Systems and method for communicating with implantable devices

Information

  • Patent Grant
  • 7617001
  • Patent Number
    7,617,001
  • Date Filed
    Monday, March 6, 2006
    18 years ago
  • Date Issued
    Tuesday, November 10, 2009
    14 years ago
Abstract
Systems and methods for communicating with an implant within a patient's body using acoustic telemetry includes an external communications device attachable to the patient's skin. The device includes an acoustic transducer for transmitting acoustic signals into the patient's body and/or for receiving acoustic signals from the implant. The device includes a battery for providing electrical energy to operate the device, a processor for extracting data from acoustic signals received from the implant, and memory for storing the data. The device may include an interface for communicating with a recorder or computer, e.g., to transfer data from the implant and/or to receive instructions for controlling the implant. The device is secured to the patient's skin for controlling, monitoring, or otherwise communicating with the implant, while allowing the patient to remain mobile.
Description
FIELD OF THE INVENTION

The present invention relates generally to systems and methods for measuring physiological conditions and/or performing therapeutic functions within a patient's body, particularly to systems and methods for controlling and/or energizing devices that may be implanted within a body, and more particularly to implants that may be energized, activated, controlled, and/or otherwise communicate via acoustic energy.


BACKGROUND OF THE INVENTION

Devices are known that may be implanted within a patient's body for monitoring one or more physiological conditions and/or to provide therapeutic functions. For example, sensors or transducers may be located deep within the body for monitoring a variety of properties, such as temperature, pressure, strain, fluid flow, chemical properties, electrical properties, magnetic properties, and the like. In addition, devices may be implanted that perform one or more therapeutic functions, such as drug delivery, defibrillation, electrical stimulation, and the like.


Often it is desirable to communicate with such devices once they are implanted within a patient by external command, for example, to obtain data, and/or to activate or otherwise control the implant. An implant may include wire leads from the implant to an exterior surface of the patient, thereby allowing an external controller or other device to be directly coupled to the implant. Alternatively, the implant may be remotely controlled, e.g., using an external induction device. For example, an external radio frequency (RF) transmitter may be used to communicate with the implant. RF energy, however, may only penetrate a few millimeters into a body, because of the body's dielectric nature, and therefore may not be able to communicate effectively with an implant that is located deep within the body. In addition, although an RF transmitter may be able to induce a current within an implant, the implant's receiving antenna, generally a low impedance coil, may generate a voltage that is too low to provide a reliable switching mechanism.


In a further alternative, electromagnetic energy may be used to control an implant, since a body generally does not attenuate magnetic fields. The presence of external magnetic fields encountered by the patient during normal activity, however, may expose the patient to the risk of false positives, i.e., accidental activation or deactivation of the implant. Furthermore, external electromagnetic systems may be cumbersome and may not be able to effectively transfer coded information to an implant.


Accordingly, systems and methods for communicating with an implant that may be implanted within a patient's body, such as a pressure sensor, a drug delivery device, a pacemaker, or a nerve stimulator, would be considered useful.


SUMMARY OF THE INVENTION

The present invention is generally directed to systems and methods for communicating with implants or other devices that are placed, e.g., using open surgical or minimally invasive techniques, within a mammalian body. The implant may include one or more sensors for monitoring pressure or other physiological parameters and/or may perform one or more therapeutic functions. More particularly, the present invention is directed to external systems for controlling, activating, energizing, and/or otherwise communicating with such implants using acoustic telemetry, and to methods for using such systems.


In accordance with one aspect of the present invention, a system is provided for communicating with an implant within a body that includes an external communications device, e.g., a controller, securable to an exterior surface of a patient's body. Preferably, the controller is sufficiently small and portable that it may remain secured to the patient, possibly for extended time periods. For example, the device may be attached to or within a patch that may be secured to a patient's skin.


In one embodiment, the device is an external controller that generally includes one or more acoustic transducers, including a first acoustic transducer, for transmitting one or more acoustic signals into the patient's body. The controller may also include an energy source for powering the one or more acoustic transducers, and/or a processor or other electrical circuit for controlling operation of the controller. In addition, one or more of the acoustic transducers, such as the first acoustic transducer, may be configured for receiving acoustic signals from an implant within the patient's body. The controller may include memory for storing data, and the processor may extract sensor data and/or other data from acoustic signals received from an implant, e.g., for storage in the memory. In addition, the controller may include a connector, lead, transmitter, receiver, or other interface for communicating with a recorder or other electronic device, such as a computer, personal digital assistant, or a wireless device, such as a cellular phone. The controller may be coupled to such an electronic device for transferring sensor data or other data stored in the memory of the controller and/or for receiving instructions or commands from the electronic device.


In addition, the system may include an implant for placement within the patient's body. The implant may include an electrical circuit for performing one or more commands when the implant is activated, an energy storage device, and/or one or more acoustic transducers, e.g., a second acoustic transducer, coupled to the electrical circuit and/or the energy storage device. Optionally, the electrical circuit may include a switch coupled to the energy storage device and/or the second acoustic transducer. The second acoustic transducer may receive one or more acoustic signals from the first acoustic transducer of the external device. For example, the switch may be closed and/or opened in response to a first acoustic signal to begin or discontinue current flow from the energy storage device to the electrical circuit or other components of the implant.


In a preferred embodiment, the external controller's processor controls the first acoustic transducer to transmit a first acoustic signal and/or and a second acoustic signal. The switch of the implant may be closed when the first acoustic signal is received by the second acoustic transducer, while the switch may be opened when the second acoustic signal is received by the second acoustic transducer. In addition or alternatively, the first acoustic transducer may transmit first and second acoustic signals separated by a delay. The switch may be closed and/or opened only when the second acoustic transducer receives the first and second acoustic signals separated by a predetermined delay, thereby minimizing the risk of accidental activation or deactivation of the implant.


In yet another alternative, the first acoustic transducer may transmit a first acoustic signal, e.g., an activation signal, followed by a second acoustic signal, e.g., including a set of commands. The second acoustic transducer may receive the first and second acoustic signals, and the electrical circuit of the implant may extract the set of commands from the second acoustic signal, and control operation of the implant as instructed by the set of commands. In a further alternative, the implant may run continuously or intermittently, and the external controller may control monitor, energize, and/or program the implant using acoustic telemetry during operation of the implant.


In an exemplary embodiment, the implant may include a sensor coupled to the electrical circuit, and the one or more commands may include measuring a physiological parameter within the body using the sensor. The second acoustic transmitter may transmit one or more acoustic signals including sensor data indicating the physiological parameter to the controller. In an alternative embodiment, the implant may be coupled to a therapeutic device or may include an internal therapeutic device coupled to the electrical circuit. The electrical circuit may control the therapeutic device in response to a physiological parameter measured by the sensor or in response to acoustic signals received from the external controller. For example, the implant may include a pacemaker that may be implanted via a minimally invasive catheter-based procedure. Any programming and/or interrogation of the pacemaker may be accomplished using acoustic telemetry from the external controller. In yet another alternative embodiment, the implant may include an actuator coupled to the electrical circuit, and the one or more commands may include activating the actuator to control a therapeutic device coupled to the actuator, such as a nerve stimulator or a controlled delivery drug release system.


In addition, the energy storage device of the implant may include a rechargeable device, such as a capacitor or a battery. For this embodiment, the system may include an external charger that may include a probe configured for placement against an exterior of the patient's body. The charger may include a source of electrical energy, such as a radio frequency (RF) generator, that is coupled to the probe. The probe may include another acoustic transducer, e.g., a third acoustic transducer, for converting electrical energy from the source of electrical energy into acoustic energy. The third acoustic transducer may transmit acoustic signals including acoustic energy into the patient's body. One or more acoustic transducers of the implant, e.g., the second acoustic transducer, may be configured for converting these acoustic signals into electrical energy for recharging the energy storage device and/or powering the implant.


Thus, a system in accordance with the present invention may include an external controller that has sufficient power to control its own operation and to communicate with the implant. Because of its limited energy requirements, however, the controller may be relatively small and portable, e.g., may be attached to the patient, while still allowing the patient to engage in normal physical activity. The controller may be used to communicate with an implant, e.g., periodically activating or deactivating the implant, and/or recording data generated and transmitted by the implant. Because it is located outside the patient's body, the controller may be more easily programmed or reprogrammed than the implant, and/or may be repaired or replaced if necessary without requiring an interventional procedure.


In addition, the system may include a separate external charger that includes a substantially more powerful energy source, enabling it to recharge the energy storage device of the implant. For this reason, unlike the external controller, the charger may be a relatively bulky device that may include a portable probe for contacting the patient's skin, and a large energy generator or converter that is stationary or of limited mobility. In an alternative embodiment, the external controller and charger may be provided as a single device, e.g., including one or more acoustic transducers and/or one or more processors for performing the functions of both devices, as described above. In this embodiment, however, portability of the system and convenience to the patient may be compromised.


Other objects and features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:



FIGS. 1A-1C are schematic drawings, showing exemplary embodiments of an implant, in accordance with the present invention.



FIG. 2 is a schematic of an exemplary circuit for use as an acoustic switch, in accordance with the present invention.



FIG. 3 is a cross-sectional view of a patient's body, showing a system for communicating with an implant, in accordance with the present invention.



FIG. 4 is a schematic of an external controller for communicating with an implant, such as that shown in FIG. 3, in accordance with the present invention.



FIG. 5 is a schematic of another exemplary embodiment of an implant, in accordance with the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Turning to the drawings, FIGS. 1A-1C schematically show several exemplary embodiments of an implant 110, 210, 310, in accordance with the present invention. Generally, the implant 110, 210, 310 includes an electrical circuit 112, 212, 312 configured for performing one or more functions or commands when the implant 110, 210310 is activated, as described further below. In addition, the implant 110, 210, 310 includes an energy storage device 114 and optionally may include a switch 116 coupled to the electrical circuit 112, 212, 312 and the energy storage device 114. The switch 116 may be activated upon acoustic excitation 100 from an external acoustic energy source (not shown) to allow current flow from the energy storage device 114 to the electrical circuit 112, 212, 312.


In a preferred embodiment, the switch 116 includes an acoustic transducer 118, such as that disclosed in PCT Publication No. WO 99/34,453, published Jul. 8, 1999, or in U.S. application Ser. No. 09/888,272, filed Jun. 21, 2001, the disclosures of which are expressly incorporated herein by reference. In addition, the switch 116 also includes a switch circuit 120, such as switch circuit 400 shown in FIG. 2, although alternatively other switches, such as a miniature electromechanical switch and the like (not shown) may be provided. In a further alternative, the acoustic transducer 118 may be coupled to the electrical circuit 112, 212, 312 and/or the energy storage device 114, and the switch circuit 120 may be eliminated.


The energy storage device 114 may be any of a variety of known devices, such as an energy exchanger, a battery and/or a capacitor (not shown). Preferably, the energy storage device 114 is capable of storing electrical energy substantially indefinitely for as long as the acoustic switch 116 remains open, i.e., when the implant 110, 210, 310 is in a “sleep” mode. In addition, the energy storage device 114 may be capable of being charged from an external source, e.g., inductively using acoustic telemetry, as will be appreciated by those skilled in the art. In a preferred embodiment, the energy storage device 114 includes both a capacitor and a primary, non-rechargeable battery. Alternatively, the energy storage device 114 may include a secondary, rechargeable battery and/or capacitor that may be energized before activation or use of the implant 110, 210, 310.


The implant 110, 210, 310 may be surgically or minimally invasively inserted within a human body in order to carry out a variety of monitoring and/or therapeutic functions. For example, the electrical circuit 112, 212, 312 may include a control circuit 122, 222, 322, a biosensor 124, 324, an actuator 226, 326, and/or a transmitter 128, as explained in application Ser. No. 09/690,015, incorporated by reference above. The implant 210, 310 may be configured for providing one or more therapeutic functions, for example, to activate and/or control a therapeutic device implanted within a patient's body, such as an atrial defibrillator or pacemaker, a pain relief stimulator, a neuro-stimulator, a drug delivery device, and/or a light source used for photodynamic therapy. Alternatively, the implant may be used to monitor a radiation dose including ionizing, magnetic and/or acoustic radiation, to monitor flow in a bypass graft, to produce cell oxygenation and membrane electroporation, and the like. In addition or alternatively, the implant 110 may be used to measure one or more physiological parameters within the patient's body, such as pressure, temperature, electrical impedance, position, strain, pH, and the like.


The implant may operate in one of two modes, a “sleep” or “passive” mode when the implant remains dormant and not in use, i.e., when the acoustic switch 116 is open, and an “active” mode, when the acoustic switch 116 is closed, and electrical energy is delivered from the energy storage device 114 to the electrical circuit 112, 212, 312. Alternatively, the implant may operate continuously or intermittently. Because the acoustic switch 116 is open in the sleep mode, there is substantially no energy consumption from the energy storage device 114, and consequently, the implant may remain in the sleep mode virtually indefinitely, i.e., until activated. Thus, an implant in accordance with the-present invention may be more energy efficient and, therefore, may require a relatively small energy storage device than implants that continuously draw at least a small amount of current in their “passive” mode.


Turning to FIG. 1A, a first preferred embodiment of an implant 110 is shown in which the electrical circuit 112 includes a control circuit 122, a biosensor 124 coupled to the controller 122, and a transmitter 128 coupled to the control circuit 122. The controller 122 may include circuitry for activating or controlling the biosensor 124, for receiving signals from the biosensor 124, and/or for processing the signals into data, for example, to be transmitted by the transmitter 128. Optionally, the electrical circuit 112 may include memory (not shown) for storing the data. The transmitter 128 may be any device capable of transmitting data from the control circuit 122 to a remote location outside the body, such as an acoustic transmitter, a radio frequency transmitter, and the like. Preferably, the control circuit 122 is coupled to the acoustic transducer 118 such that the acoustic transducer 118 may be used as a transmitter 128, as well as a receiver, instead of providing a separate transmitter.


The biosensor 124 may include one or more sensors capable of measuring physiological parameters, such as pressure, temperature, electrical impedance, position, strain, pH, fluid flow, electrochemical sensor, and the like. Thus, the biosensor 124 may generate a signal proportional to a physiological parameter that may be processed and/or relayed by the control circuit 122 to the transmitter 128, which, in turn, may generate a transmission signal to be received by a device outside the patient's body. Data regarding the physiological parameter(s) may be transmitted continuously or periodically until the acoustic switch 116 is deactivated, or for a fixed predetermined time, as will be appreciated by those skilled in the art.


Turning to FIG. 1B, a second preferred embodiment of an implant 210 is shown in which the electrical circuit 212 includes a control circuit 222 and an actuator 226. The actuator 226 may be coupled to a therapeutic device (not shown) provided in or otherwise coupled to the implant 210, such as a light source, a nerve stimulator, a defibrillator, an electrochemical oxidation/reduction electrode, or a valve communicating with an implanted drug reservoir (in the implant or otherwise implanted within the body in association with the implant).


When the switch 120 is closed, the control circuit 222 may activate the actuator 226 using a pre-programmed protocol, e.g., to complete a predetermined therapeutic procedure, whereupon the switch 120 may automatically open, or the controller 222 may follow a continuous or looped protocol until the switch 120 is deactivated. Alternatively, the acoustic transducer 118 may be coupled to the control circuit 222 for communicating a new or unique set of commands to the control circuit 222. For example, a particular course of treatment for a patient having the implant 210 may be determined, such as a flow rate and duration of drug delivery, drug activation, drug production, or an energy level and duration of electrical stimulation. Acoustic signals including commands specifying this course of treatment may be transmitted from an external controller (not shown), as described below, to the acoustic switch 116, e.g., along with or subsequent to the activation signal 100. The control circuit 222 may interpret these commands and control the actuator 226 accordingly to complete the course of treatment.


Turning to FIG. 1C, yet another preferred embodiment of an implant 310 is shown in which the electrical circuit 312 includes a control circuit 322, a biosensor 324, and an actuator 326, all of which may be coupled to one another. This embodiment may operate similarly to the embodiments described above, e.g., to obtain data regarding one or more physiological parameters and/or to control a therapeutic device. In addition, once activated, the control circuit 322 may control the actuator 326 in response to data obtained from the biosensor 324 to control or adjust automatically a course of treatment being provided by a device connected to the actuator 326. For example, the actuator 326 may be coupled to an insulin pump (not shown), and the biosensor 324 may measure glucose levels within the patient's body. The control circuit 322 may control the actuator to open or close a valve on the insulin pump to adjust a rate of insulin delivery based upon glucose levels measured by the biosensor 324 in order to maintain the patient's glucose within a desired range.


Turning to FIG. 2, a preferred embodiment of a switch 400 is shown that may be incorporated into an implant in accordance with the present invention. The switch 400 includes a piezoelectric transducer, or other acoustic transducer (not shown, but generally connected to the switch 400 at locations piezo+ and piezo−), a plurality of MOSFET transistors (Q1-Q4) and resistors (R1-R4), and switch S1. A “load” may be coupled to the switch 400, such as one of the electrical circuits described above. In the switch's “sleep” mode, all of the MOSFET transistors (Q1-Q4) are in an off state. To maintain the off state, the gates of the transistors are biased by pull-up and pull-down resistors. The gates of N-channel transistors (Q1, Q3 & Q4) are biased to ground and the gate of P-channel transistor Q2 is biased to +3V. During this quiescent stage, switch S1 is closed and no current flows through the circuit. Therefore, although an energy storage device (not shown, but coupled between the hot post, labeled with an exemplary voltage of +3V, and ground) is connected to the switch 400, no current is being drawn therefrom since all of the transistors are quiescent.


When the acoustic transducer of the implant detects an external acoustic signal, e.g., having a particular frequency, such as the transducer's resonant frequency, the voltage on the transistor Q1 will exceed the transistor threshold voltage of about one half of a volt. Transistor Q1 is thereby switched on and current flows through transistor Q1 and pull-up resistor R2. As a result of the current flow through transistor Q1, the voltage on the drain of transistor Q1 and the gate of transistor Q2 drops from +3V substantially to zero (ground). This drop in voltage switches on the P-channel transistor Q2, which begins to conduct current through transistor Q2 and pull-down resistor R3.


As a result of the current flowing through transistor Q2, the voltage on the drain of transistor Q2 and the gates of transistors Q3 and Q4 increases from substantially zero to +3V. The increase in voltage switches on transistors Q3 and Q4. As a result, transistor Q3 begins to conduct current through resistor R4 and main switching transistor Q4 begins to conduct current through the “load,” thereby switching on the electrical circuit.


As a result of the current flowing through transistor Q3, the gate of transistor Q2 is connected to ground through transistor Q3, irrespective of whether or not transistor Q1 is conducting. At this stage, the transistors (Q2, Q3, & Q4) are latched to the conducting state, even if the piezoelectric voltage on transistor Q1 is subsequently reduced to zero and transistor Q1 ceases to conduct. Thus, main switching transistor Q4 will remain on until switch S1 is opened.


In order to deactivate or open the switch 400, switch S1 must be opened, for example, while there is no acoustic excitation of the piezoelectric transducer. If this occurs, the gate of transistor Q2 increases to +3V due to pull-up resistor R2. Transistor Q2 then switches off, thereby, in turn, switching off transistors Q3 and Q4. At this stage, the switch 400 returns to its sleep mode, even if switch S1 is again closed. The switch 400 will only return to its active mode upon receiving a new acoustic activation signal from the piezoelectric transducer.


It should be apparent to one of ordinary skill in the art that the above-mentioned electrical circuit is not the only possible implementation of a switch for use with the present invention. For example, the switching operation may be performed using a CMOS circuit, which may draw less current when switched on, an electromechanical switch, and the like.


Turning to FIGS. 3 and 4, a system 410 is shown for communicating with an implant 412, such as one of those described above. Generally, the system 410 includes an external communications device or controller 414, and may include a charger 416, one or more implants 412 (only one shown for simplicity), and an external recorder, computer, or other electronic device 434.


With particular reference to FIG. 4, the external controller 414 may include a processor or other electrical circuit 418 for controlling its operation, and an energy source 420, e.g., a nonrechargeable or a rechargeable battery, coupled to the processor 418 and/or other components of the controller 414, such as a power amplifier or an oscillator (not shown). In addition, the controller 414 may include one or more acoustic transducers 422 that are configured for converting between electrical energy and acoustic energy, similar to those described above. As shown, a single acoustic transducer 422 is provided that may communicate using acoustic telemetry, i.e., capable both of converting electrical energy to acoustic energy to transmit acoustic signals, and converting acoustic energy to electrical energy to receive acoustic signals, as explained further below. Alternatively, separate and/or multiple acoustic transducers may be provided for transmitting and receiving acoustic signals.


In a preferred embodiment, the controller 414 also includes memory 424 coupled to the processor 418, e.g., for storing data provided to the controller 414, as explained further below. The memory 424 may be a temporary buffer that holds data before transfer to another device, or non-volatile memory capable of storing the data substantially indefinitely, e.g., until extracted by the processor 418 or other electronic device. For example, the memory 424 may be a memory card or an eprom (not shown) built into the controller 414 or otherwise coupled to the processor 418. The controller 414 may also include an interface 426, such as a lead or connector, or a transmitter and/or receiver, that may communicate with the external electronic device, as explained further below.


Preferably, the controller 414 is carried by a patch 415 that may be secured to a patient, e.g., o the patient's skin 92. For example, the patch 415 may include one or more layers of substantially flexible material to which the controller 414 and/or its individual components are attached. The patch 415 may include a single flexible membrane (not shown) to which the controller 414 is bonded or otherwise attached, e.g., using a substantially permanent adhesive, which may facilitate the patch 415 conforming to a patient's anatomy. Alternatively, the controller 414 may be secured between layers of material, e.g., within a pouch or other compartment (not shown) within the patch 415. For example, the patch 415 may include a pair of membranes (not shown) defining the pouch or compartment. The space within which the controller 414 is disposed may be filled with material to acoustically couple the acoustic transducer(s) (formed, for example, from PZT, composite PZT, Quartz, PVDF, and/or other piezoelectric material) of the controller 414 to an outer surface of the patch 415. Alternatively, the acoustic transducer(s) may be exposed, e.g., in a window formed in a wall of the patch 415.


The patch 415 may be formed from a flexible piezoelectric material, such as PVDF or a PVDF copolymer. Such polymers may allow the patch 415 to produce ultrasonic waves, as well as allowing the controller 414 to be secured to the patient's skin 92. Thus, the wall of the patch 415 itself may provide an acoustic transducer for the controller 414, i.e., for transmitting acoustic energy-to and/or receiving acoustic energy from the implant 412.


The patch 415 may then be secured to the patient's skin 92 using a material, such as a layer of adhesive (not shown), substantially permanently affixed or otherwise provided on a surface of the patch. The adhesive may be hydrogel, silicon, polyurethane, polyethylene, polypropylene, fluorocarbon polymer, and the like. Alternatively, a separate adhesive may be applied to the patch 415 and/or to the patient's skin 92 before applying the patch 415 in order to secure the controller 414 to the patient's skin 92. Such an adhesive may enhance acoustically coupling of the acoustic transducer(s) of the controller 414 to the patient's skin 92, and consequently to the implant 412 within the patient's body 94. Optionally, additional wetting material, including water, silicone oil, silicone gel, hydrogel, and the like, and/or other acoustically conductive material may be provided between the patch 415 or the acoustic transducer 422, and the patient's skin 92, e.g., to provide substantial continuity and minimize reflection or other losses and/or to secure the patch 415 to the patient.


Alternatively, the controller 414 may be carried by a belt (not shown) that may be secured around the patient, e.g., such that the acoustic transducer 422 is secured against the patient's skin. The belt may carry other components of the system 410, e.g., an external power supply for the controller 414. For example, a battery pack (not shown) may be carried by the belt that may be coupled to the controller 414 for providing electrical energy for its operation.


The patch 415 may be relatively light and compact, for example, having a maximum surface dimension (e.g., width or height) not more than about ten to two hundred millimeters (10-200 mm), a thickness not more than about five to one hundred millimeters (5-100 mm), and a weight not more than about twenty to four hundred grams (20-400 g), such that the controller 414 may be inconspicuously attached to the patient. Thus, the patient may be able to resume normal physical activity, without substantial impairment from the controller. Yet, the internal energy source of the controller 414 may be sufficiently large to communicate with the implant 412 for an extended period of time, e.g., for hours or days, without requiring recharging or continuous coupling to a separate energy source.


The system 410 may be used to control, energize, and/or otherwise communicate with the implant 412. For example, the controller 414 may be used to activate the implant 412. One or more external acoustic energy waves or signals 430 may be transmitted from the controller 414 into the patient's body 94, e.g., generally towards the location of the implant 412 until the signal is received by the acoustic transducer (not shown in FIGS. 3 and 4) of the implant 412. Upon excitation by the acoustic wave(s) 430, the acoustic transducer produces an electrical output that is used to close, open, or otherwise activate the switch (also not shown in FIGS. 3 and 4) of the implant 412. Preferably, in order to achieve reliable switching, the acoustic transducer of the implant 412 is configured to generate a voltage of at least several tenths of a volt upon excitation that may be used as an activation signal to close the switch, as described above.


As a safety measure against false positives (e.g., erroneous activation or deactivation), the controller 414 may be configured to direct its acoustic transducer 422 to transmit an initiation signal followed by a confirmation signal. When the acoustic transducer of the implant 412 receives these signals, the electrical circuit may monitor the signals for a proper sequence of signals, thereby ensuring that the acoustic switch of the implant 412 only closes upon receiving the proper initiation and confirmation signals. For example, the acoustic switch may only acknowledge an activation signal that includes a first pulse followed by a second pulse separated by a predetermined delay. Use of a confirmation signal may be particularly important for certain applications, for example, to prevent unintentional release of drugs by a drug delivery implant.


In addition to an activation signal, the controller 414 may transmit a second acoustic signal that may be the same as or different than the acoustic wave(s) used to activate the acoustic switch of the implant 412. Thus, the switch may be opened when the acoustic transducer of the implant 412 receives this second acoustic signal, e.g., by the acoustic transducer generating a termination signal in response to the second acoustic signal, in order to return the implant 412 to its sleep mode.


For example, once activated, the switch may remain closed indefinitely, e.g., until the energy storage device (not shown in FIGS. 3 and 4) of the implant 412 is completely depleted, falls below a predetermined threshold, or until a termination signal is received by the acoustic transducer of the implant 412 from the controller 414. Alternatively, the acoustic switch of the implant 412 may include a timer (not shown), such that the switch remains closed only for a predetermined time, whereupon the switch may automatically open, returning the implant 412 to its sleep mode.



FIG. 5 shows an alternative embodiment of an implant 510 that does not include an acoustic switch. Generally, the implant includes a sensor 512, one or more energy transducers 514, one or more energy storage devices 516, and a control circuit 518, similar to the embodiments described above. The sensor 512 is preferably a pressure sensor for measuring intra-body pressure, such as an absolute variable capacitance type pressure sensor. In alternative embodiments, one or more other sensors may be provided instead of or in addition to a pressure sensor 512. For example, the sensor 512 may include one or more biosensors capable of measuring physiological parameters, such as temperature, electrical impedance, position, strain, pH, fluid flow, and the like. An external controller (not shown), such as that described above, may also be used to communicate with this implant.


Returning to FIG. 3, an external controller 414 in accordance with the present invention preferably has only sufficient power to control its own operation and to communicate with the implant 412. Because of its limited energy requirements, the controller 414 may be relatively small and portable, e.g., may be attached to the patient, while still allowing the patient to engage in normal physical activity. The controller 414 may be used to communicate with the implant 412, e.g., periodically activating or deactivating the implant 412, and/or recording data generated and transmitted by the implant 412. Because it is located outside the patient's body, the controller 414 may be more easily programmed or reprogrammed than the implant 412 itself, and/or may be repaired or replaced if necessary or desired.


In addition to the external controller 414, the system 410 may include one or more electronic devices 434 that may be coupled to the controller 414 via the interface 426, such as a recorder, a computer, a personal digital assistant, and/or a wireless device, such as a cellular telephone. The electronic device 434 may be directly coupled to the controller 414, by a connector or lead (not shown) extending from the patch 415 within which the controller 414 is provided. Alternatively, the controller 414 and/or patch 415 may include a wireless transmitter and/or receiver (not shown), e.g., a short-range RF transceiver, for communicating with the electronic device 434.


The electronic device 434 may be used to extract data from the memory 424 of the controller 414, e.g., sensor data and the like, received from the implant 412. This data may be included in a patient database maintained by health care professionals monitoring the patient receiving the implant 412. In addition, the electronic device 434 may be used to program the controller 414, e.g., to program commands, timing sequences, and the like.


The system 410 may also include an external charger 416. For example, the implant 412 may include a rechargeable energy storage device (not shown in FIG. 3), preferably one or more capacitors, that are coupled to the acoustic transducer (also not shown in FIG. 3). The charger 416 may include a probe 428, including an acoustic transducer 430 for contacting a patient's skin 92. The charger 416 also includes a source of electrical energy 432, such as a radio frequency (RF) generator, that is coupled to the acoustic transducer 430. The charger 418 may also include electrical circuits for controlling its operation and buttons or other controls (not shown) for activating and/or deactivating the acoustic transducer 430.


The charger 416 may be used to charge or recharge the implant, e.g., periodically or before each activation. Because the charger 416 includes a substantially more powerful energy source than the controller 414, the charger 416 is generally a relatively bulky device compared to the controller 414, in particular due to the energy generator, which may be stationary or of limited mobility. In addition, the charger 416 may be used to recharge the controller 414 periodically, e.g., by a direct or wireless coupling. Alternatively, the controller 414 and patch 415 may be disposable, e.g., after its energy has been depleted, and replaced with another.


For purposes of comparison, an exemplary charger 416 may need to generate about ten kiloPascals (10 kPa) of acoustic energy for about twenty seconds (20 sec.) in order to fully charge the implant 412. In contrast, an exemplary controller 414 may be limited to outputting relatively smaller bursts of acoustic energy for communicating with, but not charging, the implant 412. Such acoustic signals may have a duration of as little as about one millisecond (1 ms), as opposed to the significantly longer charging signals generated by the charger 416.


The transducer 422 of the controller 414 may consume about one Watt (1 W) of power to produce a 1 kPa acoustic signal for about one millisecond. If the controller 414 communicates with the implant 412 on an hourly basis, the energy source 420 of the controller 414 may only need sufficient capacity to provide 0.024 Watt seconds per day (0.024 W.sec./day). Because of this low energy requirement, the energy source 420, and, consequently, the controller 414, may be relatively compact and portable, as compared to the charger 416. Thus, the energy source 420 may be self-contained within the controller 414, i.e., carried by the patch 415. Alternatively, a portable energy source, e.g., an external battery pack (not shown) may be provided for supplying electrical energy to the controller 414 that may be carried by the patient, e.g., on a belt (not shown).


In an alternative embodiment the controller and charger may be provided as a single device (not shown), e.g., including one or more acoustic transducers and/or one or more processors for performing the functions of both devices, as described above. In this embodiment, the implant 412 may operate in a “half-duplex” mode, a quasi-continuous mode, or in a “full-duplex” mode, as described in the applications incorporated above.


It will be appreciated that the above descriptions are intended only to serve as examples, and that many other embodiments are possible within the spirit and the scope of the present invention.

Claims
  • 1. A system for activating an implant within a body, comprising: an external controller for placement adjacent to an exterior surface of a patient's body, the controller comprising a controller transducer for transmitting an acoustic control signal including one or more commands into the patient's body and an energy storage device for providing electrical energy to operate the external controller; andone or more implants for placement within the patient's body, at least one implant comprising an electrical circuit configured for performing the one or more commands when the implant is activated, an energy storage device, a switch coupled between the electrical circuit and the energy storage device, and an acoustic implant transducer coupled to the switch, the implant transducer configured for receiving the acoustic control signal from the controller transducer to activate the switch between a first state, in which current is limited from flowing from the energy storage device of the at least one implant to the electrical circuit, and a second state, in which current flows from the energy storage device of the at least one implant to the electrical circuit.
  • 2. The system of claim 1, wherein at least one of the one or more implants comprises a transmitter for transmitting data from the implant.
  • 3. The system of claim 1, wherein at least one of the one or more implants comprises a biosensor.
  • 4. The system of claim 3, wherein the biosensor comprises one or more sensors capable of measuring a physiological parameter.
  • 5. The system of claim 1, wherein the at least one implant comprises an actuator coupled to the switch and a therapeutic device coupled to the actuator such that a therapeutic procedure is completed when the at least one implant is activated.
  • 6. The system of claim 1, wherein the controller transducer is configured for transmitting first and second acoustic control signals separated by a predetermined delay, and wherein the switch of the at least one implant is configured to actuate to the second state only when the implant transducer receives the first and second control signals separated by the predetermined delay.
  • 7. The system of claim 1, the controller further comprising a processor for controlling the controller transducer to transmit one of a first acoustic control signal and a second acoustic control signal, wherein the switch of the at least one implant is in the first state when the first control signal is received by the implant transducer, and in the second state when the second control signal is received by the implant transducer.
  • 8. The system of claim 1, wherein the at least one implant further comprises a sensor coupled to the electrical circuit, the one or more commands comprising measuring a physiological parameter within the body using the sensor.
  • 9. The system of claim 8, wherein the implant transducer is configured for transmitting an acoustic data signal to the controller, the data signal comprising sensor data indicative of the physiological parameter, and wherein the controller transducer is configured for receiving the data signal from the implant.
  • 10. The system of claim 9, wherein the controller further comprises memory for storing the sensor data.
  • 11. The system of claim 10, wherein the controller further comprises a processor for extracting the sensor data from the data signal.
  • 12. The system of claim 1, further comprising an external charger configured for placement adjacent to an exterior surface of the patient's body, the charger comprising a source of electrical energy and an energy exchange transducer, the energy exchange transducer configured for converting electrical energy from the source of electrical energy into acoustic energy and transmitting an acoustic energy signal comprising the acoustic energy into the patient's body.
  • 13. The system of claim 12, wherein the implant transducer of the at least one implant is further configured for converting the acoustic energy signal into electrical energy for recharging the energy storage device.
  • 14. The system of claim 1, further comprising an adhesive for securing the controller to the exterior surface of the patient's body.
  • 15. The system of claim 1, wherein the controller is carried by a patch attachable to the exterior surface of the patient's body.
  • 16. The system of claim 1, wherein the external controller is adapted to be coupled to the exterior surface of the patient's body.
  • 17. The system of claim 1, wherein the external controller is adapted to be secured to the exterior surface of the patient's body.
  • 18. An apparatus for communicating with an implant located within a patient's body, the implant including one or more acoustic transducers configured for communicating using acoustic telemetry, comprising: one or more acoustic transducers for placement in contact with an exterior surface of the patient's body;a controller coupled to the one or more acoustic transducers such that the one or more acoustic transducers are configured for at least one of transmitting acoustic signals to and receiving acoustic signals from within the patient's body to communicate with the implant;an interface configured for wirelessly communicating data between the controller and a device separate from the controller;an energy storage device for providing electrical energy to at least one of the controller and the one or more acoustic transducers; andan external charger configured for placement against an exterior surface of the patient's body, the charger comprising a source of electrical energy, and an acoustic transducer for converting electrical energy from the source of electrical energy into acoustic energy and transmitting the acoustic energy into the patient's body for energizing an energy storage device in the implant.
  • 19. The apparatus of claim 18, wherein the one or more acoustic transducers of the controller are configured for transmitting first and second acoustic control signals separated by a predetermined delay.
  • 20. The apparatus of claim 18, wherein the controller includes a processor for controlling the one or more acoustic transducers of the controller to transmit one of a first acoustic control signal and a second acoustic control signal.
  • 21. The apparatus of claim 18, wherein the controller is carried by a patch attachable to the exterior surface of the patient's body.
  • 22. The apparatus of claim 21, wherein the patch comprises a flexible piezoelectric material.
  • 23. A method for communicating with one or more implants located within a patient's body, at least one implant comprising an acoustic implant transducer configured for communicating using acoustic telemetry, the method comprising: placing a portable communications device adjacent to an exterior surface of the patient's body, the communications device comprising one or more acoustic transducers, and an energy storage device for providing electrical energy to operate the communications device;transmitting an acoustic control signal into the patient's body and communicating with the at least one implant using the one or more acoustic transducers, the acoustic control signal adapted to activate a switch, said switch being coupled to the acoustic implant transducer and an energy storage device of the at least one implant, wherein the switch is configured to actuate the at least one implant between a sleep mode, in which current is limited from flowing from the energy storage device of the at least one implant to the electrical circuit, and an active mode, in which current flows from the energy storage device of the at least one implant to the electrical circuit; andwherein communicating with the at least one implant includes transmitting one or more acoustic signals from the communications device into the patient's body, the one or more acoustic signals including a command for controlling an operation of the at least one implant.
  • 24. The method of claim 23, wherein the command comprises measuring a physiological parameter within the body.
  • 25. The method of claim 23, wherein the command comprises controlling a therapeutic device coupled to the at least one implant.
  • 26. The method of claim 23, wherein upon receiving an acoustic control signal from the communications device, the acoustic implant transducer closes the switch to allow electrical energy to flow from the energy storage device of the at least one implant to power the at least one implant.
  • 27. The method of claim 23, wherein communicating with the at least one implant comprises the portable communications device receiving one or more acoustic signals from the at least one implant, the one or more acoustic signals comprising data indicative of a physiological parameter measured by the at least one implant.
  • 28. The method of claim 27, further comprising the portable communications device extracting data from the one or more acoustic signals received from the at least one implant.
  • 29. The method of claim 28, further comprising storing the extracted data in a memory of the communications device.
  • 30. The method of claim 28, further comprising transferring the extracted data to an electronic device external to the patient's body.
  • 31. The method of claim 28, wherein the communications device comprises a patch carrying the one or more acoustic transducers, and where placing the device adjacent to the patient's body comprises securing the patch to the exterior surface of the patient's body.
CROSS-REFERENCE TO RELATED APPLICATIONS

This Application is a continuation of application Ser. No. 09/989,912, filed Nov. 19, 2001, now U.S. Pat. No. 7,024,248, issued on Apr. 4, 2006, which is a continuation-in-part of application Ser. No. 09/690,015, filed Oct. 16, 2000, now U.S. Pat. No. 6,628,989, issued on Sep. 30, 2003, the disclosures of which are expressly incorporated herein by reference.

US Referenced Citations (177)
Number Name Date Kind
2786899 Carlisle Mar 1957 A
3536836 Pfeiffer Oct 1970 A
3672352 Summers Jun 1972 A
3757770 Brayshaw et al. Sep 1973 A
3853117 Murr Dec 1974 A
3943915 Severson Mar 1976 A
3970987 Kolm Jul 1976 A
4026276 Chubbuck May 1977 A
4041954 Ohara Aug 1977 A
4062354 Taylor et al. Dec 1977 A
4082097 Mann et al. Apr 1978 A
4099530 Chen et al. Jul 1978 A
4127110 Bullara Nov 1978 A
4170742 Itagaki et al. Oct 1979 A
4206761 Cosman Jun 1980 A
4206762 Cosman Jun 1980 A
4265252 Chubbuck et al. May 1981 A
4281666 Cosman Aug 1981 A
4281667 Cosman Aug 1981 A
4340038 McKean Jul 1982 A
4354506 Sakaguchi et al. Oct 1982 A
4361153 Slocum et al. Nov 1982 A
4378809 Cosman Apr 1983 A
4385636 Cosman May 1983 A
4407296 Anderson Oct 1983 A
4471786 Inagaki et al. Sep 1984 A
4481950 Duggan Nov 1984 A
4494950 Fischell Jan 1985 A
4519401 Ko et al. May 1985 A
4556061 Barreras et al. Dec 1985 A
4593703 Cosman Jun 1986 A
4596255 Snell et al. Jun 1986 A
4614192 Imran et al. Sep 1986 A
4616640 Kaali et al. Oct 1986 A
4651740 Schroeppel Mar 1987 A
4653508 Cosman Mar 1987 A
4660568 Cosman Apr 1987 A
4676255 Cosman Jun 1987 A
4677985 Bro et al. Jul 1987 A
4719919 Moran et al. Jan 1988 A
4791936 Snell et al. Dec 1988 A
4793825 Benjamin et al. Dec 1988 A
4885002 Watanabe et al. Dec 1989 A
4911217 Dunn et al. Mar 1990 A
5074310 Mick Dec 1991 A
5113859 Funke May 1992 A
5117835 Mick Jun 1992 A
5160870 Carson et al. Nov 1992 A
5168869 Chirife Dec 1992 A
5218861 Brown et al. Jun 1993 A
5291899 Watanabe et al. Mar 1994 A
5381067 Greenstein et al. Jan 1995 A
5423334 Jordan Jun 1995 A
5445150 Dumoulin et al. Aug 1995 A
5495453 Wociechowski et al. Feb 1996 A
5619997 Kaplan Apr 1997 A
5620475 Magnusson Apr 1997 A
5704352 Tremblay et al. Jan 1998 A
5712917 Offutt Jan 1998 A
5721886 Miller Feb 1998 A
5724985 Snell et al. Mar 1998 A
5743267 Nikolic et al. Apr 1998 A
5749909 Schroeppel et al. May 1998 A
5757104 Getman et al. May 1998 A
5759199 Snell et al. Jun 1998 A
5800478 Chen et al. Sep 1998 A
5807258 Cimochowski et al. Sep 1998 A
5814089 Stokes et al. Sep 1998 A
5833603 Kovacs et al. Nov 1998 A
5861018 Feierbach Jan 1999 A
5891180 Greeninger et al. Apr 1999 A
5925001 Hoyt et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5957861 Combs et al. Sep 1999 A
5967989 Cimochowski et al. Oct 1999 A
6015387 Schwartz et al. Jan 2000 A
6070103 Ogden May 2000 A
6140740 Porat et al. Oct 2000 A
6141588 Cox Oct 2000 A
6162238 Kaplan et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167303 Thompson Dec 2000 A
6170488 Spillman, Jr. et al. Jan 2001 B1
6185452 Schulman et al. Feb 2001 B1
6185454 Thompson Feb 2001 B1
6185460 Thompson Feb 2001 B1
6198963 Haim et al. Mar 2001 B1
6198965 Penner et al. Mar 2001 B1
6198971 Leysieffer Mar 2001 B1
6200265 Walsh et al. Mar 2001 B1
6236889 Soykan et al. May 2001 B1
6237398 Porat et al. May 2001 B1
6248080 Miesel et al. Jun 2001 B1
6259951 Kuzma et al. Jul 2001 B1
6260152 Cole et al. Jul 2001 B1
6277078 Porat et al. Aug 2001 B1
6315721 Schulman et al. Nov 2001 B2
6432050 Porat et al. Aug 2002 B1
6442413 Silver Aug 2002 B1
6442433 Linberg Aug 2002 B1
6472991 Schulman et al. Oct 2002 B1
6473638 Ferek-Petric Oct 2002 B2
6577899 Lebel et al. Jun 2003 B2
6584352 Combs et al. Jun 2003 B2
6607485 Bardy Aug 2003 B2
6628989 Penner et al. Sep 2003 B1
6644322 Webb Nov 2003 B2
6664763 Echarri et al. Dec 2003 B2
6671552 Merritt et al. Dec 2003 B2
6712772 Cohen et al. Mar 2004 B2
6731976 Penn et al. May 2004 B2
6735532 Freed et al. May 2004 B2
6754538 Linberg Jun 2004 B2
6764446 Wolinsky et al. Jul 2004 B2
6799280 Edenfield et al. Sep 2004 B1
6804557 Kroll Oct 2004 B1
6826430 Faltys et al. Nov 2004 B2
6855115 Fonseca et al. Feb 2005 B2
6873869 Fischer Mar 2005 B2
6960801 Lung Nov 2005 B2
6970037 Sakhuja et al. Nov 2005 B2
6978181 Snell Dec 2005 B1
6985088 Goetz et al. Jan 2006 B2
6985773 Von Arx et al. Jan 2006 B2
6988215 Splett et al. Jan 2006 B2
6993393 Von Arx et al. Jan 2006 B2
7003349 Andersson et al. Feb 2006 B1
7013178 Reinke et al. Mar 2006 B2
7024248 Penner et al. Apr 2006 B2
7027871 Burnes et al. Apr 2006 B2
7027872 Thompson Apr 2006 B2
7060030 Von Arx et al. Jun 2006 B2
7061381 Forcier et al. Jun 2006 B2
7082334 Boute et al. Jul 2006 B2
7123964 Betzold et al. Oct 2006 B2
7198603 Penner et al. Apr 2007 B2
7203551 Houben et al. Apr 2007 B2
7212133 Goetz et al. May 2007 B2
7236821 Cates et al. Jun 2007 B2
7273457 Penner Sep 2007 B2
7283874 Penner Oct 2007 B2
7286872 Kramer et al. Oct 2007 B2
7319903 Bange et al. Jan 2008 B2
7335161 Von Arx et al. Feb 2008 B2
7353063 Simms, Jr. Apr 2008 B2
7469161 Gandhi et al. Dec 2008 B1
7479108 Rini et al. Jan 2009 B2
20010025139 Pearlman Sep 2001 A1
20020045921 Wolinsky et al. Apr 2002 A1
20020151770 Noll, III et al. Oct 2002 A1
20030114897 Von Arx et al. Jun 2003 A1
20040039424 Merritt et al. Feb 2004 A1
20040133092 Kain Jul 2004 A1
20040152999 Cohen et al. Aug 2004 A1
20050113705 Fischell et al. May 2005 A1
20050159785 Rueter Jul 2005 A1
20050288727 Penner Dec 2005 A1
20060020307 Davis et al. Jan 2006 A1
20060025834 Von Arx et al. Feb 2006 A1
20060031378 Vallapureddy et al. Feb 2006 A1
20060041287 Dewing et al. Feb 2006 A1
20060041288 Dewing et al. Feb 2006 A1
20060058627 Flaherty et al. Mar 2006 A1
20060064134 Mazar et al. Mar 2006 A1
20060064135 Brockway Mar 2006 A1
20060064142 Chavan et al. Mar 2006 A1
20060122667 Chavan et al. Jun 2006 A1
20060142819 Penner et al. Jun 2006 A1
20060149329 Penner Jul 2006 A1
20070142728 Penner et al. Jun 2007 A1
20070162090 Penner Jul 2007 A1
20070179549 Russie Aug 2007 A1
20070250126 Maile et al. Oct 2007 A1
20080071178 Greenland et al. Mar 2008 A1
20080103553 Penner et al. May 2008 A1
20080108915 Penner May 2008 A1
20080171941 Huelskamp et al. Jul 2008 A1
Foreign Referenced Citations (17)
Number Date Country
0 499 939 Aug 1992 EP
0 928 598 Dec 1998 EP
WO 9843338 Oct 1998 WO
WO 9934453 Jul 1999 WO
WO 0047109 Aug 2000 WO
WO 0128627 Apr 2001 WO
WO 0174278 Oct 2001 WO
WO0197907 Dec 2001 WO
WO 0203347 Jan 2002 WO
WO03002243 Jan 2003 WO
WO03096889 Nov 2003 WO
WO2005009535 Feb 2005 WO
WO2005053786 Jun 2005 WO
WO2006060668 Jun 2006 WO
WO2007080487 Jul 2007 WO
WO2007127696 Nov 2007 WO
WO2008118908 Oct 2008 WO
Related Publications (1)
Number Date Country
20060142819 A1 Jun 2006 US
Continuations (1)
Number Date Country
Parent 09989912 Nov 2001 US
Child 11276576 US
Continuation in Parts (1)
Number Date Country
Parent 09690015 Oct 2000 US
Child 09989912 US