodiments of the invention, the antenna is driven by the application of a radiofrequency signal to respective distal ends of the antenna device.
The full-wave analysis of the shallow cavity-backed modified Archimedean polygonal spiral antenna has been carried out with method-of-moments (MoM) based FEKO analysis. FEKO is a software product developed by EM Software & Systems-S.A. (Pty) Ltd. for the simulation of electromagnetic fields. The name is derived from a German acronym which can be translated as “Field Calculations for Bodies with Arbitrary Surface”.
The initial simulations presented below assume matched conditions at the antenna input port. The excitation source impedance is defined to be 188 Ω in accordance with Babinet-Booker's principle. Table 1, below, shows the boresight co-polarized Right Hand Circularly Polarized (RHCP) gain and the cross-polarized Left Hand Circularly Polarized (LHCP) gain for all frequency points at 1 GHz intervals for a 2-18 GHz antenna. The antenna demonstrates sufficiently high and stable gains, low side-lobes and no splits in the main beam across the bandwidth.
Performance Comparison of Polygonal Spiral with Circular and Square Spiral
A comparison of the radiation performance of a two-inch diameter shallow cavity-backed polygonal spiral antenna with two-inch circular spiral and a two-inch square spiral antenna. The results show that the polygonal antenna offers a significantly improved axial ratio characteristic while maintaining a gain-bandwidth performance substantially equivalent to either of a circular spiral and a square spiral. Table 2 illustrates a performance comparison between a polygonal spiral and a circular spiral from 2-18 GHz at 1 GHz intervals. Table 3 illustrates a performance comparison between a polygonal spiral and a square spiral from 2-18 GHz at 2 GHz intervals. It is evident that circular spirals operate with better axial ratio than square counterparts, and for equal diameters, the polygonal spiral has the best axial ratio performance of the three configurations.
To verify the axial ratio performance of the polygonal spiral antenna at lower frequencies, the inventors simulated the model from 2-4 GHz at 100 MHz intervals and compared the axial ratio to that of a circular spiral. Table 4 illustrates a performance comparison between a polygonal spiral and a circular spiral from 2-4 GHz at 0.1 GHz intervals. The polygonal spiral shows greater than 3 dB axial ratio at frequency interval 2.0-2.4 GHz and in the vicinity of 3.3 GHz. The reason for the axial ratio degradation at particular discrete frequencies can be best understood from a heuristic approach and explained in terms of the current band theory.
A performance simulation based on characteristics identified with an antenna embodying principles of the invention suggests that such an antenna would have an axial ratio above about 3 dB at discrete frequencies 2.1-2.5 GHz and at 3.3 GHz. This phenomenon can be attributed to the fact that the current wavelengths corresponding to these frequencies are located at the transition points of the polygonal geometry.
Polygonal Spiral Antenna with 12th Interpolated Turn
Further simulation results suggest that axial ratios above 3 dB may be anticipated at discrete frequencies 2.1-2.5 GHz and at 3.3 GHz. This phenomenon can be attributed to the fact that the current wavelengths corresponding to these frequencies are located at the transition points of the polygonal geometry. A simulation was performed with respect to an antenna similar to that of
Performance Comparison of Polygonal Spiral with Circular Spiral
Table 5 illustrates a performance simulation comparing a polygonal spiral antenna according to principles of the invention and a circular spiral antenna over a frequency range from 2-18 GHz at 1 GHz intervals.
To verify the axial ratio performance of the polygonal spiral antenna at lower frequencies, a model of an antenna according to principles of the invention was simulated over frequency ranges from 2-4 GHz and 5-7 GHz at 100 MHz intervals. Table 6 illustrates the performance comparison of a polygonal spiral and a circular spiral from 2-4 GHz at 0.1 GHz intervals. The polygonal spiral shows less than 3 dB axial ratio at frequency intervals of 2.0-2.23 GHz, 5.9-6.2 GHz and in the vicinity of 5.4 and 3.5 GHz.
Performance Comparison of Polygonal Spiral with Circular Spiral
Table 7 illustrates a performance simulation comparing a polygonal spiral antenna according to principles of the invention and a circular spiral antenna over a frequency range from 2-18 GHz at 1 GHz intervals.
A further simulation was performed with respect to a polygonal spiral antenna at lower frequencies. This simulation modeled the subject device over a frequency range of 2-6 GHz at 100 MHz intervals. Table 8 illustrates a performance simulation comparing a polygonal spiral and a circular spiral over frequency range of 2-6 GHz at 0.1 GHz intervals. The simulation suggests polygonal spiral antenna performance with an axial ratio above 3 dB at frequency intervals 2.0-2.6 GHz, 4.8-5.1 GHz and in the vicinity of 3.8 GHz.
Polygonal Spiral Antenna with Gradually Transitioning Arms
A further simulation was performed with respect to a polygonal spiral antenna with gradually transitioning arms. In this model of the polygonal spiral antenna, each arm of the spiral antenna consists of 16 turns with sets of 4 turns of n-sided polygons. However, each 4 turns are such that the first turn is a regular n-sided polygon with n-equal sides, then the consecutive turns are n-sided polygons gradually transitioning from an n-sided to an (n-1)-sided polygon. The simulated antenna is similar to that of
Performance Comparison of Polygonal Spiral with Circular Spiral
Table 9 illustrates a performance comparison between a polygonal spiral and a circular spiral over a frequency range from about 2-18 GHz at 1 GHz intervals.
To verify the axial ratio performance of the polygonal spiral antenna at lower frequencies, a further simulation was performed representing an antenna having characteristics according to the invention. This simulation was performed over a frequency range from about 2-6 GHz at 100 MHz intervals. Table 10 illustrates a simulated performance comparison between a polygonal spiral antenna and a circular spiral over a frequency range from about 2-6 GHz at 0.1 GHz intervals. The results of the simulation suggest a polygonal spiral having an axial ratio above 3 dB at frequency intervals from about 4.9-5.0 GHz, 5.3-5.7 GHz, and in the vicinity of 2.1 GHz.
As previously noted, devices prepared according to principles of the invention offer the opportunity to produce electromagnetic radiation with an axial ratio under 3 dB for 93%-99% of its bandwidth, depending on the particular embodiment or device, while preserving the advantages of a square spiral antenna. The radiation patterns obtained from the proposed polygonal geometry are compared to that obtained from purely circular and purely square patterns having the same diameter and the significant improvement in axial ratio is demonstrated in the results. Having the benefit of the present disclosure, one of skill in the art will readily develop further modifications, variants and derivatives of the disclosed geometries and devices exhibiting performance and characteristics beneficially applied to any number of related applications.
Simulations of further embodiments suggest that the inventive antenna device can readily produce 3 dB axial ratios at discrete frequencies 2.1-2.5 GHz and at 3.3 GHz. This phenomenon can be attributed to the fact that the current wavelengths corresponding to these frequencies are located at the transition points of the polygonal geometry. As noted above,
It should also be noted that, while the foregoing description has referred primarily to spirals which are generally Archimedean in form, other configurations of spirals are also considered to be within the scope of the invention.
In a further aspect, the invention includes a method of preparing an antenna device having polygonal spiral loops as described above. In certain aspects, such a method includes using a computer device or computer system to define a plurality of generally polygonal generally spiral geometric curves. Thereafter, these curves may be implemented as a physical antenna by, for example, photochemical etching, computer-aided routing, three-dimensional printing, wire bending, or any other appropriate manufacturing means. The exemplary code below will provide to the practitioner of ordinary skill in the art the understanding necessary to readily implement such a method.
An exemplary embodiment of a practical antenna is fabricated on Rogers Type RT5880 Duroid substrate that is 0.02 inches thick. The substrate is copper-clad on both sides, therefore the copper was etched off the back side. This substrate is chosen because it provides the closest permittivity match (εr=2.20) to air from 2-18 GHz. A 0.06 inch-diameter spacing was used at the feed-points at the center of the antenna structure. The cavity depth is 0.625 inch including the air-gap between the radiator and the absorbing layers.
The antenna is fed in unbalanced co-axial mode from the back of the cavity. A wideband tapered coaxial balun is used that transforms the unbalanced coaxial mode into a balanced two-wire transmission line mode that feeds the spiral antenna. The balun also allows for impedance transformation from the 50 Ω impedance of the coaxial line to the impedance of the spiral antenna.
In the design of the balun, the antenna impedance is assumed to be 188 Ohms and to be connected to a 50 Ohm connector. The unbalanced balun is used to feed the antenna with one of its sides grounded to the connector and the other side connected to the center pin of the connector. Using a tapered transmission line design, the grounded side of the balun is tapered until it becomes balanced and then the split ends of the tapered coax balun are soldered to the antenna. Where the total cavity depth is 0.625 inches, the balun height is 0.675 inches. Extra length 0.05 inches is added to allow for soldering the balun to the antenna arms. Similar baluns used for cavity-backed spirals operating at 2-18 GHz are found in commercial models.
While the exemplary embodiments described above have been chosen primarily from the field of radio communication, one of skill in the art will appreciate that the principles of the invention are equally well applied, and that the benefits of the present invention are equally well realized in a wide variety of other applications including, for example, product identification and tracking , material processing, aerospace communications, commercial and defense satellites, GPS systems, microwave direction finding systems and other applications that previously have been used, as well as other systems involving the application of electromagnetic fields and radiation.
Further, while the invention has been described in detail in connection with the presently preferred embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions, or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
The present application is a Continuation of U.S. nonprovisional patent application Ser. No. 14/312,360 filed on Jun. 23, 2014 (issued as U.S. Pat. No. ______ on ______) the disclosure of which is herewith incorporated by reference in its entirety, which in turn is a Continuation of PCT application number PCT/US2012/071422 having an international filing date of Dec. 21, 2012 the disclosure of which is herewith incorporated by reference in its entirety, which in turn claims the benefit of U.S. provisional patent application No. 61/630,987, filed on Dec. 23, 2011, the disclosure of which is herewith incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61630987 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14312360 | Jun 2014 | US |
Child | 15451289 | US | |
Parent | PCT/US2012/071422 | Dec 2012 | US |
Child | 14312360 | US |