Systems and method for anti-skimming RFID topologies

Information

  • Patent Grant
  • 12197984
  • Patent Number
    12,197,984
  • Date Filed
    Wednesday, September 5, 2018
    6 years ago
  • Date Issued
    Tuesday, January 14, 2025
    a month ago
  • Inventors
  • Examiners
    • Smithers; Matthew
    Agents
    • Morris Law Group
    • Morris; Robert W
Abstract
A card, such as a payment card, or other device may include an electronics package. The electronics package may include an RFID antenna. The RFID may not be utilized to access data on the card, or other device, until the appropriate manual input is received into the card or other device. Such manual input may take the form of a manual press of a physical button or the manual activation of a virtual button on a touch-screen device (e.g., a touch-screen mobile phone or card).
Description
BACKGROUND OF THE INVENTION

This invention relates to magnetic cards and devices and associated payment systems.


SUMMARY OF THE INVENTION

A card may include a dynamic magnetic communications device. Such a dynamic magnetic communications device may take the form of a magnetic encoder or a magnetic emulator. A magnetic encoder may change the information located on a magnetic medium such that a magnetic stripe reader may read changed magnetic information from the magnetic medium. A magnetic emulator may generate electromagnetic fields that directly communicate data to a magnetic stripe reader. Such a magnetic emulator may communicate data serially to a read-head of the magnetic stripe reader.


All, or substantially all, of the front as well as the back of a card may be a display (e.g., bi-stable, non bi-stable, LCD, or electrochromic display). Electrodes of a display may be coupled to one or more capacitive touch sensors such that a display may be provided as a touch-screen display. Any type of touch-screen display may be utilized. Such touch-screen displays may be operable of determining multiple points of touch. A barcode, for example, may be displayed across all, or substantially all, of a surface of a card. In doing so, computer vision equipment such as barcode readers may be less susceptible to errors in reading a displayed barcode.


A card may include a number of output devices to output dynamic information. For example, a card may include one or more RFIDs or IC chips to communicate to one or more RFID readers or IC chip readers, respectively. A card may include devices to receive information. For example, an RFID and IC chip may both receive information and communicate information to an RFID and IC chip reader, respectively. A card may include a central processor that communicates data through one or more output devices simultaneously (e.g., an RFID, IC chip, and a dynamic magnetic stripe communications device). The central processor may receive information from one or more input devices simultaneously (e.g., an RFID, IC chip, and dynamic magnetic stripe devices). A processor may be coupled to surface contacts such that the processor may perform the processing capabilities of, for example, an EMV chip. The processor may be laminated over and not exposed such that such a processor is not exposed on the surface of the card.


A card may be provided with a button in which the activation of the button causes a code to be communicated through a dynamic magnetic stripe communications device (e.g., the subsequent time a read-head detector on the card detects a read-head). The code may be indicative of, for example, a payment option. The code may be received by the card via manual input (e.g., onto buttons of the card).


A magnetic emulator may include a coil. Inside the coil, one or more strips of a material (e.g., a magnetic or non-magnetic material) may be provided. Outside of the coil, one or more strips of a material (e.g., a magnetic or non-magnetic material) may be provided.


A card may be formed by providing an electronic assembly between two layers of transparent polymer, injecting a liquid laminate between those two layers, and then hardening the liquid laminate. The liquid laminate may also be, for example, transparent. The liquid laminate may be hardened via, for example, a chemical, temperature, optical (e.g., UV or low-band blue light), or any other method.


An RFID antenna may be provided in a card, or other device. A mechanical button may be provided and may be mechanically coupled to a mechanical anti-skimming device. Such a mechanical anti-skimming device may mechanically move when the mechanical button is distorted. The movement of the mechanical anti-skimming device may cause, for example, the RFID antenna to either be operable to communicate data or not be operable to communicate data. Accordingly, a user may press the mechanical button to, for example, enable or disable an RFID. In doing so, a thief may not be able to communicate with the RFID while the user has the RFID antenna disabled for communication.


A mechanical anti-skimming device may be, for example, a piece of conductive material. The mechanical anti-skimming device may be moved mechanically, for example by the way of a mechanical button, into the proximity of an RFID antenna such that the anti-skimming device interferes with the operation of the RFID antenna to communicate data. In doing so, a card may be provided with a button, RFID antenna, and anti-skimming RFID device without the need of a battery. In this manner, a non-battery powered RFID card may be provided with anti-skimming technology obtained by the press of a button.


A battery powered card may include, for example, a mechanical anti-skimming device. The battery powered card may, for example, activate a light source (e.g., an LED) when the mechanical button is in a position indicative of the RFID antenna being operable to communicate data. As a result, for example, a user may receive a visual indication that the card is ready to be utilized for RFID communications.


Multiple sets of RFID data may be stored in a memory. Each set of RFID data may correlate, for example, to different accounts or options on a card. A user may select these different accounts or options by, for example, providing different manual input into the card (e.g., pressing different buttons). When a button is pressed, for example, the selected RFID data may be copied into a different memory. An RFID antenna may be provided to only read, for example, data from that different memory. Accordingly, for example, until the data is copied, that data may not be able to be communicated by an RFID antenna. Similarly, the different memory may be erased (e.g., after a period of time after a button is pressed or an RFID antenna is utilized to communicate data).





BRIEF DESCRIPTION OF THE DRAWINGS

The principles and advantages of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same structural elements throughout, and in which:



FIG. 1 is an illustration of cards constructed in accordance with the principles of the present invention;



FIG. 2 is an illustration of an electronics package constructed in accordance with the principles of the present invention;



FIG. 3 is an illustration of an electronics package constructed in accordance with the principles of the present invention;



FIG. 4 is an illustration of an electronics package constructed in accordance with the principles of the present invention;



FIG. 5 is a flow chart of processes constructed in accordance with the principles of the present invention;



FIG. 6 is an illustration of a card constructed in accordance with the principles of the present invention; and



FIG. 7 is an illustration of a mobile device constructed in accordance with the principles of the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows card 100 that may include, for example, a dynamic number that may be entirely, or partially, displayed using a display (e.g., display 106). A dynamic number may include a permanent portion such as, for example, permanent portion 104 and a dynamic portion such as, for example, dynamic portion 106. Card may 100 include a dynamic number having permanent portion 104 and permanent portion 104 may be incorporated on card 100 so as to be visible to an observer of card 100. For example, labeling techniques, such as printing, embossing, laser etching, etc., may be utilized to visibly implement permanent portion 104.


Card 100 may include a second dynamic number that may also be entirely, or partially, displayed via a second display (e.g., display 108). Display 108 may be utilized, for example, to display a dynamic code such as a dynamic security code. Card 100 may also include third display 122 that may be used to display graphical information, such as logos and barcodes. Third display 122 may also be utilized to display multiple rows and/or columns of textual and/or graphical information.


Persons skilled in the art will appreciate that any one or more of displays 106, 108, and/or 122 may be implemented as a bi-stable display. For example, information provided on displays 106, 108, and/or 122 may be stable in at least two different states (e.g., a powered-on state and a powered-off state). Any one or more of displays 106, 108, and/or 122 may be implemented as a non-bi-stable display. For example, the display is stable in response to operational power that is applied to the non-bi-stable display. Other display types, such as LCD or electro-chromic, may be provided as well.


Other permanent information, such as permanent information 120, may be included within card 100, which may include user specific information, such as the cardholder's name or username. Permanent information 120 may, for example, include information that is specific to card 100 (e.g., a card issue date and/or a card expiration date). Information 120 may represent, for example, information that includes information that is both specific to the cardholder, as well as information that is specific to card 100.


Card 100 may accept user input data via any one or more data input devices, such as buttons 110-118. Buttons 110-118 may be included to accept data entry through mechanical distortion, contact, or proximity. Buttons 110-118 may be responsive to, for example, induced changes and/or deviations in light intensity, pressure magnitude, or electric and/or magnetic field strength. Such information exchange may be determined and processed by card 100 as data input.


RFID and anti-skimming device 149 may be provided in card 100. An RFID antenna may be provided. An anti-skimming device may be provided that disables and enables the RFID antenna from communicating data. Such a disablement and enablement may be, for example, mechanical in nature. For example, as a button is distorted, an anti-skimming device may be mechanically moved about an RFID antenna. Electronic topologies may be utilized to enable and disable data from being communicated from an RFID antenna. For example, data may be moved from one memory to another memory. An RFID antenna may be coupled to one of these memories such that, for example, the RFID antenna cannot communicate data when no data is provided in the memory accessible by the RFID antenna. A chip may be provided to enable access to the memory by the RFID antenna. Data may be erased after a period of time and may be copied into the memory upon a particular button press. Accordingly, a user may enable data from being communicated from the RFID upon, for example, a particular button press.


Card 100 may be implemented using architecture 150, which may include one or more processors 154. One or more processors 154 may be configured to utilize external memory 152, internal memory, or a combination of external memory 152 and internal memory for dynamically storing information, such as executable machine language, related dynamic machine data, and user input data values.


One or more of the components shown in architecture 150 may be configured to transmit information to processor 154 and/or may be configured to receive information as transmitted by processor 154. For example, one or more displays 156 may be coupled to receive data from processor 154. The data received from processor 154 may include, for example, at least a portion of dynamic numbers and/or dynamic codes. The data to be displayed on the display may be displayed on one or more displays 156.


One or more displays 156 may, for example, be touch sensitive and/or proximity sensitive. For example, objects such as fingers, pointing devices, etc., may be brought into contact with displays 156, or in proximity to displays 156. Detection of object proximity or object contact with displays 156 may be effective to perform any type of function (e.g., provide particular data to processor 154). Displays 156 may have multiple locations that are able to be determined as being touched, or determined as being in proximity to an object.


Persons skilled in the art will appreciate that a card (e.g., card 100 of FIG. 1) may, for example, be a self-contained device that derives its own operational power from one or more batteries 158. Furthermore, one or more batteries 158 may be included, for example, to provide operational power to a card (e.g., card 100 of FIG. 1) for a number of years (e.g., approximately 2 years). One or more batteries 158 may be included, for example, as rechargeable batteries.


Input and/or output devices may be implemented within architecture 150. For example, integrated circuit (IC) chip 160 (e.g., an EMV chip) may be included on card 100, that can communicate information with a chip reader (e.g., an EMV chip reader). Radio frequency identification (RFID) module 162 may be included within card 100 to enable the exchange of information between an RFID reader and card 100.


Other input and/or output devices 168 may be included within architecture 150, for example, to provide any number of input and/or output capabilities on card 100. For example, other input and/or output devices 168 may include an audio device capable of receiving and/or transmitting audible information.


Other input and/or output devices 168 may include a device that exchanges analog and/or digital data using a visible data carrier. Other input and/or output devices 168 may include a device, for example, that is sensitive to a non-visible data carrier, such as an infrared data carrier or electromagnetic data carrier.


Dynamic magnetic stripe communications device 102 may be included on card 100 to communicate information to, for example, a read-head of a magnetic stripe reader via, for example, electromagnetic signals. For example, electromagnetic field generators 170-174 may be included to communicate one or more tracks of electromagnetic data to read-heads of a magnetic stripe reader. Electromagnetic field generators 170-174 may include, for example, a series of electromagnetic elements, where each electromagnetic element may be implemented as a coil wrapped around one or more materials (e.g., a magnetic material and/or a non-magnetic material). Additional materials may be placed outside the coil (e.g., a magnetic material and/or a non-magnetic material).


Electrical excitation by processor 154 of one or more coils of one or more electromagnetic elements via, for example, driving circuitry 164 may be effective to generate electromagnetic fields from one or more electromagnetic elements. One or more electromagnetic field generators 170-174 may be utilized to communicate electromagnetic information to, for example, one or more read-heads of a magnetic stripe reader.


Timing aspects of information exchange between a card (e.g., card 100 of FIG. 1) and the various I/O devices implemented on a card (e.g., card 100 of FIG. 1) may be determined by a card (e.g., card 100 of FIG. 1). One or more detectors 166 may be utilized, for example, to sense the proximity, mechanical distortion, or actual contact, of an external device, which in turn, may trigger the initiation of a communication sequence. The sensed presence or touch of the external device may then be communicated to a controller (e.g., processor 154), which in turn may direct the exchange of information between a card (e.g., card 100 of FIG. 1) and the external device. The sensed presence, mechanical distortion, or touch of the external device may be effective to, for example, determine the type of device or object detected.


For example, the detection may include the detection of, for example, a read-head housing of a magnetic stripe reader. In response, processor 154 may activate one or more electromagnetic field generators 170-174 to initiate a communications sequence with, for example, one or more read-heads of a magnetic stripe reader. The timing relationships associated with communications to one or more electromagnetic field generators 170-174 and one or more read-heads of a magnetic stripe reader may be provided through use of the detection of the magnetic stripe reader.


Persons skilled in the art will appreciate that processor 154 may provide user-specific and/or card-specific information through utilization of any one or more of buttons (e.g., buttons 110-118 of FIG. 1), RFID 162, IC chip 160, electromagnetic field generators 170-174, and other input and/or output devices 168.


An anti-skimming RFID electronics package may be provided, for example, as device 162. Such an RFID electronics package may include, for example, an RFID antenna, an RFID antenna controller chip with memory, and/or an anti-skimming RFID device.



FIG. 2 shows electronic assembly 200 that may include, for example, button 201, anti-skimming device 202, RFID antenna 203, and chip 204. Chip 204 may include, for example, an embedded memory. Button 201 may be mechanically pressed which may, in turn, move anti-skimming device 202 into a position that may cause RFID antenna 203 to have difficulty communicating data stored on chip 204. Alternatively, for example, button 201 may be mechanically pressed which may, in turn, move anti-skimming device into a position that may not cause RFID antenna 203 to have difficulty communicating data stored on chip 204. In this manner, for example, RFID antenna 203 may not be operable to communicate data until, for example, button 201 is pressed.


Button configuration 210 may be provided in which button dome 211 may be provided on board 212. Anti-skimming device 213 may be coupled to board 212 and dome 211. RFID 214 may be provided away from anti-skimming device 213 such that RFID 214 may communicate data while dome 211 is not depressed. Configuration 220 may include, for example, a depressed dome 221 that may include anti-skimming device 222 that may be moved into a position that interferes with the communication of an RFID antenna. Anti-skimming device 222 may include, for example, a piece of conductive material such as a metal. An RFID antenna may be exposed such that the RFID antenna directly couples to, and shorts, when in contact with anti-skimming device 222. A dome may be provided about anti-skimming device 222 such that anti-skimming device 222 may more easily move in a laminated environment (e.g., a laminated card). A button may be configured such that pressing the button locks it into a depressed position and pressing the button again locks it into an undepressed position. An anti-skimming device may be constructed such that a depressed button allows an RFID to communicate information and a non depressed button does not allow an RFID to communicate information. Particularly, latches may be provided within a button that may mechanically distort under pressure to lock and unlock with an oppositely configured latch. Assembly 200 may, for example, not be coupled to a battery and, as such, may be utilized in a non-battery powered card.



FIG. 3 shows electronic assembly 300 that may include, for example, light source 301, button 303, RFID antenna 304, anti-skimming device 306, chip 305, and battery 302. Electronic assembly 300 may be laminated into a card. LED 301 may turn ON when anti-skimming device 306 is provided in a position that allows antenna 304 to communicate data. LED 301 may be coupled to, for example, chip 305.


Persons skilled in the art will appreciate that light source 301 may be provided without battery 302. Light source 301 may be instead, for example, coupled to an inductive source of electrical energy. Such an inductive source of electrical energy may be powered, for example, by an RF source. Circuitry may be provided, for example, to power LED 301 from an RF source. LED 301 may be configured to turn ON if in the presence of an RF field so long as anti-skimming device 306 is in a position that allows antenna 304 to communicate data. Additional light sources may be provided, for example, to turn ON (e.g., via an RF source or a battery) to indicate to the user whether the anti-skimming device 306 is in a position where RFID 304 is not operable to communicate data (e.g., either in the presence of an RF field or in the presence of receiving energy from a battery).



FIG. 4 shows electronics package 400 that may include, for example, light source 401, button 402, processor 403, battery 404, chip 406, and antenna 405. Persons skilled in the art will appreciate that processor 403 may be programmed with sets of RFID data and may load a desired RFID data into chip 406 when button 402 is pressed. This data may be erased, for example, after data is communicated from an antenna 405 (e.g., after an RF field is detected as being present and then detected as being removed). The data may be erased, for example, after a period of time after a button was pressed that caused data to be loaded into memory on chip 406.


Configuration 480 may be provided with card 481. An electronics package (e.g., electronics package 400 or electronics package 300 of FIG. 3) may be provided in configuration 480. A single button 483 may be provided with a single source of light 482 (e.g., an LED). Such a button and/or source of light may be provided to the right or left of an account number. Additional sources of light and/or buttons may be included in configuration 480.


Configuration 490 may be provided with card 491. An electronics package may be provided in configuration 490. A single button 493 may be provided with a single source of light 492. Such a button and/or source of light may be provided in the proximity of a corner of card 491 (or not in the proximity of a corner of a card as in configuration 480). Additional sources of light and/or buttons may be included in configuration 490.



FIG. 5 shows process flow charts 510, 520, 530, and 540. Process flow chart 510 may be included, in which application code may be loaded into a card in step 511. A card may be laminated in step 512. The card may be programmed with RFID data in step 513. The RFID data may be allowed to be accessed at a manual input in step 514.


Process flow chart 520 may be included, in which multiple sets of RFID data may be programmed in step 521. Step 522 may be provided in which, for example, manual input may be received and selected RFID data may be loaded to memory in an RFID chip (or in another memory device or location). RFID data may be accessed in step 523. The RFID data in the RFID chip memory may be erased, for example, in step 524. This many occur, for example, after a period of time from when the button was first pressed to allow for data to be communicated from the RFID antenna.


Process flow chart 530 may be provided in which a button may be pressed in step 531. RFID data may be moved to memory for access in step 532. RFID data may be moved, for example, as a result of a button being pressed. Data may be accessed in step 533. Data may be accessed, for example, via an RFID reader. Data may be erased in step 534. Data may be erased, for example, after a button (e.g., the button that was pressed in step 531) is pressed or, for example, after data has been accessed.


Process flow chart 540 may be provided and may include, for example, step 541 which may determine, for example, that RFID is to be communicated. Such a determination may occur, for example, upon one or more button presses (e.g., a user enters a pre-determined code into a card or other device). RFID data may then be moved, for example, to a memory (e.g., memory of an chip associated with an RFID antenna such as an ASIC for driving an RFID antenna). Data may be accessed, for example, for a period of time in step 543. Such a period of time may, for example, be less than a minute, more than a minute, less than ten minutes. For example, such a period of time may be between 5 and 10 minutes. RFID data may be erased after such a period of time. If data is accessed, for example, data may be available for continued access for an additional period of time (e.g., between 10 seconds and 1 minute such as for approximately 20 seconds). This continued time period may repeat each time data is accessed. Data may be erased after this continued period of time without data being accessed. Persons skilled in the art will appreciate that one or more sources of light may be utilized to indicate to a user that data is available to be accessed. Such a source of light (e.g., an LED) may continuously emit light for an initial portion of a period of time (e.g., for approximately the first 30 to 90 seconds) and then may periodically emit light for a subsequent portion of period of time (e.g., for approximately 30 seconds to 8 minutes and 30 seconds). In doing so, for example, power may be conserved. More than one button may be included. A particular button may be associated with different RFID data. In this manner, a user may make different selections and different data may be communicated to an RFID reader. A card or other device (e.g., a mobile telephonic phone) may be utilized to communicate RFID data.



FIG. 6 shows card 600 that may include, for example, an RFID antenna, RFID chip, and/or RFID anti-an skimming device. Batteries, buttons, exposed communication chips for chip readers, card-programmable magnetic stripes, microprocessors, and other electrical and mechanical components may be included in card 600. Card 600 may include, for example, printed name 640, account number 610, and account number 620. Button 611 may be pressed for an RFID to communicate RFID data associated with account 610. Button 621 may be pressed to communicate RFID data associated with account 620. Button 631 may be pressed with a particular account to communicate data for the selected account that corresponds to selected button 631. Button 641 may be pressed with a particular account to communicate data for the selected account that corresponds to selected button 641.



FIG. 7 shows mobile device 700 that may be, for example, a mobile telephonic device. Device 700 may include, for example, an RFID antenna, RFID chip, and/or RFID anti-an skimming device. Batteries, buttons, exposed communication chips for chip readers, pop-out extensions with card-programmable magnetic stripes, microprocessors, and other electrical and mechanical components may be included in device 700. Device 700 may display, for example, a virtual card, or other graphical user interface, with name 740, account number 710, and account number 720. Button 711 may be pressed for an RFID to communicate RFID data associated with account 710. Button 711, as well as button 721, may be, for example, a virtual button pressed via a capacitive sensor able to discern a user's touch on a display screen. Device 700 may include housing 702 having display 701 and buttons 742. Buttons 742 may be, for example, a mechanical button. Button 721 may be pressed to communicate RFID data associated with account 720. Button 731 may be pressed with a particular account to communicate data for the selected account that corresponds to selected button 731. Button 741 may be pressed with a particular account to communicate data for the selected account that corresponds to selected button 741.


Device 700 may display, for example, configuration 750 having graphical user interface 751. Graphical user interface may provide a user with option 752, option 753, and/or option 754. Option 752 may be utilized, for example, for a user to change his/her period of time that RFID data may be accessed after a determination is made to allow data access (e.g., after a button is pressed). Option 753 may be utilized to change an unlocking code should a device be configured to accept an unlocking code (e.g., a personal identification number) so RFID data can be accessed via an RFID antenna. Option 754 may be utilized to disable an RFID antenna so that the RFID antenna may not be utilized until the RFID is enabled by a user (e.g., via 754). In doing so, applications running on device 700 may, for example, not be able to access RFID data via an RFID antenna on the device even if the applications are configured to access an RFID to communicate with an external device (e.g., an external phone or device reader) as a result, for example, of a user turning the RFID OFF. Persons skilled in the art will appreciate that RFID communications may include, for example, near field communications (NFC).


Persons skilled in the art will also appreciate that the present invention is not limited to only the embodiments described. Instead, the present invention more generally involves dynamic information. Persons skilled in the art will also appreciate that the apparatus of the present invention may be implemented in ways other than those described herein. All such modifications are within the scope of the present invention, which is limited only by the claims that follow.

Claims
  • 1. An apparatus, comprising: a radio frequency identification (RFID) antenna;a mechanical button; anda device operable to interrupt the ability of the RFID antenna to communicate information when the button is mechanically distorted,wherein at least a portion of the device is outside the mechanical button,the mechanical button is operable to move the device, anda distance between the device and the RFID antenna is based on an amount of mechanical distortion of the mechanical button.
  • 2. The apparatus of claim 1, further comprising a battery.
  • 3. The apparatus of claim 1, further comprising a display.
  • 4. The apparatus of claim 1, further comprising a dynamic magnetic stripe communications device.
  • 5. The apparatus of claim 1, further comprising an exposed integrated circuit (IC) chip.
  • 6. The apparatus of claim 1, further comprising a source of light.
  • 7. The apparatus of claim 1, further comprising a second button.
  • 8. An apparatus comprising: a radio frequency identification (RFID) antenna;a mechanical button; anda device operable to interrupt the ability of the RFID antenna to communicate information when the button is not mechanically distorted,wherein at least a portion of the device is outside the mechanical button,the mechanical button is operable to move the device, anda distance between the device and the RFID antenna is based on an amount of mechanical distortion of the mechanical button.
  • 9. The apparatus of claim 8, further comprising a battery.
  • 10. The apparatus of claim 8, further comprising a display.
  • 11. The apparatus of claim 8, further comprising a dynamic magnetic stripe communications device.
  • 12. The apparatus of claim 8, further comprising an exposed integrated circuit (IC) chip.
  • 13. The apparatus of claim 8, further comprising a source of light.
  • 14. The apparatus of claim 8, further comprising a second button.
  • 15. The apparatus of claim 1, further comprising: a board,wherein the device is connected to the board.
  • 16. The apparatus of claim 8, further comprising: a board,wherein the device is connected to the board.
  • 17. An apparatus comprising: a radio frequency identification (RFID) antenna;a mechanical button; anda device operable to interrupt the ability of the RFID antenna to communicate information based on distortion of the button, at least a portion of the device being outside the mechanical button.
  • 18. An apparatus comprising: a radio frequency identification (RFID) antenna; a board;a mechanical button; anda device operable to interrupt the ability of the RFID antenna to communicate information based on distortion of the button, the device connected to the board at a connection, wherein the connection is at a distance from the button.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 13/361,483, titled “SYSTEMS AND METHODS FOR ANTI-SKIMMING RFID TOPOLOGIES,” filed Jan. 30, 2012, which claims the benefit of U.S. Provisional Patent Application No. 61/437,813, titled “SYSTEMS AND METHODS FOR ANTI-SKIMMING RFID TOPOLOGIES,” filed Jan. 31, 2011, each of which is hereby incorporated by reference herein in their entirety.

US Referenced Citations (487)
Number Name Date Kind
4353064 Stamm Oct 1982 A
4394654 Hofmann-Cerfontaine Jul 1983 A
4614861 Pavlov et al. Sep 1986 A
4667087 Quintana May 1987 A
4701601 Francini et al. Oct 1987 A
4720860 Weiss Jan 1988 A
4786791 Hodama Nov 1988 A
4791283 Burkhardt Dec 1988 A
4797542 Hara Jan 1989 A
5038251 Sugiyama et al. Aug 1991 A
5168520 Weiss Dec 1992 A
5237614 Weiss Aug 1993 A
5276311 Hennige Jan 1994 A
5347580 Molva et al. Sep 1994 A
5361062 Weiss et al. Nov 1994 A
5412199 Finkelstein et al. May 1995 A
5434398 Goldberg Jul 1995 A
5434405 Finkelstein et al. Jul 1995 A
5478994 Rahman Dec 1995 A
5479512 Weiss Dec 1995 A
5484997 Haynes Jan 1996 A
5485519 Weiss Jan 1996 A
5585787 Wallerstein Dec 1996 A
5591949 Bernstein Jan 1997 A
5608203 Finkelstein et al. Mar 1997 A
5623552 Lane Apr 1997 A
5657388 Weiss Aug 1997 A
5834747 Cooper Nov 1998 A
5834756 Gutman et al. Nov 1998 A
5856661 Finkelstein et al. Jan 1999 A
5864623 Messina et al. Jan 1999 A
5907142 Kelsey May 1999 A
5913203 Wong et al. Jun 1999 A
5937394 Wong et al. Aug 1999 A
5955021 Tiffany, III Sep 1999 A
5956699 Wong et al. Sep 1999 A
6025054 Tiffany, III Feb 2000 A
6045043 Bashan et al. Apr 2000 A
6076163 Hoffstein et al. Jun 2000 A
6085320 Kaliski Jul 2000 A
6095416 Grant et al. Aug 2000 A
6130621 Weiss Oct 2000 A
6145079 Mitty et al. Nov 2000 A
6157920 Jakobsson et al. Dec 2000 A
6161181 Haynes, III et al. Dec 2000 A
6176430 Finkelstein et al. Jan 2001 B1
6182894 Hackett et al. Feb 2001 B1
6189098 Kaliski Feb 2001 B1
6199052 Mitty et al. Mar 2001 B1
6206293 Gutman et al. Mar 2001 B1
6240184 Huynh et al. May 2001 B1
6241153 Tiffany, III Jun 2001 B1
6256873 Tiffany, III Jul 2001 B1
6269163 Rivest et al. Jul 2001 B1
6286022 Kaliski et al. Sep 2001 B1
6308890 Cooper Oct 2001 B1
6313724 Osterweil Nov 2001 B1
6389442 Yin et al. May 2002 B1
6393447 Jakobsson et al. May 2002 B1
6411715 Liskov et al. Jun 2002 B1
6446052 Juels Sep 2002 B1
6460141 Olden Oct 2002 B1
6592044 Wong et al. Jul 2003 B1
6607127 Wong Aug 2003 B2
6609654 Anderson et al. Aug 2003 B1
6631849 Blossom Oct 2003 B2
6655585 Shinn Dec 2003 B2
6681988 Stack et al. Jan 2004 B2
6705520 Pitroda et al. Mar 2004 B1
6755341 Wong et al. Jun 2004 B1
6764005 Cooper Jul 2004 B2
6769618 Finkelstein Aug 2004 B1
6805288 Routhenstein et al. Oct 2004 B2
6811082 Wong Nov 2004 B2
6813354 Jakobsson et al. Nov 2004 B1
6817532 Finkelstein Nov 2004 B2
6873974 Schutzer Mar 2005 B1
6902116 Finkelstein Jun 2005 B2
6970070 Juels et al. Nov 2005 B2
6980969 Tuchler et al. Dec 2005 B1
6985583 Brainard et al. Jan 2006 B1
6991155 Burchette, Jr. Jan 2006 B2
7013030 Wong et al. Mar 2006 B2
7035443 Wong Apr 2006 B2
7039223 Wong May 2006 B2
7044394 Brown May 2006 B2
7051929 Li May 2006 B2
7083094 Cooper Aug 2006 B2
7100049 Gasparini et al. Aug 2006 B2
7100821 Rasti Sep 2006 B2
7111172 Duane et al. Sep 2006 B1
7114652 Moullette et al. Oct 2006 B2
7136514 Wong Nov 2006 B1
7140550 Ramachandran Nov 2006 B2
7163153 Blossom Jan 2007 B2
7195154 Routhenstein Mar 2007 B2
7197639 Juels et al. Mar 2007 B1
7219368 Juels et al. May 2007 B2
7225537 Reed Jun 2007 B2
7225994 Finkelstein Jun 2007 B2
7246752 Brown Jul 2007 B2
7298243 Juels et al. Nov 2007 B2
7334732 Cooper Feb 2008 B2
7337326 Palmer Feb 2008 B2
7346775 Gasparini et al. Mar 2008 B2
7356696 Jakobsson et al. Apr 2008 B1
7357319 Lin et al. Apr 2008 B1
7359507 Kaliski Apr 2008 B2
7360688 Harris Apr 2008 B1
7363494 Brainard et al. Apr 2008 B2
7380710 Brown Jun 2008 B2
7398253 Pinnell Jul 2008 B1
7404087 Teunen Jul 2008 B2
7424570 D'Albore et al. Sep 2008 B2
7427033 Roskind Sep 2008 B1
7432816 Ku et al. Oct 2008 B1
7454349 Teunen et al. Nov 2008 B2
7461250 Duane et al. Dec 2008 B1
7461399 Juels et al. Dec 2008 B2
7472093 Juels Dec 2008 B2
7472829 Brown Jan 2009 B2
7494055 Fernandes et al. Feb 2009 B2
7502467 Brainard et al. Mar 2009 B2
7502933 Jakobsson et al. Mar 2009 B2
7503485 Routhenstein Mar 2009 B1
7516492 Nisbet et al. Apr 2009 B1
7523301 Nisbet et al. Apr 2009 B2
7530495 Cooper May 2009 B2
7532104 Juels May 2009 B2
7543739 Brown et al. Jun 2009 B2
7559464 Routhenstein Jul 2009 B2
7562221 Nystrom et al. Jul 2009 B2
7562222 Gasparini et al. Jul 2009 B2
7580898 Brown et al. Aug 2009 B2
7584153 Brown et al. Sep 2009 B2
7591426 Osterweil et al. Sep 2009 B2
7591427 Osterweil Sep 2009 B2
7602904 Juels et al. Oct 2009 B2
7631804 Brown Dec 2009 B2
7639537 Sepe et al. Dec 2009 B2
7641124 Brown et al. Jan 2010 B2
7660902 Graham et al. Feb 2010 B2
7784687 Mullen et al. Aug 2010 B2
7793851 Mullen Sep 2010 B2
7828207 Cooper Nov 2010 B2
7828220 Mullen Nov 2010 B2
7931195 Mullen Apr 2011 B2
7954705 Mullen Jun 2011 B2
D643063 Mullen et al. Aug 2011 S
8011577 Mullen et al. Sep 2011 B2
8020775 Mullen et al. Sep 2011 B2
8066191 Cloutier et al. Nov 2011 B1
D651237 Mullen et al. Dec 2011 S
D651238 Mullen et al. Dec 2011 S
8074877 Mullen et al. Dec 2011 B2
D651644 Mullen et al. Jan 2012 S
D652075 Mullen et al. Jan 2012 S
D652076 Mullen et al. Jan 2012 S
D652448 Mullen et al. Jan 2012 S
D652449 Mullen et al. Jan 2012 S
D652450 Mullen et al. Jan 2012 S
D652867 Mullen et al. Jan 2012 S
D653288 Mullen et al. Jan 2012 S
8172148 Cloutier et al. May 2012 B1
D665022 Mullen et al. Aug 2012 S
D665447 Mullen et al. Aug 2012 S
D666241 Mullen et al. Aug 2012 S
8253568 Choi Aug 2012 B2
8253569 Choi Aug 2012 B2
8282007 Cloutier et al. Oct 2012 B1
8286876 Mullen et al. Oct 2012 B2
D670759 Mullen et al. Nov 2012 S
8302872 Mullen Nov 2012 B2
D672389 Mullen et al. Dec 2012 S
8322623 Mullen et al. Dec 2012 B1
8322624 Finn Dec 2012 B2
D674013 Mullen et al. Jan 2013 S
8348172 Cloutier et al. Jan 2013 B1
8382000 Mullen et al. Feb 2013 B2
8390456 Puleston et al. Mar 2013 B2
8393545 Mullen et al. Mar 2013 B1
8393546 Yen et al. Mar 2013 B1
8413892 Mullen et al. Apr 2013 B2
8424773 Mullen et al. Apr 2013 B2
8459548 Mullen et al. Jun 2013 B2
D687094 Mullen et al. Jul 2013 S
8485437 Mullen et al. Jul 2013 B2
8511574 Yen et al. Aug 2013 B1
8517276 Mullen et al. Aug 2013 B2
8523059 Mullen et al. Sep 2013 B1
8561894 Mullen et al. Oct 2013 B1
8567679 Mullen et al. Oct 2013 B1
8573503 Cloutier et al. Nov 2013 B1
8579203 Lambeth et al. Nov 2013 B1
8585850 Muirhead Nov 2013 B2
8590796 Cloutier et al. Nov 2013 B1
8602312 Cloutier et al. Dec 2013 B2
8608083 Mullen et al. Dec 2013 B2
8622309 Mullen et al. Jan 2014 B1
8668143 Mullen et al. Mar 2014 B2
8727219 Mullen May 2014 B1
8733638 Mullen et al. May 2014 B2
8746579 Cloutier et al. Jun 2014 B1
8757483 Mullen et al. Jun 2014 B1
8757499 Cloutier et al. Jun 2014 B2
8814050 Mullen et al. Aug 2014 B1
8820638 Cotter et al. Sep 2014 B1
8875999 Mullen et al. Nov 2014 B2
8881989 Mullen et al. Nov 2014 B2
8931703 Mullen et al. Jan 2015 B1
8944333 Mullen et al. Feb 2015 B1
8973824 Mullen et al. Mar 2015 B2
9004368 Mullen et al. Apr 2015 B2
9010630 Mullen et al. Apr 2015 B2
9053398 Cloutier Jun 2015 B1
9064255 Mullen et al. Jun 2015 B1
9292843 Mullen et al. Mar 2016 B1
9306666 Zhang et al. Apr 2016 B1
9329619 Cloutier May 2016 B1
9361569 Mullen et al. Jun 2016 B2
9373069 Cloutier et al. Jun 2016 B2
9384438 Mullen et al. Jul 2016 B2
9547816 Mullen et al. Jan 2017 B2
9639796 Mullen et al. May 2017 B2
9646240 Mullen et al. May 2017 B1
9652436 Yen et al. May 2017 B1
9684861 Mullen et al. Jun 2017 B2
D792511 Mullen et al. Jul 2017 S
D792512 Mullen et al. Jul 2017 S
D792513 Mullen et al. Jul 2017 S
9697454 Mullen et al. Jul 2017 B2
9704088 Mullen et al. Jul 2017 B2
9704089 Mullen et al. Jul 2017 B2
9721201 Mullen et al. Aug 2017 B1
9727813 Mullen et al. Aug 2017 B2
9805297 Mullen et al. Oct 2017 B2
9852368 Yen et al. Dec 2017 B1
9875437 Cloutier et al. Jan 2018 B2
9928456 Cloutier et al. Mar 2018 B1
9953255 Yen et al. Apr 2018 B1
10022884 Cloutier Jul 2018 B1
10032100 Mullen et al. Jul 2018 B2
10055614 Cloutier et al. Aug 2018 B1
10095970 Mullen Oct 2018 B1
10095974 Mullen et al. Oct 2018 B1
10169692 Mullen et al. Jan 2019 B2
10176419 Cloutier et al. Jan 2019 B1
10176423 Mullen et al. Jan 2019 B1
10181097 Mullen et al. Jan 2019 B1
10198687 Mullen et al. Feb 2019 B2
10223631 Mullen et al. Mar 2019 B2
10255545 Mullen et al. Apr 2019 B2
10325199 Mullen et al. Jun 2019 B2
10430704 Mullen et al. Oct 2019 B2
10467521 Mullen et al. Nov 2019 B2
10482363 Cloutier et al. Nov 2019 B1
10496918 Mullen et al. Dec 2019 B2
10504105 Mullen et al. Dec 2019 B2
10579920 Mullen et al. Mar 2020 B2
10693263 Mullen et al. Jun 2020 B1
10948964 Cloutier Mar 2021 B1
10997489 Mullen et al. May 2021 B2
11062195 Mullen Jul 2021 B2
11144909 Mullen et al. Oct 2021 B1
11238329 Mullen et al. Feb 2022 B2
11494606 Mullen et al. Nov 2022 B2
20010034702 Mockett et al. Oct 2001 A1
20010047335 Arndt et al. Nov 2001 A1
20020059114 Cockrill et al. May 2002 A1
20020082989 Fife et al. Jun 2002 A1
20020096570 Wong et al. Jul 2002 A1
20020120583 Keresman, III et al. Aug 2002 A1
20030034388 Routhenstein et al. Feb 2003 A1
20030052168 Wong Mar 2003 A1
20030057278 Wong Mar 2003 A1
20030116635 Taban Jun 2003 A1
20030152253 Wong Aug 2003 A1
20030163287 Vock et al. Aug 2003 A1
20030173409 Vogt et al. Sep 2003 A1
20030179909 Wong et al. Sep 2003 A1
20030179910 Wong Sep 2003 A1
20030226899 Finkelstein Dec 2003 A1
20040035942 Silverman Feb 2004 A1
20040054574 Kaufman et al. Mar 2004 A1
20040118930 Berardi Jun 2004 A1
20040133787 Doughty Jul 2004 A1
20040162732 Rahim et al. Aug 2004 A1
20040172535 Jakobsson Sep 2004 A1
20040177045 Brown Sep 2004 A1
20050040242 Beenau Feb 2005 A1
20050043997 Sahota et al. Feb 2005 A1
20050080747 Anderson et al. Apr 2005 A1
20050086160 Wong et al. Apr 2005 A1
20050086177 Anderson et al. Apr 2005 A1
20050116026 Burger et al. Jun 2005 A1
20050119940 Concilio et al. Jun 2005 A1
20050154643 Doan et al. Jul 2005 A1
20050207624 Ehlers et al. Sep 2005 A1
20050228959 D'Albore et al. Oct 2005 A1
20050274794 Bason et al. Dec 2005 A1
20060000900 Fernandes et al. Jan 2006 A1
20060037073 Juels et al. Feb 2006 A1
20060041759 Kaliski et al. Feb 2006 A1
20060085328 Cohen et al. Apr 2006 A1
20060091223 Zellner May 2006 A1
20060109119 Burr et al. May 2006 A1
20060161435 Atef et al. Jul 2006 A1
20060163353 Moulette et al. Jul 2006 A1
20060174104 Crichton et al. Aug 2006 A1
20060196931 Holtmanns et al. Sep 2006 A1
20060256961 Brainard et al. Nov 2006 A1
20070034700 Poidomani et al. Feb 2007 A1
20070114274 Gibbs et al. May 2007 A1
20070124321 Szydlo May 2007 A1
20070152070 D'Albore Jul 2007 A1
20070152072 Frallicciardi et al. Jul 2007 A1
20070152829 Lindsay et al. Jul 2007 A1
20070153487 Frallicciardi et al. Jul 2007 A1
20070174614 Duane et al. Jul 2007 A1
20070192249 Biffle et al. Aug 2007 A1
20070200682 Colby Aug 2007 A1
20070241183 Brown et al. Oct 2007 A1
20070241201 Brown et al. Oct 2007 A1
20070256123 Duane et al. Nov 2007 A1
20070273519 Ichikawa et al. Nov 2007 A1
20070291753 Romano Dec 2007 A1
20080005510 Sepe et al. Jan 2008 A1
20080007408 Hwang Jan 2008 A1
20080008315 Fontana et al. Jan 2008 A1
20080008322 Fontana et al. Jan 2008 A1
20080010675 Massascusa et al. Jan 2008 A1
20080016351 Fontana et al. Jan 2008 A1
20080019507 Fontana et al. Jan 2008 A1
20080028447 O'Malley et al. Jan 2008 A1
20080029607 Mullen Feb 2008 A1
20080035738 Mullen Feb 2008 A1
20080040271 Hammad et al. Feb 2008 A1
20080040276 Hammad et al. Feb 2008 A1
20080054068 Mullen Mar 2008 A1
20080054079 Mullen Mar 2008 A1
20080054081 Mullen Mar 2008 A1
20080055093 Shkolnikov et al. Mar 2008 A1
20080058016 Di Maggio et al. Mar 2008 A1
20080059379 Ramaci et al. Mar 2008 A1
20080065555 Mullen Mar 2008 A1
20080072423 Finn Mar 2008 A1
20080074269 Torchalski et al. Mar 2008 A1
20080094220 Foley et al. Apr 2008 A1
20080096326 Reed Apr 2008 A1
20080126398 Cimino May 2008 A1
20080128515 Di Iorio Jun 2008 A1
20080148394 Poidomani et al. Jun 2008 A1
20080201264 Brown et al. Aug 2008 A1
20080209550 Di Iorio Aug 2008 A1
20080288699 Chichierchia Nov 2008 A1
20080294930 Varone et al. Nov 2008 A1
20080302869 Mullen Dec 2008 A1
20080302876 Mullen Dec 2008 A1
20080302877 Musella et al. Dec 2008 A1
20080308641 Finn Dec 2008 A1
20080309463 Godzwon Dec 2008 A1
20090013122 Sepe et al. Jan 2009 A1
20090036147 Romano Feb 2009 A1
20090045960 Von Gutfeld Feb 2009 A1
20090046522 Sepe et al. Feb 2009 A1
20090108064 Fernandes et al. Apr 2009 A1
20090150295 Hatch et al. Jun 2009 A1
20090152365 Li et al. Jun 2009 A1
20090159663 Mullen et al. Jun 2009 A1
20090159667 Mullen et al. Jun 2009 A1
20090159668 Mullen et al. Jun 2009 A1
20090159669 Mullen et al. Jun 2009 A1
20090159670 Mullen et al. Jun 2009 A1
20090159671 Mullen et al. Jun 2009 A1
20090159672 Mullen et al. Jun 2009 A1
20090159673 Mullen et al. Jun 2009 A1
20090159680 Mullen et al. Jun 2009 A1
20090159681 Mullen et al. Jun 2009 A1
20090159682 Mullen et al. Jun 2009 A1
20090159688 Mullen et al. Jun 2009 A1
20090159689 Mullen et al. Jun 2009 A1
20090159690 Mullen et al. Jun 2009 A1
20090159696 Mullen Jun 2009 A1
20090159697 Mullen et al. Jun 2009 A1
20090159698 Mullen et al. Jun 2009 A1
20090159699 Mullen et al. Jun 2009 A1
20090159700 Mullen et al. Jun 2009 A1
20090159701 Mullen et al. Jun 2009 A1
20090159702 Mullen Jun 2009 A1
20090159703 Mullen et al. Jun 2009 A1
20090159704 Mullen et al. Jun 2009 A1
20090159705 Mullen et al. Jun 2009 A1
20090159706 Mullen et al. Jun 2009 A1
20090159707 Mullen et al. Jun 2009 A1
20090159708 Mullen et al. Jun 2009 A1
20090159709 Mullen Jun 2009 A1
20090159710 Mullen et al. Jun 2009 A1
20090159711 Mullen et al. Jun 2009 A1
20090159712 Mullen et al. Jun 2009 A1
20090159713 Mullen et al. Jun 2009 A1
20090160617 Mullen et al. Jun 2009 A1
20090170432 Lortz Jul 2009 A1
20090191811 Griffin et al. Jul 2009 A1
20090210308 Toomer et al. Aug 2009 A1
20090222383 Tato et al. Sep 2009 A1
20090234472 Pyle Sep 2009 A1
20090242648 Di Sirio et al. Oct 2009 A1
20090244858 Di Sirio et al. Oct 2009 A1
20090253460 Varone et al. Oct 2009 A1
20090255996 Brown et al. Oct 2009 A1
20090290704 Cimino Nov 2009 A1
20090303885 Longo Dec 2009 A1
20090308921 Mullen Dec 2009 A1
20100023449 Skowronek et al. Jan 2010 A1
20100026468 Nyalamadugu et al. Feb 2010 A1
20100078472 Lin et al. Mar 2010 A1
20100123561 Nam et al. May 2010 A1
20100123583 Bommer et al. May 2010 A1
20100153269 McCabe Jun 2010 A1
20100207737 Park et al. Aug 2010 A1
20100223479 Nguyen et al. Sep 2010 A1
20100263179 Boldin Oct 2010 A1
20100295286 Goldstein et al. Nov 2010 A1
20100304670 Shuo Dec 2010 A1
20100308964 Ackley et al. Dec 2010 A1
20110028184 Cooper Feb 2011 A1
20110060691 Grossman Mar 2011 A1
20110066550 Shank et al. Mar 2011 A1
20110175707 Chen Jul 2011 A1
20110272465 Mullen et al. Nov 2011 A1
20110272466 Mullen et al. Nov 2011 A1
20110272467 Mullen et al. Nov 2011 A1
20110272471 Mullen Nov 2011 A1
20110272472 Mullen Nov 2011 A1
20110272473 Mullen et al. Nov 2011 A1
20110272474 Mullen et al. Nov 2011 A1
20110272475 Mullen et al. Nov 2011 A1
20110272476 Mullen et al. Nov 2011 A1
20110272477 Mullen et al. Nov 2011 A1
20110272478 Mullen Nov 2011 A1
20110272479 Mullen Nov 2011 A1
20110272480 Mullen et al. Nov 2011 A1
20110272481 Mullen et al. Nov 2011 A1
20110272482 Mullen et al. Nov 2011 A1
20110272483 Mullen et al. Nov 2011 A1
20110272484 Mullen et al. Nov 2011 A1
20110276380 Mullen et al. Nov 2011 A1
20110276381 Mullen et al. Nov 2011 A1
20110276416 Mullen et al. Nov 2011 A1
20110276424 Mullen Nov 2011 A1
20110276425 Mullen Nov 2011 A1
20110276436 Mullen et al. Nov 2011 A1
20110276437 Mullen et al. Nov 2011 A1
20110278364 Mullen et al. Nov 2011 A1
20110282753 Mullen et al. Nov 2011 A1
20110284632 Mullen et al. Nov 2011 A1
20110284640 Mullen et al. Nov 2011 A1
20120028702 Mullen et al. Feb 2012 A1
20120037709 Cloutier et al. Feb 2012 A1
20120218083 Tuttle Aug 2012 A1
20120286037 Mullen et al. Nov 2012 A1
20120318871 Mullen et al. Dec 2012 A1
20120326013 Cloutier et al. Dec 2012 A1
20130020396 Mullen et al. Jan 2013 A1
20130282573 Mullen et al. Oct 2013 A1
20130282575 Mullen et al. Oct 2013 A1
20140054384 Cloutier et al. Feb 2014 A1
20150186766 Mullen et al. Jul 2015 A1
20160162713 Cloutier et al. Jun 2016 A1
20160180209 Mullen et al. Jun 2016 A1
20160239735 Mullen et al. Aug 2016 A1
20160283837 Mullen et al. Sep 2016 A1
20160307085 Mullen et al. Oct 2016 A1
20160335529 Mullen et al. Nov 2016 A1
20160342876 Mullen et al. Nov 2016 A1
20160342877 Mullen et al. Nov 2016 A1
20160342878 Mullen et al. Nov 2016 A1
20160342879 Mullen et al. Nov 2016 A1
20160342880 Mullen et al. Nov 2016 A1
20170286817 Mullen et al. Oct 2017 A1
20170300796 Mullen et al. Oct 2017 A1
20180053079 Cloutier et al. Feb 2018 A1
20190042903 Cloutier et al. Feb 2019 A1
20190065928 Mullen et al. Feb 2019 A1
20190197387 Mullen et al. Jun 2019 A1
20190340484 Mullen et al. Nov 2019 A1
20200082383 Mullen et al. Mar 2020 A1
Foreign Referenced Citations (8)
Number Date Country
05210770 Aug 1993 JP
WO9852735 Nov 1998 WO
WO0247019 Jun 2002 WO
WO06066322 Jun 2006 WO
WO06080929 Aug 2006 WO
WO06105092 Oct 2006 WO
WO06116772 Nov 2006 WO
WO08064403 Jun 2008 WO
Non-Patent Literature Citations (6)
Entry
U.S. Appl. No. 60/594,300, Poidomani et al.
U.S. Appl. No. 60/675,388, Poidomani et al.
The Bank Credit Card Business. Second Edition, American Bankers Association, Washington, D.C., 1996.
A Day in the Life of a Flux Reversal. http://www.phrack/org/issues.html?issue=37&id=6#article. As viewed on Apr. 12, 2010.
Dynamic Virtual Credit Card Numbers. http://homes.cerias.purdue.edu/˜jtli/paper/fc07.pdf. As viewed on Apr. 12, 2010.
English translation of JP 05210770 A.
Provisional Applications (1)
Number Date Country
61437813 Jan 2011 US
Continuations (1)
Number Date Country
Parent 13361483 Jan 2012 US
Child 16122803 US