1. Field of Invention
This invention relates to a sputter target/backing plate joining technique and assemblies made thereby.
2. Description of Related Art
Targets and backing plates are known wherein one of the joining, interfacial surfaces is machined, or otherwise formed, to have a plurality of ridges or other salient target surface portions. The ridges or other salient target surface portions are formed along a mating surface of the target or backing plate. The ridged surface is then placed along a corresponding mating surface of the other of the target or backing plate. Joining of the target and backing plate is then achieved under the influence of selected pressures and temperatures. For example, HIP or hot pressing techniques may be used to achieve the desired joining of the target to the backing plate. In some cases, an intermediate layer is used to improve bonding strength.
The use of increasing operating powers in present day sputtering systems has led to increased target/backing plate delamination. Accordingly, a need exists for a target and backing plate assembly that has increased bond strength so as to inhibit target/backing plate separation.
This invention provides a target and backing plate of dissimilar mechanical properties, wherein one of the target and backing plate is machined, or otherwise formed, to have a plurality of ridges and grooves, or other salient surface portions to form a mating surface having negative angled cavities into which diffusion bonding of one material with the other material may occur. As a result, a mechanical interlock having increased bonding strength occurs between the target and the backing plate. In addition, diffusion bonding of the material forming the target with the material forming the backing plate also occurs. The combination of the mechanical interlock with the diffusion bonding of the dissimilar materials of the target and backing plate provides a target and backing plate assembly with increased strength.
The mating surface is thus placed alongside a corresponding mating surface of the other of the target and backing plate to form an interface between the target and backing plate. The target and backing plate are then joined applying high pressure and selected temperature conditions appropriate to the materials used to form the target and backing plate.
The projection of the plurality of ridges formed along the one of the target and backing plate penetrate into corresponding grooves, or mating members, on the other of the target and backing plate to permit the diffusion bonding of the opposed mating surface materials to occur at the interface between the target and backing plate.
In one aspect of the invention, “dove-tail” or tenon-like projections are provided in place of, or in addition to, the plurality of ridges on the mating surface of one of the target and backing plate. The dove-tail portions provide a mechanical interlock with corresponding receiving channels on the other of the target and backing plate. The dove-tail portions may be located either at the outside perimeter of the target or backing plate, with corresponding receiving members on the other of the target or backing plate. Alternatively, multiple dove-tail portions may be provided interior of the outside diameter of the target or backing plate with corresponding receiving channels on the other of the target and backing plate. The combination of the dove-tail portions and the corresponding receiving channels provides a mechanical interlock at each combination thereof, and the negative angled cavities formed by the interface of the dove-tailed portions and receiving channels permit diffusion bonding of dissimilar target and backing plate materials.
In another aspect of the invention the dove-tail portions are generally trapezoidally shaped. A calculated mismatch in the height of one dove-tail portion versus another dove-tail portion is provided to achieve mechanical interlocks at various positions along the interface of the target and the backing plate. The varying positions of the mechanical interlocks also permit diffusion bonding to occur at various depths along the interface of the target and backing plate according to the negative angles created by the different height dimensions of the dove-tail portions.
In various exemplary embodiments of the systems and methods of the invention, the target and backing plate are pressed together such that the plurality of ridges, or other salient portions, such as the dove-tail portions, are pressed together to form an assembly. The softer material of the target and backing plate will flow into the negative angled cavities formed by the plurality of ridges, or other salient portions, such as the dove-tail portions such that a mechanical joint is formed between the target and backing plate and diffusion bonding of the two materials of the target and backing plate occurs as well. After pressing the target and backing plate together, a final machining of the exposed surfaces of the target and backing plate is performed to provide the exposed surfaces with a finish as desired.
In still other exemplary embodiments of the invention, an interlayer may be placed between the target and backing plate prior to joining the target and backing plate together. The interlayer may comprise a material that is dissimilar from either of the target and the backing plate. Once the interlayer is in place, the process of joining the target and backing plate is essentially the same as that described above to yield a target, interlayer and backing plate assembly with increased mechanical and diffusion bonding strength.
These and other features and advantages of this invention are described in, or are apparent from, the following detailed description of various exemplary embodiments of the systems and methods according to this invention.
Various exemplary embodiments of the systems and methods of this invention will be described in detail with reference to the following figures, wherein:
The backing plate 10 of
Ideally, the materials comprising the target 1 and the backing plate 10 have dissimilar mechanical properties, and thus are different materials. The target 1 may comprise Ta, for example, whereas the backing plate 10 may comprise Cu or a Cu alloy. It should be appreciated that other dissimilar materials may be used to comprise the target 1 and backing plate 10. Preferably, one of the materials will be softer than the other material. As a result, when pressing of the target 1 and backing plate 10 occurs at selected temperatures and high pressure, the softer material will fill negative or re-entrant angled cavities 15 (
As a result of the corresponding target 1 and backing plate 10 of the exemplary embodiment shown in
As in the first exemplary embodiment, the target 1 and backing plate 10 of
The shape of the mating members can be simple trapezoids in shape with a calculated mismatch in height as shown in
The Ta/Cu—Zn assembly before and after diffusion bonding HIP is seen in
The diffusion bond (DB) strength of a Ta target/CuZn backing plate assembly was measured using 1.996″ diameter standard assembly samples. The average of eight measurements resulted in a bond strength of 12,112 psi. The assembly was consolidated under HIP conditions of 700° C., 15 Kpsi, for three hours. The strength of the locking mechanism, measured at 3.00″ diameter Ta/CuZn sample of the
The interlayer 40 comprises, for example, Ag—Cu—Ni—Zn, or similar alloy such as Ag—Cu—Sn and is applied via HIP or hot pressing. The interlayer 40 is ideally a material different from either of the target 1 material or the backing plate 10 material. In this manner, when the selected temperature and high pressure is applied to join the interlayer 40 in its position intermediate the target 1 and the backing plate, the dissimilar materials will diffusively bond to each other to form a bond of increased strength. Less preferably components for the interlayer 40 comprise Ti, Ti/Al, Ni, NiV, and the like.
The interlayer 40 could be used with either of the embodiments described above to form an assembly of increased mechanical and diffusion bond strength. Thereafter, the exposed surfaces of the target 1 and backing plate 10 are machined to a desired finish, as before.
Turning back to
In the embodiment shown in
The structural combination shown in
The invention therefore deals with a diffusion bonded target/backing plate structure having plural interfacial mating levels or surfaces. For instance, in the embodiment depicted in
In all of the various exemplary embodiments described herein, the target 1 material may be chosen from the group consisting of non-magnetic materials such as Al, Cu, Ti, Al—Ti, NiV, Ag, Sn, Au, Ta, Co, and Ni, for example, and the backing plate 10 materials may comprise, for example, Al, Ti, Cu, or the like. (Alloys of all metals are included.) In either case, one of the materials must be ductile during selected temperature pressing so that the negative angle cavities form mechanical interlocks together with diffusion bonding to achieve the desired bonding strength of the target and backing plate assembly.
While this invention has been described in conjunction with the specific embodiments above, it is evident that many alternatives, combinations, modifications, and variations are apparent to those skilled in the art. Accordingly, the preferred embodiments of this invention, as set forth above, are intended to be illustrative, and not limiting. Various changes can be made without departing from the spirit and scope of this invention.
The present application is a continuation of U.S. patent application Ser. No. 12/586,319 filed Sep. 21, 2009 which is a continuation of U.S. patent application Ser. No. 10/526,704 filed Jul. 19, 2005 which was a national phase filing under 35 USC §371(c) of PCT International Application Serial No. PCT/US2003/026465 having an international filing date of Aug. 26, 2003. The PCT application, in turn, claimed benefit of prior U.S. Provisional Application No. 60/410,606 filed Sep. 13, 2002, U.S. Provisional Application No. 60/411,917 filed Sep. 19, 2002, and U.S. Provisional Application No. 60/454,442 filed Mar. 13, 2003.
Number | Date | Country | |
---|---|---|---|
60454442 | Mar 2003 | US | |
60411917 | Sep 2002 | US | |
60410606 | Sep 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12586319 | Sep 2009 | US |
Child | 13541327 | US | |
Parent | 10526704 | Jul 2005 | US |
Child | 12586319 | US |