The present disclosure relates to waste hauling and removing. In particular, the present disclosure teaches a system architecture and method for collecting, analyzing, and providing information for client interfaces related to waste hauling vehicles and the like which may be implemented with passive interrogation techniques so as to lessen the burden upon the vehicle operators while providing real time access via a GPS connection to a remote location (e.g., a fleet operator using a browser, mobile device or the like).
The collection and transportation of trash and recyclables from residential, commercial, industrial and large residential facilities is a major industry in the United States and throughout the civilized world. Typically, trash and recyclables are accumulated and temporarily stored in waste material receptacles such as trash cans and dumpsters. When filled, or at regularly scheduled intervals, trash and recyclables from the containers are transported for the eventual recycling. incineration and/or disposal into landfills.
Customers typically pay for trash and recyclables removal services based on the amount of trash and recyclables removed and the number of trash and recyclables pickups over a period of time. The compacting of trash and recyclables at a customer's location typically reduces the number of pickups. A successful trash and recyclables compactor is disclosed in U.S. Pat. No. 6,412,406, titled Trash Compactor and owned by Advanced Custom Engineered Systems & Equipment, Inc., Carol Stream, Ill.
These industrial, commercial and large residential bins and compactors are collected from different locations and hauled to a central location. Normally, those hauling the trash and recyclables are sent from a central location and dispatched to the different locations. In practice, paper logs or schedules document the hauler's runs (e.g., trash and recyclables to pick-up, trash and recyclables being picked-up, and trash and recyclables picked-up). The haulers are given their routes in person or over the phone. The haulers, in turn, keep in touch with the central location generally by cell phone or radio.
For large organizations this can be a very complicated task as there are many haulers and many customers needing their trash and recyclables collected, picked-up and hauled away. In addition, commercial, industrial and large residential (e.g., condos and apartment buildings) trash and recyclables compactors and balers must be monitored for maintenance and repair. This too requires time and energy for the haulers and/or representatives (of the service provider) to monitor and inspect.
It should also be recognized that these industrial, commercial and large residential bins, balers and compactors require both period maintenance and emergency demand repair services. Normally, those repairing the equipment are sent from a central location and dispatched to the different locations. In practice, paper logs or work orders document the repair person's time (e.g., drive time, time spent performing the repairs, parts and materials used, etc.). The repair companies use a variety of management tools. For example, some are given their routes in person or over the phone. The service providers, in turn, keep in touch with the central location generally by cell phone or radio.
For large organizations this can be very complicated to coordinate and to verify that the charges for these services are fair and accurate as there are many service providers and many customers needing their compactors, bins and balers repaired. This too requires time and energy for the haulers and/or representatives (of the service provider) to monitor and inspect. Furthermore, it may be desirous for certain waste hauling vehicle service providers to provide access and support to some but not all participating vehicles so as to enable connection by multiple fleet operators without a comingling of confidential vehicle fleet or route information.
In addition, it must be recognized that trash and recyclables compactors, balers and bins must further be monitored for maintenance and repair.
Methods of improving the refuse collection are disclosed in commonly assigned and U.S. Patent Application Publication No. 2008-0197194 A1, published on Aug. 21, 2008; U.S. Patent Application Publication No. 2008-0198021 A1, published on Aug. 21, 2008; and U.S. Patent Application Publication No. 2008-0202357 A1, published on Aug. 28, 2008. These publications are hereby incorporated by reference as if fully set forth herein, and generally disclose systems for communicating with receptacles, etc.
One opportunity that exists with refuse removal is to improve communication between the vehicles making refuse pick-ups (emptying receptacles) and the central station or dispatcher. Currently, the dispatcher may be in contact with the vehicle via radio or telephone transmission. However, it is not cost-effective or feasible for the dispatcher to be in constant contact with every vehicle out in the field. Thus, it is impossible for the dispatcher to relay account information associated with each receptacle to a vehicle. It would be advantageous to provide such information to the vehicle to prevent pick-up and emptying of receptacles owned or managed by entities delinquent in their payment of invoices. Also, a given account may have special instructions, such as an additional oversized pick-up, for a discrete single day or event. The dispatcher currently has no way of assuring that the special instructions are provided to the vehicle in a timely manner.
The applicants' co-pending inventions, such as those disclosed in U.S. patent application Ser. No. 15/406,970, provide solutions to these and other problems through the use of, for instance, RFID reading of waste containers coordinated with a central database to provide service fulfillment verification notice wirelessly to a remote terminal. However, depending upon the circumstances of the system requirement, there exist challenges whereby the RFID tags on waste containers may not be readable by the truck operator. Moreover, due to time limitations, it may be less desirable to require truck operator implementation, e.g., reading containers with a hand held scanner or by other RFID readers may be too time consuming and/or prone to error. Finally, due to errors in the RFID or similar tags (e.g., through mis-assignment of information during the assembly and deployment of the waste container, or mistaken switching of two waste containers), there can be the possibility that the RFID tag is read properly, but provides incorrect service fulfillment verification data to the truck fleet operator.
The present invention is provided to solve the problems discussed above and other problems, and to provide advantages and aspects not provided by prior waste and refuse collection systems and apparatuses of this type. A full discussion of the features and advantages of the present invention is deferred to the following detailed description, which proceeds with reference to the accompanying drawings.
One aspect of the present invention is directed to a system and method for recording customer service fulfillment events. The method comprises the steps of: (1) recording a series of body events (e.g., vehicle operation and waste service cycle steps) on a waste hauling truck; (2) determining whether the truck is located in a preselected zone or at a predetermined location; (3) and associating the body events with a waste service fulfillment event.
This aspect of the present invention may further comprise one or more of the following steps: (1) establishing a remote database having information associated with a customer location and a unique identifier for waste containers used by that customer; (2) providing multiple truck body sensor inputs to a controller unit on the truck, such sensor inputs including but not limited to engine transmission variable, GPS location, and waste disposal cycle events; (3) providing such sensor inputs from the controller unit to the remote data base for generating a waste fulfillment event; and (4) providing a waste fulfillment report associated with the customer location based upon the multiple body inputs and GPS location associated with the sensor; and 5) providing a reporting mechanism for the waste fulfillment event to the waste truck hauler.
Another aspect of the present invention is directed to actuating a truck mounted camera to verify the occurrence of a waste fulfillment event. This method comprises the step of issuing a signal from the remote database to the controller unit on the truck to actuate capturing data by the camera in response to receiving a predetermined sequence of truck body sensor inputs in combination with GPS information corresponding to a preselected service zone and/or a customer location. This step can further permit the reading by the truck mounted camera of one or more unique identifiers located (for instance) on the waste container being disposed.
Other features and advantages of the invention will be apparent from the following specification taken in conjunction with the following drawings.
To understand the present invention, it will now be described by way of example, with reference to the accompanying drawings in which:
While this invention is susceptible of embodiments in many different forms, there is shown in the drawings and will herein be described in detail preferred embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to the embodiments illustrated.
Referring to
As shown in
The identifier associated with the receptacle is preferably a discreet identifier which is assigned to the receptacle 100. The identifier information is stored on a database typically located at the external site 300, and electronically joined with an account to which the receptacle 100 belongs. In other words, account information is housed on a database located at the external site 300. Each account has one or more receptacle identifiers associated with it, and the database carries with it information typical to the management of any business account, for example, special instructions, accounts receivable, last receipt, last invoice, amount in arrears, days since last payment, historical account information, contact information, owner, etc.
Referring to
Each of the vehicles 200a-d includes a waste bin 202 located above a baseline upon which the vehicle 200a-d is supported, generally the ground. The waste bin 202 includes a chamber 204 and an emptying site 206. The refuse within the receptacles 100 is loaded into the chamber 204 via the emptying site 206 (with most variants also providing a lift arm 212 or similar lift mechanism). One of ordinary skill in the art of waste hauling would readily understand this method of refuse handling without further description as it is the standard procedure employed in the art.
The vehicles 200a-d are further outfitted with at least one vehicle operation transceiver 208a (e.g., a parking brake sensor, a wheel lock sensor, a gear shift sensor), as well as at least one waste disposal cycle transceiver, and preferably multiple sensors (e.g., a blade sensor, a fork sensor or the like) and preferably multiple waste disposal cycle transceivers. In addition, the vehicle preferably includes one or more cameras 208b for capturing data associated with a waste cycle event. The transceivers 208a may be sensors, transducers, or antennae, or any combination thereof. As understood from prior disclosures from which the present invention claims priority, additional transceivers may be located on the truck 200 for receiving a signal from the transmitting means 102 on the receptacles 100 and send a corresponding signal via wire, wireless, or any other medium to an on-board communication or data link 210. The signal from a given transceiver 208a may be response signal to the energy in the form of the signal transmitted by the transmitter means 102, or the signal may simply be a pass through signal, including conversion from a wireless signal to a signal carried by another medium such as a wire.
As shown in the block diagram of
The external site 300 may include a server 302 in communication with computer 304 and a database 306, typically on the computer 304. Of course, the server 300 is not required to be at the same physical site as the computer 304, nor is it required for the database 306 to be stored on a computer separate from the server 302. The block diagram is merely an example of a possible layout. The only requirement for the external site 300 is the database 306 and a means for communication between the vehicles and database 306.
The vehicle operation receivers 208a of the present invention will sense a vehicle operating condition (e.g., breaking or parking the vehicle) which is indicative of a waste service fulfillment event). Likewise, the waste cycle event receivers will sense one or more events corresponding to a waste service fulfillment event. In the event that such inputs from the vehicle operating and waste cycle receivers 208a are provided to the controller, and those events occur when the GPS sensor of controller 214 determines that the truck 200 is located at a previously identified customer's location that is recorded in the database 306, then such information: will be used by the database 306 to generate a waste service fulfillment event (e.g., refuse is being picked up from the customer's location). Further, the database 306 will optionally prompt a control signal back to the vehicle 200 to cause the camera 208b to begin recording data corresponding to the waste receptacle 100 being serviced. Thus, the claimed system can be used in place of or in confirmation of an RFID reading process to read the RFID tags 102 on the receptacle 100.
The architecture for providing the communication between the vehicle and the database can comprise a queue-based message architecture. The system includes an asynchronous publication of business event messages (e.g., service fulfillment events) via a controller 214/GPS hardware connector connected to the vehicle and connected by a vehicle electrical bus to one or more transceivers 208a which can interrogate the vehicle and pass information onto the controller 214/GPS hardware connector without requiring interrogation activities by the vehicle operators. The controller 214/GPS hardware connector then sends the events to provide messages to one or more distributed client locations, so as to enable asynchronous business event publication. Thus, each client is sent messages which are maintained and persist in a queue until a remote client location (e.g., whether database 306, server or a browser or a mobile device with an appropriate application) acknowledges that the message has been received and processed. This arrangement enables the components or layers of the system to execute independently while still interfacing with each other.
Specific architecture components for enabling such a messaging system include the Amazon Simple Queue Service (SQS), which enables decoupling of the components of a cloud application. The SQS jumpstart resources can enable a variety of web protocols and languages for use with such messaging to clients, including .NET, Java, JavaScript, PHP, Python, Ruby and JMS). Alternatively, clients can access their queues via standards-based APIs (e.g., SOAP/REST over HTTPS). Of course, this architecture can support client mobile application development for use with publicly available mobile operating systems, such as Android or iOS. Data security for the messages can be provided with keyed-hash message authentication codes (HMACs), such as HMAC-SHA signatures and binary to text encoding such as Base64.
This architecture enables real-time or near-real time web services for data inquiries by clients through such interfaces. The service provider exposes an API stack to enable consumers to fetch specific data sets. A client or the service provider can query current information or aggregate summaries on-demand. Moreover, customers can quickly develop customer applications to call service provider APIs, which are preferably built upon open standards.
Data received from the vehicles is secured and stored by the service provider on a remote server farm 302 and can be accessed by the customer for historical analysis. Customers can view aggregate data sets to understand more about their inefficiencies and identify opportunities for improvement Reports provide user-friendly visualizations for business users to easily pinpoint trends, patterns, and operational anomalies.
The messages provided by the present system architecture enable the service provider to continuously recognize and capture discrete events from receivers 208a as they occur. Such events include, for example GPS/vehicle Positions, rule exceptions, engine faults, vehicle status changes and trip updates. The service provider may thus publish near real-time event streams to the above mentioned customer applications (i.e., the subscribers). The customers, in turn, can control how to react to the received events. For example, customers (either by themselves or with the service provider) can generate business rules to dictate a specific response based upon the published event type. Customers can thus key off of events, trends and patterns in the published messages to make real-time business decisions to improve fleet deployment and service fulfillment.
While the specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention, and the scope of protection is only limited by the scope of the accompanying Claims.
Application PCT/US2017/025569 claims the benefit of U.S. Provisional Application 62/316,263 filed on Mar. 31, 2016. In addition, this application is a continuation-in-part of application Ser. No. 15/406,970, filed on Jan. 16, 2017, which is a continuation of Ser. No. 14/269,771, now U.S. Pat. No. 9,546,040, filed on May 5, 2014, which is a continuation of Ser. No. 13/353,900, now U.S. Pat. No. 8,714,440, filed on Jan. 19, 2012, which was a continuation of application Ser. No. 12/274,273, now U.S. Pat. No. 8,146,798, filed on Nov. 19, 2008, which was a continuation-in-part of application Ser. No. 12/267,367, filed on Nov. 7, 2008 and application Ser. No. 12/267,340, now U.S. Pat. No. 8,815,277, also filed on Nov. 7, 2008. This application is a continuation of U.S. patent application Ser. No. 15/011,940, filed on Feb. 1, 2016, which is a continuation of application Ser. No. 13/895,138, now U.S. Pat. No. 9,251,388, filed on May 15, 2013. Each application is hereby incorporated by reference as if fully set forth herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/025569 | 3/31/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/173381 | 10/5/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3636863 | Woyden | Jan 1972 | A |
3765147 | Ippolito et al. | Oct 1973 | A |
4854406 | Appleton et al. | Aug 1989 | A |
4953109 | Burgis | Aug 1990 | A |
4955495 | Ruebesam | Sep 1990 | A |
5004392 | Naab | Apr 1991 | A |
5014206 | Scribner et al. | May 1991 | A |
5119894 | Crawford et al. | Jun 1992 | A |
5209312 | Jensen | May 1993 | A |
5222853 | Carson | Jun 1993 | A |
5230393 | Mezey | Jul 1993 | A |
5303642 | Durbin et al. | Apr 1994 | A |
5304744 | Jensen | Apr 1994 | A |
5326939 | Schafer | Jul 1994 | A |
5389346 | Copeland, Jr. | Feb 1995 | A |
5401915 | Schafer | Mar 1995 | A |
5416706 | Hagenbuch | May 1995 | A |
5464489 | De Graaf | Nov 1995 | A |
5565846 | Geiszler | Oct 1996 | A |
5631835 | Hagenbuch | May 1997 | A |
5644489 | Hagenbuch | Jul 1997 | A |
5726884 | Sturgeon et al. | Mar 1998 | A |
5740050 | Ward, II | Apr 1998 | A |
5837945 | Cornwell et al. | Nov 1998 | A |
5861805 | Reeves | Jan 1999 | A |
5909480 | Reynaud et al. | Jun 1999 | A |
5947256 | Patterson | Sep 1999 | A |
5967028 | Schomisch et al. | Oct 1999 | A |
6021712 | Harrop | Feb 2000 | A |
6055902 | Harrop et al. | May 2000 | A |
6170318 | Lewis | Jan 2001 | B1 |
6191691 | Serrault | Feb 2001 | B1 |
6206282 | Hayes, Sr. et al. | Mar 2001 | B1 |
6302461 | Debras et al. | Oct 2001 | B1 |
6318636 | Reynolds et al. | Nov 2001 | B1 |
6412406 | Flood et al. | Jul 2002 | B1 |
6421080 | Lambert | Jul 2002 | B1 |
6429776 | Alicot et al. | Aug 2002 | B1 |
6448898 | Kasik | Sep 2002 | B1 |
6510376 | Burnstein et al. | Jan 2003 | B2 |
6600418 | Francis et al. | Jul 2003 | B2 |
6601015 | Milvert et al. | Jul 2003 | B1 |
6647200 | Tanaka | Nov 2003 | B1 |
6759959 | Wildman | Jul 2004 | B2 |
7225980 | Ku et al. | Jun 2007 | B2 |
7256682 | Sweeney, II | Aug 2007 | B2 |
7275645 | Mallett et al. | Oct 2007 | B2 |
7318529 | Mallett et al. | Jan 2008 | B2 |
7328842 | Wagner et al. | Feb 2008 | B2 |
7385510 | Childress et al. | Jun 2008 | B2 |
7436303 | Tourrilhes et al. | Oct 2008 | B2 |
7454358 | Mallett et al. | Nov 2008 | B2 |
7456418 | Stevens et al. | Nov 2008 | B1 |
7487100 | Mallett et al. | Feb 2009 | B2 |
7501951 | Maruca et al. | Mar 2009 | B2 |
7511611 | Sabino et al. | Mar 2009 | B2 |
7518506 | Lee et al. | Apr 2009 | B2 |
7525443 | Littrell | Apr 2009 | B2 |
7591421 | Linton et al. | Sep 2009 | B2 |
7609406 | Roth et al. | Oct 2009 | B2 |
7639136 | Wass et al. | Dec 2009 | B1 |
7660724 | Mallett et al. | Feb 2010 | B2 |
7728730 | Langlois et al. | Jun 2010 | B2 |
7870042 | Maruca et al. | Jan 2011 | B2 |
8014863 | Zhang et al. | Sep 2011 | B2 |
8015029 | Flood | Sep 2011 | B2 |
8020767 | Reeves et al. | Sep 2011 | B2 |
8056817 | Flood | Nov 2011 | B2 |
8109759 | Robertson et al. | Feb 2012 | B2 |
8146798 | Flood et al. | Apr 2012 | B2 |
8165277 | Chen et al. | Apr 2012 | B2 |
8185277 | Flood et al. | May 2012 | B2 |
8210428 | Flood | Jul 2012 | B2 |
8714440 | Flood et al. | May 2014 | B2 |
9251388 | Flood | Feb 2016 | B2 |
9396453 | Hynes et al. | Jul 2016 | B2 |
20010028032 | Church et al. | Oct 2001 | A1 |
20020077875 | Nadir | Jun 2002 | A1 |
20020103623 | Hasegawa | Aug 2002 | A1 |
20020105424 | Alicot et al. | Aug 2002 | A1 |
20020163577 | Myers | Nov 2002 | A1 |
20020180588 | Erickson et al. | Dec 2002 | A1 |
20020196150 | Wildman | Dec 2002 | A1 |
20030025599 | Monroe | Feb 2003 | A1 |
20030031543 | Elbrink | Feb 2003 | A1 |
20030069716 | Martinez | Apr 2003 | A1 |
20030071736 | Brazier et al. | Apr 2003 | A1 |
20040123812 | Condon | Jul 2004 | A1 |
20040133484 | Kreiner et al. | Jul 2004 | A1 |
20040145472 | Schmidtberg et al. | Jul 2004 | A1 |
20040199401 | Wagner et al. | Oct 2004 | A1 |
20040215351 | Kiire et al. | Oct 2004 | A1 |
20040233284 | Lesesky et al. | Nov 2004 | A1 |
20040257203 | Maltsev et al. | Dec 2004 | A1 |
20050018049 | Falk | Jan 2005 | A1 |
20050080520 | Kline et al. | Apr 2005 | A1 |
20050088299 | Bandy et al. | Apr 2005 | A1 |
20050126405 | Imperato | Jun 2005 | A1 |
20060012481 | Rajapakse et al. | Jan 2006 | A1 |
20060032917 | Ritter | Feb 2006 | A1 |
20060080819 | McAllister | Apr 2006 | A1 |
20060157206 | Weik et al. | Jul 2006 | A1 |
20060177119 | McPheely et al. | Aug 2006 | A1 |
20060208072 | Ku et al. | Sep 2006 | A1 |
20060208859 | Hougen et al. | Sep 2006 | A1 |
20060220922 | Brinton et al. | Oct 2006 | A1 |
20060221363 | Roth et al. | Oct 2006 | A1 |
20060253297 | Mallett et al. | Nov 2006 | A1 |
20060273180 | Ammond et al. | Dec 2006 | A1 |
20070014693 | Kantrowitz et al. | Jan 2007 | A1 |
20070025600 | Ghebreyesus | Feb 2007 | A1 |
20070033108 | Luhr | Feb 2007 | A1 |
20070085676 | Lee et al. | Apr 2007 | A1 |
20070109103 | Jedrey et al. | May 2007 | A1 |
20070112620 | Johnson et al. | May 2007 | A1 |
20070126592 | Littrell | Jun 2007 | A1 |
20070143079 | Duxbury et al. | Jun 2007 | A1 |
20070217761 | Chen et al. | Sep 2007 | A1 |
20070227125 | Robertson et al. | Oct 2007 | A1 |
20070236352 | Allen et al. | Oct 2007 | A1 |
20070250339 | Mallett et al. | Oct 2007 | A1 |
20070257857 | Marino et al. | Nov 2007 | A1 |
20070260466 | Casella et al. | Nov 2007 | A1 |
20070262878 | Maruca et al. | Nov 2007 | A1 |
20070268759 | Sabino | Nov 2007 | A1 |
20080001746 | Childress et al. | Jan 2008 | A1 |
20080010197 | Scherer | Jan 2008 | A1 |
20080061125 | Langlois et al. | Mar 2008 | A1 |
20080061977 | Maruca | Mar 2008 | A1 |
20080077541 | Scherer et al. | Mar 2008 | A1 |
20080169342 | Gonen | Jul 2008 | A1 |
20080185540 | Turner et al. | Aug 2008 | A1 |
20080197059 | Mallett et al. | Aug 2008 | A1 |
20080197194 | Flood | Aug 2008 | A1 |
20080198021 | Flood | Aug 2008 | A1 |
20080202357 | Flood | Aug 2008 | A1 |
20080211637 | Smith | Sep 2008 | A1 |
20080237251 | Barber | Oct 2008 | A1 |
20080275287 | Stevens et al. | Nov 2008 | A1 |
20080297314 | Kuwako et al. | Dec 2008 | A1 |
20080308631 | Mitschele et al. | Dec 2008 | A1 |
20090276299 | Gonen et al. | Nov 2009 | A1 |
20100088203 | Hynes et al. | Apr 2010 | A1 |
20100116881 | Flood et al. | May 2010 | A1 |
20100119340 | Flood et al. | May 2010 | A1 |
20100119341 | Flood et al. | May 2010 | A1 |
20100167704 | Villemaire | Jul 2010 | A1 |
20110279245 | Hynes et al. | Nov 2011 | A1 |
20120120449 | Flood et al. | May 2012 | A1 |
20130311038 | Kim | Nov 2013 | A1 |
20140182951 | Curotto | Jul 2014 | A1 |
20140239059 | Flood et al. | Aug 2014 | A1 |
20170109804 | Zabian | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
2005211634 | Apr 2007 | AU |
2006225303 | Apr 2008 | AU |
2678933 | Oct 2016 | CA |
102536665 | Jul 2012 | CN |
3933795 | Apr 1991 | DE |
19708204 | Dec 1999 | DE |
0500213 | Aug 1992 | EP |
0557238 | May 1997 | EP |
0899215 | Mar 1999 | EP |
2464272 | Apr 2010 | GB |
2464272 | Feb 2011 | GB |
7033455 | Mar 1995 | JP |
09245168 | Sep 1997 | JP |
3-241180 | Dec 2001 | JP |
2003-246409 | Sep 2003 | JP |
2004-137042 | May 2004 | JP |
2005-008339 | Jan 2005 | JP |
2005-063217 | Mar 2005 | JP |
2005-067850 | Mar 2005 | JP |
2006-44483 | Feb 2006 | JP |
2006-163324 | Jun 2006 | JP |
2006-215857 | Aug 2006 | JP |
2007-33455 | Feb 2007 | JP |
2007-063014 | Mar 2007 | JP |
6-044483 | Dec 2016 | JP |
10-2006-0005812 | Jan 2006 | KR |
10-2006-0026226 | Mar 2006 | KR |
20060109306 | Oct 2006 | KR |
10-2007-0032381 | Mar 2007 | KR |
10-0732381 | Jun 2007 | KR |
728050 | Jun 2007 | KR |
2230015 | Jun 2004 | RU |
113395 | Feb 2012 | RU |
9703768 | Feb 1997 | WO |
9838593 | Sep 1998 | WO |
9939899 | Aug 1999 | WO |
2008103820 | Oct 2008 | WO |
2010054232 | May 2010 | WO |
WO-2013133464 | Sep 2013 | WO |
WO-2014112659 | Jul 2014 | WO |
WO-2016076587 | May 2016 | WO |
Entry |
---|
M.A. Hannan, “RFID and Communication Technologies for Solid Waste Bin and Truck Monitoring System”, 2011, Waste Management, vol. 31, Issue 12, pp. 2406-2413, Dec. 2011, Abstract, and Highlights. (Year: 2011). |
Radovan Novotny, “Smart City Concept, Applications and Services”, Telecommun System Management, 2014, pp. 1-8. (Year: 2014). |
Radovan Novotny, “Smart City Concept, Applications and Services” 2014, Journal of Telecommunications System & Management, 2014, vol. 3, Issue 2, pp. 1-8. (Year: 2014). |
Mitch Bryson, “Vehicle Model Aided Inertial Navigation for a UAV using Low-cost Sensors,” 2006, ARC Center of Excellence in Autonomous Systems, University of Sydney, NSW 2006, pp. 1-9. (Year: 2006). |
Exhibits to Petition for Inter Parties Review of U.S. Pat. No. 8,146,798 Pursuant to 35 U.S.C. Secs. 311-319, 37 C.F.R. Section 42, Oct. 31, 2018. |
PCT International Search Report and Written Opinion of the International Searching Authority dated Aug. 14, 2017. |
Dec. 11, 2018—U.S. Non-Final Office Action—U.S. Appl. No. 15/406,970. |
International Search Report for PCT/US2008/054571 dated Aug. 14, 2008. |
International Preliminary Report on Patentability for PCT/US2008/054571 dated Aug. 26, 2009. |
Written Opinion of ISA for PCT/US2008/054571 dated Aug. 14, 2008. |
International Search Report for PCT/US2009/063601 dated Mar. 12, 2010. |
International Preliminary Reporton Patentability for PCT/US2009/063601 dated May 10, 2011. |
Written Opinion of ISA for PCT/US2009/063601 dated Mar. 12, 2010. |
Supplementary European Search Report for EP 08730384 dated Oct. 17, 2011. |
First Examination Report for EP 08730384.8 dated Nov. 22, 2012. |
Petition for Inter Partes Review of U.S. Pat. No. 8,146,798 Pursuant to 35 U.S.C. Secs. 311-319, 37 C.F.R. Section 42 (80 pages), Oct. 31, 2018. |
Petitioner's Reply to Patent Owner's Response to Petition, Case No. IPR2018-00139 dated Jan. 25, 2019 (30 pages). |
Petitioner's Demonstratives, Petitioner Document 1033 in Case No. IPR2018-00139 involving U.S. Pat. No. 8,146,798, dated Feb. 15, 2019, (50 pages). |
Exhibit 1032 of Petitioner's Reply to Patent Owner's Response to Petition served Jan. 25, 2019 entitled Morgan D. Rosenberg—Essentials of Patent Claim Drafting (2019 Edition) Section 3.02 (12 pages). |
Final Written Decision, Case IPR201 8-00139, U.S. Pat. No. 8,146,798, Paper No. 35 dated May 20, 2019 (36 pages). |
Nov. 8, 2018—U.S. Non-Final Office Action—U.S. Appl. No. 14/593,764. |
May 17, 2019—U.S. Non-Final Office Action—U.S. Appl. No. 15/011,940. |
Jul. 26, 2019—(CA) Office Action Appl No. 3,019,645. |
Oct. 18, 2019—U.S. Non-Final Office Action—U.S. Appl. No. 14/593,764. |
Local Patent Rule 2.3 Disclosures from Sonrai Systems, LLC, et al. v. AMCS Group, Inc., No. 1:16-cv-9404, Oct. 2017. |
Sep. 13, 2019—U.S. Final Office Action—U.S. Appl. No. 15/011,940. |
First Amended Complaint, Sonrai Systems, LLC and Advanced Custom Engineered Systems & Equipment Co. v. AMCS Group Inc., Lakeshore Recycling Systems, LLC and Rehrig Pacific Company, Civil Action No. 1:16 cv 9404, Dec. 7, 2016. |
Chowdhury, Belal and Chowdhury, Morshed U., “RFID-based Real-time Smart Waste Management System”, Australasian Telecommunication Networks and Applications Conference, Dec. 2-5, 2007, Christchurch, New Zealand. |
Wyatt, Josh, “Maximizing Waste Management Efficiency Through the Use of RFID”, Texas Instruments, Apr. 2008. |
O'Connor Mary Catherine, “Greek RFID Pilot Collects Garbage”, RFID Journal, 2007. |
McAdams Cheryl L., “RFID the Missing Link to Comprehensive Automated Refuse Collection and Recycling”, Waste Age, Apr. 1994, pp. 143-144, 147. |
Aug. 14, 2017—(WO) International Search Report and Written Opinion—App PCT/US2017/025569. |
Number | Date | Country | |
---|---|---|---|
20190087790 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62316263 | Mar 2016 | US |