1. Field of the Invention
This invention relates generally to track defect detection and, in particular, a system, method, and apparatus for detecting and reporting track defects in a track network.
2. Description of Related Art
Through regular use and environmental influences, railroad track structures experience wear, damage, and movement of ballasts, ties, and other components that result in track defects, reduced ride quality, and potentially unsafe conditions. Such track defects may cause passenger discomfort and, in some instances, derailments and other undesired effects.
Thus, there is a need for a system, method, and apparatus to detect and report track defects to alert maintenance and repair crews, to initiate speed restriction bulletins, and/or to otherwise log and track the track defects in a track network.
Existing approaches to identifying and locating track defects and/or anomalies are described in U.S. Pat. No. 5,791,063 to Kesler et al., which is directed to a method and apparatus for locating a track defect, and U.S. Pat. No. 5,987,979 to Bryan, which is directed to a method and apparatus for monitoring anomalies in a railway system to predict future track behavior. The Kesler patent compares profiles of track geometry parameters to identify a position of a defect or vehicle along the track, and the Bryan patent predicts defects by analyzing data collected over time. However, the systems in both of the Kesler patent and the Bryan patent specifically rely upon GPS coordinates to provide location information, and the resulting defect or anomaly determinations are limited in accuracy and real-time identification.
Generally, the present invention provides a system, method, and apparatus for detecting and reporting track defects based at least partially on a vertical, lateral, or angular acceleration, movement, and/or tilt of a train or a portion of a train while the train is traveling over railway tracks.
According to one preferred and non-limiting embodiment of the present invention, provided is a track defect detection system for detecting track defects while a train is in motion on railway tracks, comprising: at least one defect sensor configured to sense an acceleration of at least a portion of the train; and at least one computer-readable medium comprising program instructions that, when executed by at least one processor, cause the at least one processor to: detect, while the train is in motion on the railway tracks, at least one track defect in the railway tracks based at least partially on the acceleration of the at least a portion of the train; and generate track defect data based at least partially on a location of the train when the at least one track defect is detected.
According to another preferred and non-limiting embodiment of the present invention, provided is a system for detecting and reporting track defects while a train travels over railway tracks, comprising a track defect detection device comprising at least one defect sensor; and a locomotive computer in communication with the track defect detection device, the locomotive computer configured to: detect a track defect based at least partially on an acceleration sensed by the at least one defect sensor while the train is in motion; generate track defect data comprising a magnitude and location of the track defect; and communicate at least a portion of the track defect data to a remote server.
According to a further preferred and non-limiting embodiment of the present invention, provided is a method of detecting track defects in railway tracks while a rail vehicle is in motion, comprising: monitoring an acceleration of at least a portion of a rail vehicle while the rail vehicle is in motion; determining, with at least one processer, if a track defect exists on the railway tracks based at least partially on the acceleration; and generating track defect data comprising a location of the track defect and at least one of the following: a magnitude of the track defect, a severity of the track defect, the acceleration, a vertical acceleration, a lateral acceleration, an angular acceleration, a velocity of the rail vehicle, a characteristic of the track defect, a type of the track defect, or any combination thereof.
According to another preferred and non-limiting embodiment of the present invention, provided is a computer program product comprising at least one non-transitory computer-readable medium including program instructions that, when executed by at least one computer including at least one processor, causes the at least one computer to: monitor an acceleration of at least a portion of a rail vehicle while the rail vehicle is in motion; determine if a track defect exists on the railway tracks based at least partially on the acceleration; and generate track defect data comprising a location of the track defect and at least one of the following: a magnitude of the track defect, a severity of the track defect, the acceleration, a vertical acceleration, a lateral acceleration, an angular acceleration, a velocity of the train, a characteristic of the track defect, a type of the track defect, or any combination thereof.
These and other features and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structures and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention. As used in the specification and the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
a and 3b illustrate step-diagrams for embodiments of a system and method for detecting and reporting track defects according to the principles of the present invention;
a illustrates a defect determination chart of track defect magnitude over time according to the principles of the present invention;
b illustrates a defect magnitude chart of vertical acceleration over train velocity according to the principles of the present invention; and
For purposes of the description hereinafter, the terms “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, “lateral”, “longitudinal” and derivatives thereof shall relate to the invention as it is oriented in the drawing figures. However, it is to be understood that the invention may assume various alternative variations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the invention. Hence, specific dimensions and other physical characteristics related to the embodiments disclosed herein are not to be considered as limiting.
As used herein, the terms “communication” and “communicate” refer to the receipt, transmission, or transfer of one or more signals, messages, commands, or other type of data. For one unit or device to be in communication with another unit or device means that the one unit or device is able to receive data from and/or transmit data to the other unit or device. A communication may use a direct or indirect connection, and may be wired and/or wireless in nature. Additionally, two units or devices may be in communication with each other even though the data transmitted may be modified, processed, routed, etc., between the first and second unit or device. For example, a first unit may be in communication with a second unit even though the first unit passively receives data, and does not actively transmit data to the second unit. As another example, a first unit may be in communication with a second unit if an intermediary unit processes data from one unit and transmits processed data to the second unit. It will be appreciated that numerous other arrangements are possible. Any known electronic communication protocols and/or algorithms may be used such as, for example, TCP/IP (including HTTP and other protocols), WLAN (including 802.11 and other radio frequency-based protocols and methods), analog transmissions, Global System for Mobile Communications (GSM), and/or the like.
In one preferred and non-limiting embodiment of the present invention, provided is a system, method, and apparatus for detecting and reporting track defects while a train is in motion. Track defects, including but not limited to wear, damage, track obstacles and obstructions, and the movement or shifting of ballasts, ties, and other railroad track structures, are detected based at least partially on a vertical, lateral, or angular acceleration, movement or force, and/or tilt of a train or a portion of a train. It will be appreciated that a track defect may include defects in the track itself, influences from the surrounding area or environment, obstructions, natural occurrences, weather effects, and/or other like conditions that would affect a smooth wheel-to-rail interface. When a track defect is detected, the locomotive computer or other onboard controller generates track defect data by associating a magnitude and/or characteristic of the track defect with the location of the detected track defect in a track network. The track defect data is communicated to a back office system that stores the track defect data. The back office system may then use the track defect data to, for example, alert and dispatch repair crews, monitor track condition trends, issue speed restriction bulletins, and/or the like.
Referring to
In a preferred and non-limiting embodiment, the track data 106 may specify various features of the track network and, in particular, the track 112 that the train 116 is traveling on and/or is scheduled to travel on. The track data 106 may be stored on any number of data storage devices such as, but not limited to, one or more hard drives, memory devices, and/or the like. The track data 106 may be in the form of any number of data structures and may include, for example, an identifier or name for the track 112 or region for a given location, an associated repair crew, an associated entity, and/or other like features. The track data 106 may identify the track 112 by milepost or other landmarks, authority blocks, longitude and latitude coordinates, and/or other identifying features or attributes of the track 112.
With continued reference to
Still referring to
With continued reference to
In some non-limiting embodiments, the track defect data 108 may be in the form of a track defect report, and may include other information such as, but not limited to, a date and time the defect is detected, repair information, railroad information, operator information, trend information and/or the like. The repair information may indicate, for example, an associated repair crew, repair schedule, or scheduled maintenance time. The railroad information may include, for example, an entity in charge of track repairs and/or track maintenance, an identification of the region or track segment, and/or the like. The operator information may include the identification of the train or other entity that detects and reports the track defect 110 to the back office system 104. Trend information may include, for example, historical data for the location of the track defect 110 including past defect magnitudes, past repairs, and/or the like. Additionally, the track defect data 108 may include the vertical, lateral, or angular acceleration, tilt, movement, train velocity, and location, such that the magnitude of the detected track defect 110 can be calculated at a later time by the back office system 104.
Referring now to
Referring to
With continued reference to
Referring now to
Referring now to
Still referring to
Referring now to
With reference to
Referring now to
Referring now to
In one preferred and non-limiting embodiment, the system 1000 generates and communicates alerts to the back office system 104 when a certain number of track defects 110 have been detected in a particular region or portion of track network. In this manner, repair and maintenance crews can be allocated to repair the defects efficiently. The alerts may be generated based at least partially on the proximity between the track defects 110, the magnitudes of the track defects 110, and/or the like. Alerts may also be generated if, for example, the magnitude of a single track defect 110 is significant enough to pose immediate threat to the safety of other trains.
In one preferred and non-limiting embodiment, the system 1000 may generate or initiate speed restriction bulletins based on detected track defects to help prevent derailments or other accidents. The speed restriction bulletins may be automatically triggered and/or generated by the system 1000 including, for example, the back office system 104 or locomotive computer 109. Because the exact locations of the track defects 110 are known, the speed restriction bulletins can be issued selectively such that they do not cover more portions of track 112 than necessary. Selective speed restriction bulletins minimize the amount of time that a train velocity has to be reduced for problematic track segments. The speed restriction bulletins may be enforced by locomotive speed control units on subsequent trains traversing the track 112 having the detected track defect 110.
The system 1000 may also be configured to detect when a track defect 110 has been repaired or otherwise becomes less problematic, by comparing a defect magnitude detected in a location with a previously recorded magnitude for that location, resulting in the withdrawal of the associated speed restriction bulletin and/or removal of the track defect from the track defect database 107. For example, if a train 116 is traveling over a track 112 that has been previously determined by the system 1000 to have a track defect 110 of a magnitude significant enough to report and log, the acceleration and/or train velocity may be used to calculate a new magnitude of the track defect 110. Therefore, if the track defect 110 has been repaired, or has otherwise become less problematic over time, the train 116 can verify that the track defect 110 does not exist or that the magnitude has decreased by comparing the new magnitude to the previous magnitude. If the new magnitude is negligible or non-existent, or if the new magnitude is less than a predetermined threshold and therefore less than the previous magnitude, the locomotive computer 109 may communicate a message to the back office system 104 to indicate that the track defect 110 has been repaired or has otherwise become insignificant. Multiple detections of a track defect 110 may also allow the back office system 104 to monitor trends in the track defect 110 so that a repair can be made before the magnitude of the track defect 110 reaches a critical level.
In this manner, and according to non-limiting embodiments, track defects 110 may be detected and measured while a train 116 is in motion and associated with the locations of those track defects 110 to form track defect data 108. The track defect data 108 may be compiled in a track defect database 107 and used to efficiently dispatch repair crews, issue selective speed restriction bulletins, monitor trends in track defect 110 magnitudes, and for other purposes. The track defects are detected at least partially on defect sensor output, which may include but is not limited to a vertical, angular, or lateral acceleration of a train 116 or part of a train 116 and, in some examples, a velocity of the train 116.
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
Number | Name | Date | Kind |
---|---|---|---|
5791063 | Kesler et al. | Aug 1998 | A |
5987979 | Bryan | Nov 1999 | A |
6202020 | Kyrtsos | Mar 2001 | B1 |
7164975 | Bidaud | Jan 2007 | B2 |
7726191 | Bestebreurtje | Jun 2010 | B2 |
8180590 | Szwilski et al. | May 2012 | B2 |
8294883 | Holton et al. | Oct 2012 | B2 |
8358423 | Funken et al. | Jan 2013 | B2 |
8405837 | Nagle et al. | Mar 2013 | B2 |
8412393 | Anderson et al. | Apr 2013 | B2 |
8583313 | Mian | Nov 2013 | B2 |
8589256 | Tays et al. | Nov 2013 | B2 |
8625878 | Haas et al. | Jan 2014 | B2 |
8626459 | Di Scalea et al. | Jan 2014 | B2 |
20020077733 | Bidaud | Jun 2002 | A1 |
20020183995 | Veitch et al. | Dec 2002 | A1 |
20030128030 | Hintze et al. | Jul 2003 | A1 |
20040105608 | Sloman | Jun 2004 | A1 |
20050061923 | Kane et al. | Mar 2005 | A1 |
20050076716 | Turner | Apr 2005 | A1 |
20070152107 | LeFebvre et al. | Jul 2007 | A1 |
20070217670 | Bar-Am | Sep 2007 | A1 |
20080195265 | Searle et al. | Aug 2008 | A1 |
20090079560 | Fries et al. | Mar 2009 | A1 |
20110247417 | Oberdoerfer et al. | Oct 2011 | A1 |
20110278401 | Sheardown et al. | Nov 2011 | A1 |
20120062731 | Enomoto et al. | Mar 2012 | A1 |
20120192756 | Miller et al. | Aug 2012 | A1 |
20120222579 | Turner et al. | Sep 2012 | A1 |
20120279308 | Yan et al. | Nov 2012 | A1 |
20130054158 | Toms | Feb 2013 | A1 |
20130070083 | Snead | Mar 2013 | A1 |
20130096739 | Landes et al. | Apr 2013 | A1 |
20130220019 | Havira et al. | Aug 2013 | A1 |
20130279743 | Li et al. | Oct 2013 | A1 |
20130317676 | Cooper et al. | Nov 2013 | A1 |
20130320153 | Jung et al. | Dec 2013 | A1 |
20140072169 | Haas et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
1236634 | Sep 2002 | EP |
2006327551 | Dec 2006 | JP |
2005093157 | Oct 2005 | WO |
Entry |
---|
Ackroyd, Patrick, et al., “Remote Ride Quality Monitoring of ACELA Train Set Performance,” 2002 ASME/IEEE Joint Rail Conference, Washington, DC, Apr. 23-25, 2002, pp. 171-178. |
Number | Date | Country | |
---|---|---|---|
20140277824 A1 | Sep 2014 | US |