This invention relates to systems, apparatuses, and methods for treating the interface emulsion or “rag” that accumulates at the oil/water interface inside of separation, dehydration, and desalting vessels.
In many industries, including oil, paper and pulp, textiles, and food processing, various processes produce contaminated water as a by-product. This is especially true in crude oil production and refining because substantially all crude oil is produced from subterranean formations which contain water.
The basic method of separating a mixture of oil and water is by use of gravity. For this purpose, separator vessels are frequently employed at the point where the crude oil first reaches the earth's surface. These separators range from rather unsophisticated holding vessels-which simply provide an enclosed container wherein the oil and water mixture can rest with reduced turbulence, thereby allowing the oil to float to an upper part of the vessel and water to settle to a lower part of the vessel-to more sophisticated vessels that apply desalting and dehydration methods, including the use of electrostatic fields in the oil layer of the vessel (see e.g.
Regardless of the type of vessel used, it is common for oil-coated solids (“mud”) to accumulate in the bottom of the vessel and for a mixture of oil and water (“emulsion” or “rag”) to form at the oil and water interface. The rag layer tends to be a very stable layer that includes, in addition to oil and water, such things as excess chemicals, fine solids, scale, iron sulfides, and other residual particles. If this rag layer is not treated effectively, it can hinder coalescence of water droplets within the vessel and, therefore, compromise the efficiency of the vessel.
Because of the potential for the rag layer to compromise vessel efficiency (and therefore effectiveness), prior art dehydrator and desalter vessels are designed with increased volume to allow for rag layer formation up to a certain maximum height or depth. The accumulated rag layer is then periodically drawn off from the vessel, treated outside the vessel, or in most cases circulated back to the vessel. Shutting down a vessel to withdraw the rag layer disrupts the separation, dehydration, and desalting process, thereby disrupting the crude oil production or refining process, and, in many cases, requires extra vessels to handle production when one or more vessels are shut down.
A preferred embodiment of a system 10 made according to this invention includes a separator vessel 12 which may be of a horizontal or vertical type. For example, a NATCO® DUAL POLARITY® or DUAL FREQUENCY® or PETRECO® BILECTRIC® Electrostatic Treater (Cameron Process Systems, Houston, Tex.) could be used as the vessel 12.
A crude oil stream 22 containing entrained gas, water, and solid contaminants enters vessel 12 through an inlet 14. Vessel 12 holds and treats those components so that the oil might separate from the contaminants. The separated oil is then removed from vessel 12 through an outlet 20.
During the separation process, it is common for oil-coated solids, called mud, to accumulate in a bottom portion of vessel 12 and for a layer comprising a mixture of oil and water, called interface emulsion or rag, to form in an intermediate portion of vessel 12. The water accumulates between the layer of solids and the layer of interface emulsion. The gas contained in the upper portion of vessel 12 enters an outlet 18 and travels along path 24 for further processing, thereby eliminating the need to vent the gas contained in vessel 12. The oil accumulates above the interface emulsion, and the gas, in turn, typically accumulates above the oil in an upper portion of vessel 12.
As shown in
To promote water coalescence in the interface emulsion or rag layer, and therefore control the build-up of that layer, a second electrode grid 40 is located in the rag layer. The electrode grid 40 is in communication with a low voltage transformer and, preferably, power electronics that produce a variable amplitude and variable frequency voltage supply. Dual- or multiple-frequency systems and techniques like that disclosed in U.S. Pat. No. 7,351,320 B2 to Sams, which is hereby incorporated by reference, may be used. In some applications, two or more transformers may be used.
The electrode grid 40 may include a single pair of electrodes or multiple pairs of electrodes. Preferably, the voltage is no greater than 5 kV. The resulting electrostatic field promotes coalescence of the water droplets within the interface emulsion layer, thereby reducing the volume of this layer and increasing the effective residence time within vessel 12 and the performance of vessel 12.
An apparatus was developed to determine electrostatic field effects on rag layer volume reduction. The apparatus was a small-scale flow-through unit consisting of a chamber where voltage and temperature can be applied ranging from 1 to 5 kV, and 80° F. to 300° F., respectively. A rag layer feed sample obtained from a commercial separator was utilized for the analysis.
The experimental analysis was designed to determine the effects of applying the electrode grid in the rag layer at elevated operating temperature and pressure. Treated samples of the rag layer were collected for analysis of separation performance at two operating temperatures. The voltage remained reasonably constant at 1 kV when applied for each temperature. The separation performance was evaluated by centrifugal analysis (ASTM D4007 method) and gravitational separation rate at 5-minute intervals. Samples treated with low voltage are indicated as “Treated” below. “Untreated” samples did not have voltage applied and were utilized as a control. An Untreated rag sample showed no signs of water separation after it was permitted to settle for 30 minutes.
The separation performance for the Treated samples is summarized in the following table:
Analytical results show an appreciable difference between the Treated and Untreated samples. The results of the Untreated sample are indicative of a highly stabilized emulsion. In particular, all of the water in the Untreated sample existed as rag, and no separation of free water occurred when the sample was rested for 30 minutes. After applying voltage, the Treated samples showed separation of free water and solids as well as a reduction in rag volume indicating destabilization. In particular, the Treated samples show increased free water separation in both centrifugal and gravitational analysis. The centrifugal analysis for the Treated samples also indicates an increase in solids release and a reduction in the volume of the rag layer. Increased temperature did not increase separation performance.
While the invention has been described with a certain degree of particularity, many changes could be made in the details of construction and the arrangement of components without departing from the spirit and scope of this disclosure. The invention is not limited to the preferred embodiments described herein. Instead, the invention is limited to the scope of the attached claims, including the full range of equivalency to which each element thereof is entitled.
This application is a continuation of co-pending U.S. patent application Ser. No. 14/674,081 filed Mar. 31, 2015, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2849395 | Wintermute | Aug 1958 | A |
4209374 | Martin | Jun 1980 | A |
4252631 | Hovarongkura et al. | Feb 1981 | A |
4479164 | Siegel | Oct 1984 | A |
5861087 | Manning | Jan 1999 | A |
6348155 | Conway et al. | Feb 2002 | B1 |
7351320 | Sams | Apr 2008 | B2 |
20010017264 | Klippel | Aug 2001 | A1 |
20030217971 | Varadaraj et al. | Nov 2003 | A1 |
20050036924 | Nilsen et al. | Feb 2005 | A1 |
20050040045 | Nilsen et al. | Feb 2005 | A1 |
20080116072 | Liverud et al. | May 2008 | A1 |
20090159426 | Chen | Jun 2009 | A1 |
20090159534 | Bjorklund et al. | Jun 2009 | A1 |
20090255816 | Tryti et al. | Oct 2009 | A1 |
20130126357 | Sams et al. | May 2013 | A1 |
Entry |
---|
European Patent Office Communication dated Jul. 17, 2018, issued in corresponding European Patent Application No. 16 716 954.9-1101. |
SPE 10221 In-Field Emulsion Treatability Test With the Electrostatic Susceptability Tester; Joseph Lee and Ted Frankiewicz, Copyright 2006, Society of Petroleum Engineers. |
Number | Date | Country | |
---|---|---|---|
20190112206 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14674081 | Mar 2015 | US |
Child | 16164349 | US |