The present disclosure relates generally to microscopy, and more specifically, to exemplary systems, methods and computer-accessible mediums for extended depth of field (“DOF”) imaging utilizing structured light illumination.
Due to a growing variety of molecular probes, dynamic measurements of the functional characteristics from a localized environment in biological systems can be encoded into the temporal modulation of an optical signal. Examples can include fluorescence encoding of action potentials from neurons in calcium imaging (See, e.g., References 1 and 2), Ph sensitivity (See, e.g., Reference 3) and voltage sensitivity (See, e.g., Reference 4). However, common problems encountered with existing imaging and sensing methodologies can include a tendency for phototoxicity/photobleaching, insufficient temporal or spatial resolution, loss of signal when embedded in highly scattered materials, and a lack of high frame-rate three- dimensional imaging solutions.
An exemplary benchmark for optical system specifications within neuroscience can include the cortical column of neurons within a mouse cortex. The study of the cell-to-cell communication of networked neuron activity can benefit from fast, volume-based, data acquisition. The spatial domain specifications can include an imaging volume of ˜1 mm3, while maintaining the resolution that can be needed to resolve individual cell soma (e.g., ˜10 μm). The temporal domain specifications for resolving the calcium transients associated with action potentials can include volume-based data acquisition at greater than 30 Hz.
However, currently there does not exist an optical solution for this type of imaging, although numerous techniques have attempted to achieve an optical solution. (See, e.g., References 5, 6, 7, 8, 9, 10, 11, 12 and 13).
Thus, it may be beneficial to provide an exemplary optical system which can (i) reduce photo-exposure by using targeted illumination patterns, (ii) increase temporal resolution by decoupling the trade-off between temporal and spatial resolution, (iii) image in scattering media by using two-photon illumination, and (iv) provide simultaneous measurements of optical signals from many spatial locations throughout the sample , and which can overcome at least some of the problems described herein above.
These and other objects of the present disclosure can be achieved by provision of exemplary systems, methods and computer-accessible for generating at least one image of a portion(s) of a sample.
To that end, it is possible to provided systems, methods and computer-accessible medium which can utilize Spatial Light Modulator (SLM) microscopy that can customize the sample illumination pattern from the microscope to simultaneously interrogate multiple targets localized within the sample. An exemplary SLM microscope arrangement can be used to image target locations at, e.g., arbitrary 3D coordinate by using, e.g., an extended Depth-of-Field computational imaging system. Multi-site three-dimensional targeting and sensing can be used in both transparent and scattering media.
According to an exemplary embodiment of the present disclosure, the system, method and computer-accessible medium can utilize, e.g., a computer hardware arrangement. With such exemplary arrangement, it is possible to receive information related to an electro-magnetic radiation(s) that can be modified by an optical addressing (e.g., diffraction) arrangement after being previously modified by portion(s) of the sample. At least one of the at least portion of the sample can be specifically targeted by at least one of a user or a computer instruction of the computer hardware arrangement by use of the optical addressing (e.g., diffraction) arrangement.
For example, an image(s) can be generated based on the information. The diffraction arrangement can be a wavefront modification device, and can be structured to modulate a phase or amplitude of the electro-magnetic radiation(s). The electro-magnetic radiation(s) can have a definitive three dimensional structure when an electro-magnetic radiation(s) is provided from the diffraction arrangement, and it can be non-ambient light. The image can be at least approximately axially invariant, substantially lossless, and can exclude defocus blur.
In some exemplary embodiments of the present disclosure, the electro-magnetic radiation(s) can have a shape of a sheet when the electro-magnetic radiation(s) intersects with a portion(s) of the sample. The electro-magnetic radiation can also have a shape of focused beams, or a shape that can conform to the shape of the portion(s) of the sample, when the electro-magnetic radiation is in the portion(s) of the sample. A spatial light modulation arrangement can generate the information using a three dimensional illumination pattern(s). According to certain exemplary embodiments of the present disclosure, a light source (e.g., a two-photon light source) can generate a source radiation that can be being provided to the sample, the source radiation can be related to the electro-magnetic radiation(s). The information can further relate to a further dynamically configurable diffraction arrangement that previously targeted the portion(s) of the sample.
In some exemplary embodiments of the present disclosure, a source arrangement can generate the light by illuminating the sample with an electro-magnetic radiation, which can be a non-linear excitation radiation. The illumination can be dynamic, temporally controlled and/or spatially controlled. The source arrangement can illuminate the sample based on a priori knowledge of the sample, which can include particular spots of the sample for the illumination or a number of spots on the sample for the illumination. The a priori knowledge can also be based on a previous illumination of the sample.
According to a further exemplary embodiment of the present disclosure, a system can be provided for generating an image(s) of a portion(s) of a sample, which can include a source arrangement, a spatial light modulation arrangement that can receive an electro-magnetic radiation(s) from the source and generate an illumination pattern on the sample. A wavefront modification arrangement can be provided that can receive a return radiation from the sample that can be based on the illumination pattern and can provide a further radiation. An imaging arrangement can be provided that can generate an image(s) based on further radiation received from the wavefront modification arrangement.
In some exemplary embodiments of the present disclosure, the sample can be biological. For example, the wavefront modification arrangement can control a depth of the return radiation. The wavefront modification arrangement can be fixed and non-movable within the system, and can be configured to increase information regarding a size of a volume of the sample. In certain exemplary embodiments, the performance by the imaging arrangement can be invariant. In some exemplary embodiments, a processing arrangement can be configured to digitally post process the image(s) to a near-optimal performance.
These and other objects, features and advantages of the exemplary embodiments of the present disclosure will become apparent upon reading the following detailed description of the exemplary embodiments of the present disclosure, when taken in conjunction with the appended drawings, and enclosed claims.
Further objects, features and advantages of the present disclosure will become apparent from the following detailed description taken in conjunction with the accompanying Figures showing illustrative embodiments, in which:
Throughout the drawings, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components, or portions of the illustrated embodiments. Moreover, while the present disclosure will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments and is not limited by the particular embodiments illustrated in the figures and appended claims.
The exemplary embodiments of the present disclosure may be further understood with reference to the following description and the related appended drawings, but not limited thereby. The exemplary embodiments of the present disclosure relate to an exemplary system, method and computer-accessible medium for extended depth of field imaging utilizing spatial light modulation.
The devices, system and methods that use SLM microscopy, e.g., according to exemplary embodiments of the present disclosure can address and/or overcome certain limitations of the conventional microscopy systems, such as, e.g. (a) reduction of bulk photo-damage by specific illumination of only regions of interest; (b) true simultaneous targeting of multiple sites within the field of view; and (c) flexibility to create three-dimensional targeting patterns for use in a passive, imaging modality or an active photo-stimulation modality. Additionally, the use of SLM microscopy can accommodate both one-photon and two-photon illumination sources (see, e.g. References 13, 14 and 15)˜the latter of which is necessary for increasing the penetration depth in scattering media and improving axial resolution. (See, e.g. Reference 16).
SLM microscopy can simultaneously illuminate many targets and dynamically alter this targeting arrangement. Because the SLM can act as a field-programmable diffractive optical element, the illumination pattern from the microscope can be adjusted after separate computer algorithms recognize the experimental arrangement of targets. In addition, the SLM can accommodate to reflect the experimental realities present in the sample (e.g., variation in targeting density, aberration correction, temporal sequencing of targets, etc.). Previous work has demonstrated the importance of SLM microscopy to neuroscience where targets can include the dendrites from individual neuron cells (see, e.g. Reference 13) or the soma from large ensembles of neurons (see, e.g. Reference 15). Notably, this application in neuroscience can exploit the full flexibility afforded by the SLM in that it can also be used to deliver targeted light for photo-uncaging neurotransmitters or light-sensitive constructs like opsins to stimulate neuronal activity. (See, e.g. References 14, 13 and 17).
For targeted illumination, prism and lens phase can be applied to provide full three-dimensional control of the points within the object space. To create the SLM pattern illuminating point p̂ j=(x j , y j , z j ) where j is the index for each of N total targets, the phase can be loaded to the SLM in coordinate frame u1 , v1. To account for possible rotations, shifts and other forms of misalignment, a calibration can be included in Eq. 1 where the exact, position-dependent, transformations xc(p̂j ), yc(p̂j ), zc(p̂j ) can relate the coordinates of the SLM to the imaging detector. The axially-dependent phase component can be expanded into Zernike polynomials in order to offset the effects of higher-order spherical aberration (See, e.g. Reference 19).
Exemplary details of this exemplary procedure, including definitions of the Zernike polynomials and their associated coefficients, are provided herein below. Examples of this exemplary phase pattern when this transformation is unitary can be seen in
The exemplary intensity pattern near the focal plane of the objective can be found from,
where F can be the Fourier transform operator.
In particular,
For SLM microscopy to monitor fluorescent activity simultaneously from multiple targets (e.g., as shown in
Exemplary Extended Depth-of-Field Imaging using Engineered Point Spread Functions
An exemplary use of an imaging modality can simultaneously indicate that the sample being observed be planar (see, e.g. References 13 and 14), and thus may not be able to accommodate three-dimensional microscopy without the use of mechanical movement to sequentially scan the volume. (See, e.g. References 6, 7 and 8). Traditionally, this planar imaging condition can be characterized as having a limited DOF,
where only a slice of this thickness through the object space volume can be sampled with high contrast using a conventional lens. Thus, the use of scanning beams with single pixel detectors can have greater freedom because it can collect signals from multiple axial planes. This can still effectuate and/or necessitate a sequential scanning of targets, and thus these conventional systems have not been demonstrated to monitor multiple points simultaneously. (See, e.g. References 9, 10, 11 and 12).
The exemplary system, method and computer-accessible medium can avoid such limitations by relying upon the joint optical-digital design techniques which can selectively enhance/suppress defocus-related performance through engineering of the optical Point Spread Function (“PSF”). (See, e.g., References 20, 21, 22, 23, 24 and 25). For the case of extending the imaging DOF, this opportunity can be gained by sacrificing the tightly-focused, symmetric spot traditionally chosen for high image contrast in favor of a highly aberrated PSF. For example, this aberrated PSF can overwhelm the aberration effects of defocus within some limited axial range. After the exemplary image acquisition with such a PSF, the use of digital image restoration techniques (e.g., deconvolution, see, e.g. exemplary description below) can be included and/or utilized for estimating the original object free of these fixed optical aberrations. With such exemplary systems and/or methods, the peak signal-to-noise ratio (SNR) of the in-focus image can be penalized relative to the classical imaging system, and can result in a smooth performance roll-off with respect to depth. This suppressed sensitivity to defocus thereby can facilitate multiple planes to be imaged simultaneously with similar fidelity. With the exemplary systems and/or methods according to exemplary embodiments of the present disclosure, the out-of-focus regions can be imaged with a higher SNR than conventionally available.
The Cubic-Phase (CP) mask can be selected from the family of suitable engineered PSF designs because it can be a phase-only modulating optical element (e.g., transparent), and can therefore maintain the full NA of the imaging system and can be associated with an optical Modulation-Transfer-Function (MTF) which may not contain zeros. (See, e.g. Reference 23). The result can be that all spatial-frequency content from the object can pass into the image; however, it can experience definite and known attenuation. The exemplary CP mask can be implemented by placing a phase modulation of,
in the pupil plane of the imaging system, where u2, v2 can be the normalized transverse coordinates of the imaging pupil plane and a can be the coefficient determining the trade-off of depth of field extension versus image contrast (See, e.g. References 23 and 26). A simulated example to demonstrate the defocus stability of the CP PSF relative to the conventional PSF is shown in
where λ can be the wavelength for the optical signal, NA can be the numerical aperture of the objective and dz can be the axial dislocation relative to the focal plane and the scalar value max{Ψ(u2, v2;dz)} can be the number of waves of defocus present at the edge of the microscope pupil. An image taken as a function of object defocus is
In particular,
The transverse invariance of the CP PSF can come at the cost of a PSF which can translate as a function of axial position—a known trait of Airy beams. (See, e.g. Reference 27). One of the features of the SLM microscope arrangement according to an exemplary embodiment of the present disclosure can be that contrary to prior bright-field extended DOF techniques, such translation can be fully accounted for with the a prior information available from the SLM target locations.
A joint SLM and extended DOF microscope arrangement is described herein below.
The optical system according to exemplary embodiments of the present disclosure can be provided as separate components/portions, e.g., (a) the illumination/targeting path; and (b) the imaging path. In one exemplary embodiment, both components/portions can share a common microscope objective, although that configuration is not necessary. This exemplary geometry can be advantageous because it can include only add-on units to the conventional microscope, and can satisfy biological in vivo and in vitro biological imaging constraints.
For example, as shown in
A point-scanning modality can be facilitated by, e.g., mounting M3 and M4 on flip mounts to bypass the SLM and using GM1 to scan the sample. In this exemplary configuration, the fluorescence emission may also be collected by the Photo-multiplier tube (PMT) by inserting an optional mirror OM6 in a beam path. The lens L11 can collect the fluorescence emission, and converge it onto the PMT after passing through a chromatic filter (CF2).
As shown in the exemplary embodiment of the system according to the present disclosure that is illustrated in
For example, the imaging path can use the objective OBJ to image the optical signal from the targets in the sample SMP to the intermediate image plane located after the tube lens (L8) towards the camera (DET: Andor iXon Ultra2) using, e.g., a 1:1 imaging relay (L9 and L10, f9=f10=150 mm). The utility of the relay can be to re-image the microscope pupil into an accessible location where it can be manipulated independently from the illumination pupil. The CP phase mask (PM) can be place one focal length behind L9 and one focal length in front of L10 along with a color filter (CF1: Chroma, 510/40 M). A neutral density filter (NDF: Chroma, HQ700SP-2P8 of OD6 @ λ<=600 nm) can be placed in front of the detector to reject scattered and reflected light from the laser source.
Exemplary Design and/or Manufacture of Phase Mask Arrangement
The design of the exemplary CP phase mask for the SLM microscope arrangement, according to an exemplary embodiment of the present disclosure, can include a determination of a suitable coefficient a to match the axial range of the illumination pattern. Because a SLM procedure(s) can be used to generate the defocus targeting range, in practice, it can remain the particular device before the defocus phase leads to aliasing (See, e.g. Reference 28). For example, these exemplary constraints can facilitate a maximum defocus of z1=8.5 mm before aliasing contributes to unwanted signal.
The exemplary CP phase mask can be configured or structured to work with one or both a high NA objective and a low NA objective. An exemplary choice of coefficient α=200 (e.g., in a normalized coordinate system) with a phase mask diameter =18 mm can be determined by, e.g., a simulation of the system and approximately matching the desired performance. The phase mask can be designed to accommodate a large number of objective designs (e.g., Olympus, XLUMPLFL 20×/0.95 WNA, =17.1 mm, XLPLAN N 25×/1.05 WNA, =15.1 mm). For the purposes of reporting values most relevant to the microscope objective used here (Olympus UMPLFLN 10×/0.3 NA, as reported earlier), an equivalent phase mask can be provided with a =10.8 mm and α≈43.
An exemplary 8-level phase mask can be manufactured into a quartz substrate (e.g., Chemglass Life Sciences, CGQ-0600-01) using, e.g., conventional, multi-level lithographic techniques (Swanson). A laser mask writer (Heidelberg μPG 101) with 3 μm feature size can be used to provide each of the three binary chrome masks (Nanofilm, SL.HRC.10M.1518.5K) preferrable to generate 8-level diffractive optics. The first chrome mask can be loaded into a mask-aligner (Suss MicroTec MA6) to transfer the pattern into the photoresist (Shipley 1818 positive resist) spun onto a blank quartz substrate. After developing the photoresist, a dry-etch (Oxford PlasmaLab 80 Plus ICP65) can be used to selectively remove the quartz substrate while leaving the quartz protected under the photoresist safe. The photoresist can then be stripped and uniformly re-applied to the quartz substrate and the process repeated for binary chrome masks 2 and 3.
To quantify the chromaticity of the liquid crystal SLM and the effects of optical mis-alignment in the illumination path, it is possible to estimate the orientation and axis of the pupil plane/SLM relative to the imaging detector.
For example, to optimize SLM procedure operation at λ=760 nm (e.g., to create a look-up table optimized to resolve a 2π phase stroke), calibration of applied voltage versus relative phase delay for the pixels in the SLM can be performed by loading a Ronchi grating and varying the modulation depth. (See, e.g. Reference 30). Thereafter, centering of the SLM pattern to the optical axis can be accomplished by, e.g., scanning a grating across the SLM in orthogonal directions and selecting the locations with peak diffraction intensity into the 1st order. These searches can gradually reduce in transverse scan length until a precise estimate of the optical axis, relative to the SLM, can be made.
For exemplary SLM pupil plane to object space calibration, the axial distance can be calibrated and corrected experimentally (e.g., see Appendix I for details and comparison with theoretical results). Then, the appropriate affine transform matrix (e.g., the characterization of the transverse dimension) can be estimated at varying depths by projected a 2D array of points into object space. As a result of these exemplary calibration procedures, the imaging 3D PSF can be sampled for both the conventional optical imaging system and the extended DOF optical system according to an exemplary embodiment of the present disclosure by, e.g., illuminating a single point into bulk fluorescent material and shifting this point axially using the exemplary SLM as shown in
Indeed,
Exemplary results for the case of three-dimensional targeting and imaging in transparent and scattering media are provided herein below.
The exemplary system capabilities can be seen by illuminating a sample made of an agarose mixture (e.g., 3.5 grams of 1% agarose by weight in double-distilled deionized H2O) with fluorescent dye (e.g., 3.5 grams of double-distilled deionized water loaded with yellow dye from a Sharpie Highlighter pen). A three-dimensional illumination pattern can be projected 620 μm below the cover-slip/agarose interface. The illumination pattern can consist of two large features constructed from an ensemble of point targets. The north-west feature can be the happy-face 405, and the south-east feature can be the unhappy-face 410, of exemplary images generated by a conventional microscope, as shown in
To demonstrate the exemplary three-dimensional capabilities of the exemplary system, method and computer-accessible medium according to an exemplary embodiment of the present disclosure, the south-east feature 410 can be translated axially −500 μm≦z≦+500 μm from the classical focal plane (defined as dz=0) in 4 μm intervals while the north-west feature 405 can be held fixed in the focal plane,
Such exemplary results can indicate that targets within the SLM addressable three-dimensional volume can be imaged to localized regions on the camera, somewhat independently of the axial position. Since the PSF can essentially be axially invariant, the monitored optical signal can be obtained by, e.g., searching for the associated peak in the restored image and summing the counts in a localized region. For example, ignoring constraints imposed by SLM characteristics and light source power, the maximum number of spatially multiplexed targets can then be limited only to the restored image cutoff spatial frequency (e.g., the spot size of the restored target) which itself can be a function of the image noise. The optical signal collected from the spatially multiplexed targets can be taken and/or employed simultaneously, e.g., regardless of three-dimensional location—a distinguishing feature of the exemplary system, method and computer-accessible medium.
A problem frequently encountered in biology can be that the sample can be embedded in highly scattering tissue, where the scattering can reduce the illumination intensity exponentially with depth. Conventional microscopy systems can suffer from a reduced operational range that can be expected for three-dimensional targeting and imaging. The results for three-dimensional targeting and imaging can be seen in
As the target can be located deeper in the scattering medium, the collected fluorescence can decrease rapidly. However, despite the presence of scattering in the imaging path, the deconvolution can result in useable information. For example, the useable depth has increased for shallow axial positions with the extended DOF module, however going deeper the signal can be dominated by scatter and approaches the same relative losses as the conventional microscope.
An exemplary three-dimensional imaging microscope according to an exemplary embodiment of the present disclosure that is described herein can be built upon, e.g., the foundation of two exemplary independent optical techniques. First, e.g., the illumination can be spatially and/or temporally structured using a modulating device (e.g., the Spatial Light Modulator) such that emission from the sample can be limited to known regions in 3D and time prior to detection or sensing. Second, e.g., the optical signal emitted from the illuminated regions can be collected using an optically efficient imaging system, which can produce images of near-equivalent quality regardless of the source emission position in the sample volume (e.g., extended Depth of Field). The three-dimensional illumination can use a solution for efficiently acquiring an optical signal from anywhere within the sample volume. Similarly, the exemplary system, method and computer-accessible medium can use a solution for disambiguating the sources of emission such that signal can be assigned to specific locations within the sample volume. The joint implementation of these complementary techniques can create a much more flexible solution. The prior knowledge provided by the user-controlled illumination device can be beneficial in facilitating a context to the images acquired by the extended Depth of Field microscope. While an exemplary demonstration can include a SLM as the source of the structured illumination, other methods for projecting patterns, such as light-sheet microscopy, can be equally suited for this improvement by, e.g., coupling with the extended Depth of Field microscope.
The exemplary 3D targeting and imaging procedures, methods, arrangements, systems and computer-accessible medium according to certain exemplary embodiments of the present disclosure described herein can indicate that the exemplary methods and/or procedures for working with transparent media can be more reliable than with scattering media. However, it should be emphasized that the scattering example can be worst case—a situation where the fluorescence contrast between the target and background can be, e.g., 1:1. In exemplary applications where targets can be specifically labeled with dyes or the use of genetic encoding, the ratio of fluorescence in the target to that of the background will become much more favorable.
As shown in
As imaging can be pushed further into the media, the size of the imaged spot for each target can grow correspondingly large. Because the deconvolution discussed herein has assumed an axial-independence, this variability can lead to reconstruction errors. It is likely that the axial-dependent spot size using the a priori knowledge of where the target can be located and potentially compensate using an exemplary spatially-variant deconvolution method/procedure. In addition, as the spot size increasingly grows with depth a problem with the spatial overlap of neighboring targets can be anticipated. A direct exemplary solution for this would include temporal multiplexing the target illumination patterns such that the overlap can be minimized. However, this can be a trade-off between the maximum imaging depth and the temporal resolution of the optical signal.
The exemplary system, method, and computer-accessible medium according to the exemplary embodiments of the present disclosure can be used as optical platforms becomes fixed. For example, brain tissue slices can be frequently created with a 300 μm thickness. This can place a limit on the necessary extension of the DOF and therefore an optimum combination of a microscope objective with a phase mask can be designed. For example, according to one exemplary embodiment, the exemplary phase mask design (e.g., cubic-phase mask with α=200 for a =18 mm pupil diameter) can be selected to generally operate with a wide variety of sample and microscope objective combinations. An exemplary optimum combination can provide that the transverse size of the extended DOF PSF may be limited, likely resulting in, e.g., a higher image contrast for the particular DOF. Another exemplary modification can be that of a phase mask for high NA objectives.
Further exemplary alternative phase mask implementations can be provided for extended DOF. Examples can include the super-position of multiple Fresnel zone plates (See, e.g. Reference 21), Bessel-beams (See, e.g. Reference 20), and other families of propagation-invariant beams (See, e.g. Reference 31). It is possible that for specific tasks (e.g., point targeting versus extended object targeting), another exemplary solution can be provided.
In addition, exemplary improvements in image processing techniques can be provided for increasing the fidelity of the restored signal. One example can be with iterative deconvolution techniques where prior information can be applied. For example, the Richardson-Lucy deconvolution algorithm/procedure can be or include a procedure which can enforce and/or facilitate constraints on the signal based upon a priori information preferring the signal to be positive. This a priori information can yield further improvements by including the known illumination patterns (e.g., the target can be a point). In addition, additional modifications for and/or on exemplary deconvolution techniques in the presence of scattering materials can be beneficial to the exemplary devices using engineered PSF optical technology.
According to an exemplary embodiment of the present disclosure, an exemplary system, method and computer-accessible medium can be provide that can be, e.g., free from some or any mechanical motion to create a three-dimensional targeting pattern and three-dimensional images of the optical signal. The exemplary system, method, and computer-accessible medium can utilize independent modulation of the transverse phase of the optical beam on both the illumination and imaging side of the microscope. The exemplary system, method and computer-accessible medium can be amenable to fast imaging, and may not be restricted to illuminating or imaging the sample in a sequential planar pattern. An exemplary microscope can be tested and performance can be verified in both transparent and scattering media. Because it can consist of only “bolt-on” modules to existing microscopes, the exemplary system, method, and computer-accessible medium can be used for in vivo imaging. Therefore the exemplary system, method and computer-accessible medium is unique in providing vibration-free equipment for biological research in a package which does not need a massive redesign of existing microscopes.
The exemplary procedures for calibrating the projection of the phase-encoded SLM onto the sample volume and imaging detector according to exemplary embodiments of the present disclosure are described below. These exemplary procedures can be valuable for accommodating optical misalignment and maintaining stable performance over time.
The axial distances can be calibrated through a procedure where the reflection from a moveable di-electric interface can be actively focused after applying a variable amount of defocus phase to the SLM. The exemplary optical configuration and associated illustrations are shown in
In particular, as an initial matter, a defocus phase can be placed on the SLM which should provide a target at (x,y)=(0,0) in plane z using, for example:
Where the coefficient and Zemake modes are listed in Table 1 and
and associated coeddicients for aberration compensation
indicates data missing or illegible when filed
This expansion of the defocusing aberration into higher-order Zernike polynomials can be included for both three-dimensional imaging as well as imaging in biological tissue with refractive index mismatches (See, e.g. References 19, 32 and 13). Using this exemplary form for defocus aberration, the theoretical curve can be in agreement with the exemplary measurements shown in
A second exemplary calibration can be performed for estimating the transverse position of the targeting pattern relative to its expected position on the imaging detector. Sources of these deviations can be due to SLM rotation relative to the camera, misalignment of optical components along the optical axis as well as the oblique incidence angle of the optical beam to the SLM. In this sense, the calibration step can remove any rotation, shear or other transformation which can be considered affine. For the transverse pattern calibration, a target pattern can be projected (as shown in
For example, using the expected coordinate positions x, y and the experimental positions x′ and y′ for this target pattern the transform can be defined as, for example,
Because optical misalignment can lead to depth-variant aberrations, this transverse coordinate transformation can be defined to be a function of the target depth z. In exemplary embodiments, a minimum of seven axial planes can be used to calibrate the axial dependence of this affine transform matrix, and each coefficient of the matrix can be fit to a curve 905, as shown in
Using both the axial and transverse calibration, the completely calibrated target illumination for the SLM display can be found as, for example:
The exemplary signal restoration utilized for this exemplary technique can include that the deconvolution provide a stable estimation of the original signal. To verify that the extended DOF imaging system can provides such exemplary results, certain exemplary alternative restoration techniques can be used.
As an initial matter, e.g., Wiener deconvolution can be selected as this can a linear, least-squares solution which can provide a non-iterative restoration. The Wiener deconvolution can be defined as, for example:
Where psfEDOF can be the PSF, iEDOF can be the experimental image, SNR can be the spatial frequency SNR and ô(x, y) can be the restored signal. It can be seen from Eq. 9 that this can include a priori information of the PSF and the spatial frequency SNR. In practice, the PSF can either be found experimentally or an ideal, simulated PSF can be used. The SNR can be calculated or otherwise determined empirically or estimated to provide the best or most appropriate restoration.
An alternative exemplary algorithm/procedure can be used, which can utilize the Richardson-Lucy (RL) iterative procedure (MatLab Image Processing Toolbox, The Mathworks, Natick, Mass.), where the i+1 iteration estimate can be found from, for example,
Again, a priori information can be beneficial in the form of the PSF as well as the optimum number of iterations.
To quantify the performance of each exemplary deconvolution algorithm/procedure with respect to each free variable (spatial frequency SNR for Wiener, interation number for RL), a time series of fluorescence from a single, in-focus target was recorded using the extended DOF imaging system. This exemplary image series can be deconvolved using an experimentally measured psfEDOF which was recorded from the same sample. The standard deviation of the percentage change of the signal, can be defined as, for example,
where o can be the mean signal that can be plotted with respect to the relevant free variables, as shown in the exemplary graphs of
For example, the results shown in the top graph of
For the exemplary RL procedure, the signal may not be smoothly restored as the number of iterations increases. For low numbers of iterations, the exemplary solution can be under-corrected until an optimum can be found, and then over-corrections can lead to variable success for restoration.
For example, as shown in the graphs of
The exemplary scattering phantom can include, e.g., 3.5 grams of the fluorescent dye solution (50% by weight), 0.5 grams of whole, pasteurized milk (7% by weight) and 3.0 grams of the 1% agarose mixture (43% by weight). Total losses from the illumination and imaging for both the transparent and the scattering sample can be seen in a the graph of
As shown in
Further, the exemplary processing arrangement 1202 can be provided with or include an input/output arrangement 1214, which can include, e.g., a wired network, a wireless network, the internet, an intranet, a data collection probe, a sensor, etc. As shown in
The foregoing merely illustrates the principles of the disclosure. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements, and procedures which, although not explicitly shown or described herein, embody the principles of the disclosure and can be thus within the spirit and scope of the disclosure. Various different exemplary embodiments can be used together with one another, as well as interchangeably therewith, as should be understood by those having ordinary skill in the art. In addition, certain terms used in the present disclosure, including the specification, drawings and claims thereof, can be used synonymously in certain instances, including, but not limited to, e.g., data and information. It should be understood that, while these words, and/or other words that can be synonymous to one another, can be used synonymously herein, that there can be instances when such words can be intended to not be used synonymously. Further, to the extent that the prior art knowledge has not been explicitly incorporated by reference herein above, it is explicitly incorporated herein in its entirety. All publications referenced are incorporated herein by reference in their entireties.
The following references are hereby incorporated by reference in their entireties:
The present application relates to and claim priority from U.S. patent application Ser. No. 61/756,803 filed on Jan. 25, 2013, and U.S. Patent Application Ser. No. 61/798,747 filed on Mar. 15, 2013, the entire disclosures of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US14/13180 | 1/27/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61756803 | Jan 2013 | US | |
61798747 | Mar 2013 | US |