The present disclosure relates generally to gas turbine engines and more particularly relates to systems and methods for a multi-fuel premixing nozzle with integral liquid injectors/evaporators.
The operational efficiency and the overall power output of a gas turbine engine generally increases as the temperature of the hot combustion gas stream increased. High combustion gas stream temperatures, however, may produce higher levels of nitrogen oxides (NOx). Such emissions may be subject to both federal and state regulations in the U.S. and also may be subject to similar regulations abroad. A balancing act thus exists between the benefits of operating the gas turbine engine in an efficient high temperature range while also ensuring that the output of nitrogen oxides and other types of regulated emissions remain well below mandated levels. Moreover, varying load levels, varying ambient conditions, and other types of operational parameters also may have a significant impact on overall gas turbine efficiency and emissions.
Several types of known gas turbine engine designs, such as those using Dry Low NOx (“DLN”) combustors, generally premix the flow of fuel and the flow of air upstream of a reaction or a combustion zone so as to reduce NOx emissions via a number of premixing fuel nozzles. Such premixing tends to reduce peak flame temperatures and, hence, NOx emissions.
For fuel flexibility and power system availability, low emissions gas turbines are often equipped with a system to inject a liquid fuel as a secondary or a backup fuel in addition to the gas premixers. The liquid fuel injectors may be inserted through the center of the gas premixers. Because the liquid fuel may not evaporate and premix sufficiently with the air prior to combustion, large quantities of water may be injected into the combustion zone so as to reduce the flame temperatures and the resultant NOx emissions. A significant and expensive volume of water thus may be required when operating with such a liquid fuel. Moreover, water injection may lower overall gas turbine efficiency.
There is thus a desire for an improved dual fuel premixing nozzle. Such a premixing nozzle may accommodate a secondary fuel such as a liquid fuel with reduced overall water consumption or without any water injection while maintaining gas turbine thermal efficiency and power generation.
Some or all of the above needs and/or problems may be addressed by certain embodiments of the present disclosure. According to an embodiment, there is disclosed a fuel nozzle assembly for a gas turbine engine. The fuel nozzle assembly may include a premixing chamber formed between an outer annular shroud and an inner annular hub, a number of swirler vanes disposed about the premixing chamber between the outer annular shroud and the inner annular hub, one or more liquid fuel injectors positioned about the swirler vanes, and a flow of liquid fuel in communication with the one or more liquid fuel injectors.
In another embodiment, a gas turbine engine is disclosed. The gas turbine engine may include a compressor, a combustor in communication with the compressor, and a turbine in communication with the combustor. The combustor may include a fuel nozzle assembly. The fuel nozzle assembly may include a premixing chamber formed between an outer annular shroud and an inner annular hub, a number of swirler vanes disposed about the premixing chamber between the outer annular shroud and the inner annular hub, one or more liquid fuel injectors positioned about the swirler vanes, a flow of liquid fuel in communication with the one or more liquid fuel injectors.
According to another embodiment, a fuel nozzle assembly for a gas turbine engine is disclosed. The fuel nozzle may include a premixing chamber formed between an outer annular shroud and an inner annular hub, a number of swirler vanes disposed about the premixing chamber between the outer annular shroud and the inner annular hub, one or more liquid fuel injectors positioned about a trailing edge of the swirler vanes, and a flow of liquid fuel in communication with the one or more liquid fuel injectors. The liquid fuel may include a distillate, biodiesel, ethanol, a heavy carbon gases in liquid phase, or a combination thereof. The one or more fuel injectors may inject with atomization the flow of liquid fuel into the premixing/evaporating chamber.
Other embodiments, aspects, and features of the disclosure will become apparent to those skilled in the art from the following detailed description, the accompanying drawings, and the appended claims.
Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale.
Illustrative embodiments will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments are shown. The present disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Like numbers refer to like elements throughout.
Referring now to the drawings, in which like numerals refer to like elements throughout the several views,
The gas turbine engine 10 may use natural gas, liquid fuels, various types of syngas, and/or other types of fuels and blends thereof. The gas turbine engine 10 may be any one of a number of different gas turbine engines offered by General Electric Company of Schenectady, New York, including, but not limited to, those such as a 7 or a 9 series heavy duty gas turbine engine and the like. The gas turbine engine 10 may have different configurations and may use other types of components. Other types of gas turbine engines also may be used herein. Multiple gas turbine engines, other types of turbines, and other types of power generation equipment also may be used herein together.
Generally described, the premixing fuel nozzle 100 may include an outer annular shroud 102. The outer annular shroud 102 may extend from an air inlet 104 on an upstream end thereof and may end about the combustion zone 60 at a downstream end thereof. The outer annular shroud 102 may surround an inner annular wall or a hub 106. The hub 106 may extend from a fuel nozzle flange 108 at the upstream end thereof and may end upstream of the end of the outer annular shroud 102. The outer annular shroud 102 and the hub 106 may define a premixing chamber 110 there between. The premixing chamber 110 may be in communication with the flow of air 20 from the compressor 15 or elsewhere.
The premixing fuel nozzle 100 also may include a number of tubes defining discrete passages for the flow of different types of fluids. For example, the premixing fuel nozzle 100 may include a number of tubes that define a number of fuel circuits. The tubes may have any suitable size, shape, or configuration. For example, a pilot fuel passage 112 may extend through the middle of the premixing fuel nozzle 100 from the fuel nozzle flange 108 to a pilot tip 114. The pilot tip 114 may comprise a direct injection pilot nozzle. That is, the pilot fuel passage 112 and pilot tip 114 may be used for flows of liquid or gas fuels or other types of fluids for direct injection into the combustion zone 60. For example, the pilot fuel passage 112 may include a flow of water and/or other types of fluids could be used herein. Other passages also may be used herein. Other components and other configurations may be used herein.
A number of swirler vanes 116 may extend from the hub 106 to or about the outer annular shroud 102. The swirler vanes 116 may have any suitable size, shape, or configuration. As discussed in greater detail below, a number of fuel injectors 118 may be positioned about the swirler vanes 116. For example, each swirler vane 116 may include one or more fuel injectors 118. In some instances, each swirler vane 116 may include 10, 20, 30, 40, 50, or more fuel injectors 118. Any number of fuel injectors 118 may be used herein. In some instances, the fuel injectors 118 may be arranged in a circumferential array at the same radial location about the swirler vanes 116. In other instances, the fuel injectors 118 may be arranged in a number of circumferential arrays about the swirler vanes 116. The fuel injectors 118 may be disposed at any location and in any configuration or pattern about the swirler vanes 116.
The fuel injectors 118 may act as liquid fuel injectors for injecting and atomizing a liquid fuel into the premixing chamber 110. In some instances, the fuel injectors 118 may be disposed about a radial midpoint of each swirler vane 116. In other instances, the fuel injectors 118 may be disposed about a trailing edge of the swirler vanes 116. The fuel injectors 118 may be disposed at any location(s) on the swirler vanes 116. The fuel injectors 118 may be in communication with a flow of liquid fuel 120. For example, the premixing fuel nozzle 100 may include a liquid fuel system 122. The liquid fuel system 122 may provide the flow of liquid fuel 120, which may be a liquid fuel (such as a distillate, biodiesel, ethanol, or the like) or a liquid gas (such as heavy carbon gases, etc.). The liquid fuel system 122 may include a liquid fuel passage 124, which may provide the liquid fuel 120 to the fuel injectors 118. For example, the liquid fuel passage 124 may extend from the gas fuel nozzle flange 108 to the fuel injectors 118 about the swirler vanes 116. In some instances, the liquid fuel passage 124 may form a coil about a portion of the pilot fuel passage 112. The swirler vanes 116 and the fuel injectors 118 thus may provide liquid fuel/air mixing. The flow of air 20 and the flow of liquid fuel 120 may begin to mix within the premixing chamber 110 at or downstream of the swirler vanes 116 and flow into the combustion zone 60. Other components and other configurations may be used herein.
For example, the single sided atomizer 142 may include a liquid fuel conduit 144 in fluid communication with the liquid fuel passage 124. The liquid fuel conduit 144 may exit into a cavity 146 disposed within the swirler vane 116. The cavity 146 may include an orifice 148 on a first side 150 of the swirler vane 116. A second side 152 of the swirler vane 116 may not include an orifice. The orifice 148 may inject and atomize the liquid fuel 120 on one side of the swirler vane 116.
Although embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that the disclosure is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as illustrative forms of implementing the embodiments.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/RU2015/000540 | 8/26/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/034435 | 3/2/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5085575 | Keller et al. | Feb 1992 | A |
5295352 | Beebe et al. | Mar 1994 | A |
5351477 | Joshi et al. | Oct 1994 | A |
5408825 | Foss et al. | Apr 1995 | A |
5511375 | Joshi | Apr 1996 | A |
7140560 | Stotts et al. | Nov 2006 | B2 |
7377036 | Johnson | May 2008 | B2 |
8418469 | Myers et al. | Apr 2013 | B2 |
8511094 | Rising | Aug 2013 | B2 |
9010119 | Myers | Apr 2015 | B2 |
9217570 | Parsania et al. | Dec 2015 | B2 |
20060236700 | Saitoh et al. | Oct 2006 | A1 |
20100077760 | Laster et al. | Apr 2010 | A1 |
20160169110 | Myers et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1 323 982 | Jul 2003 | EP |
2 366 952 | Sep 2011 | EP |
2 660 521 | Nov 2013 | EP |
2004029515 | Apr 2004 | WO |
Entry |
---|
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/RU2015/000540 dated Jun. 1, 2016. |
International Preliminary Report on Patentability issued in connection with corresponding PCT Application No. PCT/RU2015/000540 dated Feb. 27, 2018. |
Number | Date | Country | |
---|---|---|---|
20190011130 A1 | Jan 2019 | US |