Today there are many types of input devices that allow users to interact with computing devices. When playing computer games, a mouse, a keyboard, or a joystick is often used to control the game's characters and interact with the games' virtual environment. Current methods for supplementing a user's experience have drawbacks which compromise the user's comfort and perception of the content being presented. For example, electrical signals dedicated to conveying haptic information may need to be generated and transmitted in addition to electrical signals that convey audio information. The added redundancy in signal transmission limits overall system performance, especially when haptic devices are wirelessly connected to a central processor responsible for generating haptic and audio information. In addition, when playing games with haptic devices, it is often confusing to know which haptic effects belong to the user or are associated with actions taken by the user, instead of from other users or other virtual environmental factors.
Thus, a need exists for systems and methods that improve the user's interaction with the content being presented. It is desirable that the system does not distract from the content being presented. It is also desirable that the system is portable, efficient, easy to use, inexpensive, and suitable for long term use. In addition, there is a need to categorize and configure vibrational feedbacks according to whether haptic effects are associated with different users.
The application includes an apparatus connectable with an electronic and/or consumer electronic device to provide haptic information and/or feedback to a user of the electronic device. The apparatus includes a housing, processing circuitry for receiving and transmitting user input, and one or more transducers for transforming audio information in an electrical signal into both acoustic and haptic signals. The apparatus may include an electrical and/or mechanical connection with an electronic device to enable the exchange of electronic data between the apparatus and the electronic device.
The apparatus housing may include a hard case having a relatively low mass to enhance the propagation of haptic information (e.g., vibrations). The apparatus may also include a user interface for receiving user input information. A user may interface with the apparatus via one or both hands. The apparatus may be segregated into a plurality of physical regions where some regions are associated with vibration units providing certain haptic information. Some regions may be associated with the user interface for collecting user input information. The one or more transducers may be disposed within the housing to provide at least one of acoustic and haptic output to a user of the electronic device, based on audio information in an electrical signal received at the one or more transducers. At least one of the transducers may include a diaphragm and a mass element attached to a portion of the diaphragm. Audio information for acoustic and haptic output signal generation may be associated with media being displayed, played, and/or stored on the electronic device. The electrical signals containing such audio information may be generated in response to user input received through the user input interface, and the audio information may be generated according to the user input.
In one aspect, electronic devices connected to the haptic apparatus described herein may include a computer, game console, cellular telephone, portable computer, personal digital assistant, consumer electronic device and/or any appropriate hand-held electronic device. The haptic apparatus describe herein may be implemented in the form of a skin, shell, case, and/or cover for a mobile media device, or an acoustic-haptic transducer attached to a portion of the user's body, with integrated processing circuitry and/or a user interface. The processing circuitry and/or the user interface may also be encased separately but connected to the transducer wirelessly or though a wired connection.
In some aspects, systems and methods described herein includes an user interface that comprises at least one of a button, a scroll wheel, a scroll button, a switch, a touch-sensitive region on a housing, a touch screen, a light pen, a joystick, or a motion sensor. Some examples of user interfaces are a mouse, keyboard, device casing with function switches, and docking station with user input keypads. A vibrating membrane may be overlaid onto the user input interface and arranged to provide haptic sensations to a user while interfacing with the user interface. The vibrating membrane may be substantially transparent and may include at least one waveguide. In certain embodiments, the user input interface may be virtual, such as a virtual keyboard displayed on a touchscreen. Systems and methods described herein may further include a datastore. The datastore may be arranged to store one or more audio files. The processing circuitry may be arranged to receive input from the user interface and, in response, retrieving a file from the datastore to send to a transducer or a vibration source coupled to the vibrating membrane. In certain embodiments, the vibrating source converts the electronic data of the file to an acoustic and/or haptic signal emitted from the vibrating membrane.
In some aspects, the processing circuitry described herein can receive, process and transmit user input information. In some embodiments, haptic signals are selectively generated according to the user input information. For example, haptic information may be generated to simulate gun recoils when a user plays a shooting game through the user input interface on the haptic device, while no haptic information is produced for shootings by other players within the game. Such selective generation of haptic signals may be carried out by the processing circuitry within the haptic device, or by other processing circuitry within the electronic device. Alternatively, user input information may be transmitted by the haptic device to processing circuitries within the electronic device, which in term transmit user-input dependent audio information to the haptic device. In other words, electrical signals containing audio information may be generated in response to user input, wherein the audio information in the electrical signal is generated according to the user input. The processing circuitry may also be configured to process the electrical signals in response to user input, wherein the processing may include modulating, reconfiguring, or adjusting the electrical signals based on user input.
For example, the processing circuitry can feature at least one of a pitch controller, a volume controller, a fade-in device, an amplitude-ceiling device, and a bass-enhancement device. The pitch controller can modulate a pitch characteristic of an electrical signal. The volume controller can adjust, or raise and lower an amplitude characteristic of an electrical signal. The fade-in device can gradually raise an amplitude characteristic of an electrical signal. The amplitude-ceiling device can reconfigure the electrical signal by imposing an upper limit on an amplitude characteristic of an electrical signal. The bass-enhancement device can reconfigure the electrical signal by sampling a first electrical signal to create a sampled signal, modulating a pitch characteristic of the sampled signal to create a modulated sampled signal, and mixing the modulated sampled signal with the first electrical signal. The processing circuitry can also feature a signal processing component capable of detecting that no electrical signal has been received for a preset amount of time, a power supply, and an automatic shut-off device that can turn off parts of the processing circuitry in response to detecting that no electrical signal is being received for the preset amount of time. The processing circuitry can also feature a low frequency cross-over circuit capable of filtering through low frequency sound from an electrical signal and an amplifier capable of amplifying the electrical signal. By processing of the electrical signals, the processing circuitry directly or indirectly generates, actives, controls, modulates, reconfigures, or adjusts haptic output signals in response to a user input receive at the user interface.
In one aspect of the disclosure, the one or more transducers form a vibrator or a vibration device, capable of converting an electrical signal into vibration based on the audio information in the electrical signal. In some implementations of the disclosure, the vibrator or vibration device includes at least one of an acousto-haptic transducer, an inertial transducer, an off-balance rotor, a tactile transducer, or a piezoelectric transducer. A surface of the vibrator or vibration device can be made of at least one of synthetic rubber, foam cushion, polyurethane, speaker cover fabric, or silicone. In some implementation of the disclosure, the vibrator generates haptic signals based on the audio information in the electrical signal in response to the user input received through the user input interface.
In another aspect of the disclosure, systems and methods described herein include a vibrator capable of converting an electrical signal into a vibration and a support structure for arranging the vibrator. The support structure can arrange the vibrator at a location on or about a human body such that a first pattern of vibrations are generated on the body's surface, where the first pattern matches in relative amplitude a second pattern of surface vibrations generated when the body generates sound. The support structure can dispose a plurality of vibrators on a front-back coronal plane of the body and symmetrically across a left-right median plane of the body. The vibrator can be arranged on or about a side of a torso of the body. In one implementation of the disclosure, the support structure includes a stretchable band adapted to encircle a torso of the body.
The foregoing and other objects and advantages of the disclosure will be appreciated more fully from the following further description thereof, with reference to the accompanying drawings wherein:
The systems and methods described herein relate to a haptic device capable of producing acoustic as well as haptic signals from audio information contained in an electrical signal. The systems and methods described herein also include any suitable peripheral such as an input device that serve as an interface and provide data and control signals to a computer or other suitable processing circuitry. Processing circuitry disposed within a housing of the haptic device described herein is capable of receiving, processing, and/or transmitting user input information, while one or more transducers disposed within the housing are capable of transforming audio information in an electrical signal into both acoustic and haptic signals. The transducer incudes a speaker with a diaphragm and a mass element attached to a portion of the diaphragm. The haptic device may further include a user input interface dispose on the housing and connected to the processing circuitry for directly receiving user input information that can be used to activate and control, directly or indirectly, haptic signals thus generated by the transducer. Systems implementing the haptic device described herein may allow only haptic signals that correspond to user input information received through the user input interface. The systems and methods described herein will now be described with reference to certain illustrative embodiments. However, the invention is not to be limited to these illustrated embodiments which are provided merely for the purpose of describing the systems and methods of the invention and are not to be understood as limiting in anyway.
In particular, turning to
As depicted by
As depicted by
As depicted by
As depicted by
The depicted remote control 506 includes a housing 510 that supports a user input interface that may include a button, switch, or dial 512. User input information received through the user input interface may be used to control the generation and presentation of acoustic and haptic signals. For example, a dedicated switch may turn on or off the acoustic and haptic output together or separately, a dial may by used to adjust the volume and pitch of the acoustic output, or the intensity of the haptic output. The housing 510 can attach by wire 514 to the vibration device 502 and by wire 516 to any suitable data source 518 of audio data, such as a portable music device or video game console. For example, the remote control 506 may function as a game controller, and haptic signals may be selectively generated depending on if such haptic signals correspond to user input on the remote control 506. The wires 514 and 516 may each have an audio jack, such as the audio jack 524 attached to the end of the wire 516, for connecting to, respectively, the remote control 506 and the data source 518. Alternatively, the vibration device 502 can attach directly to a data source 518, which may also include an encased user input interface. In another alternative embodiment, the vibration device 502, the remote control 506, and the data source 518 can include, respectively, a wireless receiver, a wireless transceiver, and a wireless transmitter for communicating audio or haptic data.
In other embodiments, control signals for haptic data generation and output may be collected through any suitable user input interfaces or peripheral input devices similar to the remote control 506, which serves as an interface and provide data and control signals to the haptic system as well as to a computer or other suitable information processor. For example, a user input interface may include at least one of a button, scroll wheel, scroll button, switch, touch-sensitive membrane, touch-sensitive region on a device housing, touch screen, light pen, joystick, or motion sensor. Typical stand-alone input devices include a mouse, keyboard, touch screen light pen, graphics tablets, joysticks, and composite devices such as a video game controller. Such user input interfaces or input devices may receive discrete inputs such as key presses on a keyboard, or continuous input, such as a mouse's or a light pen's position. Such user input interfaces or input devices may have any number of degrees of freedom. Examples include a mouse with two-dimensional inputs, and three-dimensional navigation tools comprising motion sensors, accelerometers and gyroscopes.
The vibrators 602a and 602b, described below in reference to
The vibrator 800 may be further include, or is connected to, processing circuitry for receiving, processing, or transmitting user input information for controlling haptic signal output through the vibrating diaphragm. In other embodiments of vibrators described herein, the vibrator may include at least one of an inertial transducer, an off-balance rotor, a tactile transducer, or a piezoelectric transducer. Similar to the exemplary vibrator 800, a surface of the vibrator can be made of at least one of synthetic rubber, foam cushion, polyurethane, speaker cover fabric, or silicone. A surface of the support structure can be made of at least one of synthetic tuber or speaker cover fabric.
The depicted remote control 906 includes a housing 910 that supports user input interface such as a button, switch, or dial 912. The remote control 906 may also encase processing circuitry for processing input signal thus received through the user input interface for controlling the generation and presentation of audio and/or haptic signals. The housing attaches by wire 914 to the vibration device 902 and by wire 916 to any suitable source 918 of audio data, such as a portable music device or video game console. The wires 914 and 916 may each have an audio jack, such as the audio jack 924 attached to the end of the wire 916, for connecting to, respectively, the processor 906 and the data source 918. Alternatively, the vibration device 902 can attach directly to a data source 918, which may include a user input interface. The user input processing circuitry may be encased within the vibration device 902, within the data source 918, or separately in a dedicated housing. A user input interface connected to the processing circuitry may be housed together with or separately from the processing circuitry. In another alternative, the vibration device 902, the remote control 906, and the data source 918 can include, respectively, a wireless receiver, a wireless transceiver, and a wireless transmitter for communicating audio or haptic data.
As depicted by
As depicted by
As depicted by
Vibrator location arrangements 1300, 1400, and 1500 may be implemented by the exemplary vibration device 1600 depicted in
Other vibrator arrangements may also enhance a user's interaction with audio or visual content being presented. According to another aspect of the disclosure, one characteristic of a vibrator arrangement uses a pattern of vibrations measured on a human body's surface, called a surface vibration pattern. A natural surface vibration pattern occurs when the user generates sound, such as when the user is laughing or shouting.
A vibrator location arrangement can induce a surface vibration pattern similar to the natural surface vibration pattern. This similarity in surface vibration patterns is preferably with respect to relative amplitudes across a variety of surface locations on the body. An exemplary vibrator-induced surface vibration pattern 1800, depicted in
Vibrator location arrangements can be symmetric with respect to the body's front-back coronal plane 410 and left-right median plane 412, depicted in
Vibrator location arrangements can space vibrators away from a sternum of the body, as depicted in vibrator location arrangements 100, 200, 300, 1300, 1400, and 1500 of
A vibration system as described above may receive electrical signals containing audio, haptic, and other data from a variety of media and devices. Electrical signals containing audio information may also be transformed into haptic signals directly by the processing circuitry within the vibration system. Example media include music, movies, television programs, video games, and virtual reality environments. Example devices that can provide data and be used in conjunction with a vibration device include portable music players, portable video players, portable video game consoles, televisions, computers, and home entertainment systems. Exemplary vibration systems may connect to exemplary devices via an audio jack coupled to a wire, as depicted in
Using a vibration device in conjunction with a media device can enhance the user's interaction with the media by creating tactile sensations that synchronize with the data being presented by the media device. For example, soundtracks that accompany movies typically have, in addition to music and dialogue, sounds that accompany the action in the movie, such as a door slamming or an explosion. The vibration device, by transforming these sounds into vibrations, allows the user to simultaneously feel this action in addition to seeing and hearing it, which can create a more immersive experience for the user. This immersive effect can be especially desirable when the visual data is poor, for example portable devices with small video screens or computer monitors with relatively low resolution. As another example, the user's perception of music may be enhanced by the vibration device, which can create a tactile sensation synchronized with the music by using the same data source as the audio speakers. This enhancement can be especially desirable for experiencing the low frequency component, also known as bass.
The vibration device can include one or more transducers capable of transforming audio information included in electrical signals into both acoustic and haptic signals for enhancing the content perceived by the user or allowing the user to modify the content. The vibration device can also include processing circuitry for receiving and processing user input information for directly or indirectly controlling the transformation of audio information into haptic signals, and any further adjustment, modulation, reconfiguration of such haptic signals in response to receiving user input information. Processing circuitry may be housed externally to the vibration device, as depicted in the embodiments of
Exemplary control functions of processing circuitry include pitch control, volume control, fade-in, amplitude-ceiling, auto shut-off, channel separation, phase-delay, and bass enhancement, whose implementations are well-known to one skilled in the art. Pitch control allows a user to increase or decrease the overall frequency of an electrical signal. Volume control allows a user to increase or decrease the overall amplitude of an electrical signal. Fade-in gradually increases the amplitude of the beginning of an electrical signal to lessen the initial impact of vibrations on a user. Amplitude-ceiling creates an upper bound on the magnitude of the amplitude of the electrical signal to prevent the user from experiencing excessively intense vibrations. Auto shut-off turns off the processing circuitry to conserve power without receiving input from the user and when an electrical signal has not been received for a preset amount of time. Channel separation separates a stereo or multichannel signal into its component channels. Phase-delay delays a signal sent to a second vibrator with respect to a signal sent to a first vibrator to give the user the impression the sound originated from a location closer to the first vibrator than the second vibrator. Bass enhancement increases the amplitude of the bass component of an electrical audio signal relative to the rest of the signal. One or more of the exemplary control functions of processing circuitry may be activated based on, directly or indirectly, user input information.
Examples of multichannel signals that can be separated by processing circuitry include stereo sound, surround sound, and multichannel haptic data. Stereo sound typically uses two channels. Channel separation circuitry can separate a stereo sound two-channel electrical audio signal into a left channel signal and a right channel signal intended to be experienced by the user from, respectively, a left-hand side and a right-hand side. Multichannel electrical audio signals, such as those used in 5.1 and 6.1 surround sound, can similarly be separated, and typically contain rear channel signals intended to be experienced by the user from the rear. Channel separation circuitry can also separate multichannel haptic data, such as those used with video games or virtual reality environments, that similarly contain data intended to be experienced by the user from a specific direction. Such channel separation function may be activated based on user input information. In one example, a user can explicitly indicate which channel is to be produce haptic data. In another example, processing circuitry may separate audio channels to produce multichannel haptic data, where a haptic channel is only activated if motion sensors in the corresponding acousto-haptic transducer detect user motion information.
Multiple implementations of bass enhancement are possible. An exemplary processing circuitry 1900 for bass enhancement is depicted in
Another bass enhancement implementation increases the bass component without filtering out the rest of a signal. Processing circuitry can sample a received electrical signal to create a sampled signal, modulate the pitch of the sampled signal to create a modulated sampled signal, and mix the modulated sampled signal with the received electrical signal to create a signal for the vibration device. The modulation of the pitch preferably lowers the pitch of the sampled signal to increase the bass component of the signal received by the vibration device. The user may also control the degree of bass enhancement by lowering the overall frequency of a signal using pitch control.
Processing circuitry can send different signals, each based on an electrical signal received from a source of data, to different destinations. The different destinations can include audio speakers, vibrators, or acousto-haptic transducers that are differentiated by their position relative to the body. For example, the electrical signals generated by channel separation can be transmitted to speakers or vibrators having appropriate positions relative to the body. In particular, signals intended to be experienced from the left can be sent to speakers, vibrators, or acousto-haptic transducers left of the left-right median plane, signals intended to be experienced from the right can be sent to speakers, vibrators, or acousto-haptic transducers right of the left-right median plane, signals intended to be experienced from the rear can be sent to speakers, vibrators, or acousto-haptic transducers rear of the front-back coronal plane, and signals intended to be experienced from the front can be sent to speakers, vibrators, or acousto-haptic transducers anterior of the front-back coronal plane. Exemplary vibration device 600, depicted in
Processing circuitry can also combine multiple functions and can apply different sets of functions to electrical signals depending on their destinations. Preferably, signals sent to vibrators have undergone bass enhancement. For example, the embodiment 1900 depicted in
Once the electrical signals have been processed, the modified electrical signals can be transmitted to a vibration device, exemplified by vibration devices 502, 902, 1200, and 1600 depicted in, respectively,
The support structure of the vibration device can serve multiple purposes for insuring the vibration device imparts an immersive experience to the user. The support structure can dispose vibrators in vibrator location arrangements and insure the vibrators can transfer vibration to the user. Other support structure qualities include a comfortable fit, ease of use, and an inconspicuous presence when worn.
The support structure of the vibration device can be configured to position vibrators according to vibrator location arrangements, such as those described above and in reference to
The support structure can also be configured to align a diaphragm 802 of a vibrator 800, depicted in
The support structure can also be configured to push the vibrators against the body to insure the user can sense the vibrations of the vibrators. Support structures that include tensile elements can have rigidity sufficient to push the vibrators against the body. For example, the support structure 604 depicted in
The support structures described herein can be configured to fit snugly without being too compressive on the body, are straightforward to put on over the shoulders or around the torso, and can be worn underneath clothing without significantly altering the profile of the clothing.
Embodiments of the vibration device may also be foldable to facilitate storage and portability of the device. Vibration device support structures that can be made of fabric, such as the suspenders 1204 depicted in
For example, exemplary vibration device 600 depicted in
Similarly, exemplary vibration device 1000 depicted in
During operation, an electrical signal (typically broadband oscillating signals) containing at least one of audio and haptic or tactile information may be transmitted to the voice coil 2006 through leads 2014. The electrical current flowing through the voice coil 2006 creates a Lorentz force between the voice coil 2006 solenoid and the magnetic assembly 2012. In certain embodiments the magnetic assembly 2012 is fixed and attached to the housing 2010 and therefore, in response to the Lorentz force, the voice coil 2006 may start to oscillate. The spider 2008 may damp this oscillation allowing the speaker to have a high fidelity across a full-range of frequencies. The voice coil 2006 may serve as an actuator moving the mass element 2002 along with the diaphragm. The mass element 2002 advantageously allows a user to adjust the resonant frequency of the transducer 2000 by varying the mass of the mass element 2002. In particular, the transducer may have a resonant frequency range that lies within the range of frequencies of the electrical signal. This resonant frequency range may be moved about the spectrum by adjusting one or more characteristics of the mass element, including its mass. When the voice coil 2006 is excited by signals at a frequency in the resonant frequency range, the transducer 2000 will vibrate to produce haptic signals. A user can place the transducer 2000 in close proximity to skin to perceive tactile sensations generated by these haptic signals.
In certain embodiments, the mass element 2002 may be formed from a rigid material having a high density. Alternatively, the mass element 2002 may include non-rigid material alone or in combination with rigid material. The non-rigid materials may include, without limitations, silicon. The mass element 2002 may be formed from a metal or a metal-alloy. The mass element 2002 may be formed from at least one of copper, nickel, silver, gold, manganese, aluminum, and titanium. The mass element 2002 may be formed from any suitable rigid material without departing from the scope of the invention. In certain embodiments, the mass element 2002 may be formed from a material selected such that the mass, footprint, height, and/or volume of the mass element 2002 are suitable for combining with a speaker 2001 having a predetermined dimension.
In one example, the speaker 2001 may be a commercially available speaker having a diaphragm, voice coil and housing with pre-determined dimensions. In such an example, the mass element 2002 may need to have a particular dimension and shape, and consequently, the mass element 2002 may be formed from a material to provide a mass within the constraints imposed by the pre-determined dimensions of the commercially-available speaker. The mass of the mass element 2000 may be about 2 g. In certain embodiments, the mass of the mass element 2000 may be from about 0.1 g to about 20 g. In other embodiments, the mass may range from about 1 g to about 4 g. The mass of the mass element may be less than or equal to about 0.1 g, 0.25 g, 0.5 g, 1 g, 1.5 g, 2 g, 2.5 g, 3 g, 3.5 g, 4 g, 4.5 g, 5 g, 10 g, 15 g, or 20 g.
Generally, as the mass of the mass element 2002 increases, the resonant frequency of the transducer decreases. Consequently, the mass of the mass element 2002 may be selected to generate haptic signals within particular frequency ranges. In addition to the mass of the mass element 2002, the mass of the speaker 2001 and housing 2010 may be relevant towards the performance of the transducer 2000. In particular, the mass of the entire transducer 2000 may affect the amplitude of vibrations in the resonant frequency range. Generally, the greater the mass of the transducer 2000, the lower the amplitude.
Generally, the mass element 2002 may be sized and shaped as suitable for a desired application. The mass element 2002 may have a circular cross-section and may be disk-shaped, hemispherical, conical, or frusto-conical. The mass element 2002 may have a rectangular cross-section and may be cuboidal, or pyramidal shaped. In one embodiment the mass element 2002 has a similar shape and dimensions as that of a U.S. 1 cent coin. In particular, the mass element 2002 may be disk-shaped and about 0.75 inches (19.05 mm) in diameter and about 0.061 inches (about 1.55 mm) in thickness. Generally, the shape of the mass element 2002 may be selected based on the shape of the underlying diaphragm 2004 or voice coil 2006 or housing 2010. The mass element 2002 may be selected such that its footprint (cross section area) is small enough so as not to affect the acoustic characteristics of the diaphragm. Generally, the larger the footprint of the mass element 2002, the lower the amplitude of the sound produced by the transducer 2000. Therefore, it may be desirable to have a mass element 2002 with a footprint small enough so that the diaphragm 2004 can produce audible sound. In one embodiment, the ratio between the diaphragm 2004 and the cross-section surface area of the mass element 2002 may be about four.
In certain embodiments, transducer 2000 may include an optional and removable dust cap 2016. In such embodiments, the dimensions of the mass element 2002 may be selected such that during operation (when the mass element 2002 moves towards and away from the cap 2016) the mass element 2002 does not make contact with the cap 2016. In such embodiments, the haptic signals are transmitted to the user through inertial vibration of the housing 2010 of the transducer. In certain embodiments, the transducer may be configured to provide an alarm signal to a user when the transducer is malfunctioning or is being incorrectly or inappropriately used. The mass element 2002 may be configured to make contact with the cap 2016 during operation. In such an embodiment, a user may place the cap 2016 in contact with skin and may feel the mass striking the inside of the cap 2016 during use. Such haptic signals may be stronger than other signals and consequently may signal an alarm to the user.
The mass element 2002 may be disposed near the center region of the diaphragm 2004. The mass element may be attached away from the center region on the diaphragm 2004. In certain embodiments, transducer 2000 includes a plurality of mass elements 2002, having the same or different masses sizes and shapes, stacked on top of each other at one or more locations on the diaphragm 2004. In one such embodiment, the transducer 2000 includes a plurality of mass elements 2002 located at a two or more locations on the diaphragm 2004. In such an embodiment, the transducer 2000 may have more than one adjustable resonant frequency range, and when vibrated at one or more of these frequencies, the transducer 2000 may generate haptic signals. In certain embodiments, a plurality of mass elements 2002 having different masses, based on their location on the diaphragm 2004, may be capable of transverse vibrations in addition to longitudinal vibrations. In such embodiments, a user may selectively control which of the plurality of mass elements 2002 to resonate.
In certain embodiments, the mass element 2002 may be attached to the diaphragm 2004 using an adhesive such as glue. In certain embodiments, the diaphragm 2004 may have an opening in the center region. In such embodiments, the mass element 2002 may be attached to the voice coil 2006 and/or a portion of the diaphragm 2004 surrounding the opening. In certain embodiments, the mass element 2002 may be permanently attached to the diaphragm 2004 and/or voice coil 2006. In certain other embodiments, the mass element 2002 may be removably attached or removably coupled to the diaphragm 2004 and/or voice coil 2006. In such embodiments, the mass element 2002 may be attached to the diaphragm 2004 and/or voice coil 2006 by a temporary or removable adhesive. In other embodiments, the mass element 2002 may be attached to one or more portions of the housing 2010. In such embodiments, the mass element 2002 may be attached to an inside or outside portion of the housing. In one embodiment, the mass element includes one or more components associated with the housing 2010. For example, if a diaphragm 2004 is directly connected to (e.g., glued) to the frame of a housing module, the magnet and/or the frame of the speaker may act as the resonant mass. Thus, various components of a transducer system may be configured, shaped, connected, weighted, and/or arranged in a selected way as to provide a resonant mass for the transducer system.
In certain embodiments, as depicted in
Transducers 2000 and 2100 may be configured with a plurality of mass elements 2000 or 2100. A user may advantageously add or remove one or more mass elements 2000 or 2100 to adjust and modify the resonant frequency range of the transducer. In certain embodiments, the mass elements 2000 or 2100 may be stacked on top of each other and attached together by adhesive. In other embodiments, the mass elements 2000 or 2100 may be stacked together and snapped onto holder 2150. Each of the plurality of mass elements 2000 or 2100 may have the same or different dimensions, shape, density, mass, material and other characteristics.
Generally, the speakers 2001 may be any audio producing device. For example, the audio speakers 2001 can be any suitable audio device, such as a loudspeaker, tweeter, subwoofer, earphone, headphone, or neckphone, and the like. The speaker 2001 and the mass element 2002 are enclosed within housing 2010. The housing 2010 may encase the speaker 2001, mass element 2002 and/or other processing circuitry, as will be described in more detail below with reference to
As noted earlier, during operation electrical signals from a data source cause the transducer 2000 or 2100 to generate acoustic and haptic signals. In certain embodiments, a controller and/or other processing circuitry may be disposed between the data source and the transducer 2000 or 2100 to enhance the signal.
The controller 2200 may include a switch 2208 for controlling the nature of the signal 2220 being sent to the transducer 2000. In certain embodiments, the switch 2208 includes a 3-way switch. In such embodiments, in a first mode, the switch 2208 may be configured to transmit to the transducer 2000 the first portion 2214. In a second mode, the switch 2208 may be configured to transmit to the transducer 2000 the amplified second portion 2218. In a third configuration, the switch 2208 in connection with other processing circuitry 2210, e.g., a summing circuit, amplifier, transistor, operational amplifier, or like signal combiner, may be configured to transmit a combination of both portions 2214 and 2218. The switch 2208 may be mechanical, electromechanical, micromachined, MEMS-based, integrated circuit (IC) based, hardware and/or software based.
Any of the components 2204, 2206, or 2208 may include a microprocessor for controlling the operation of any of the components 2204, 2206, or 2208. In one embodiment, the microprocessor is included in a separate IC and controls some or all of the components in the controller 2202. The microprocessor may include or interface with a memory configured to store instructions of a software program, function, and/or application. A function or application may be configured to control one or more of the components 2204, 2206, 2208, or other components based on the instructions stored in the memory, e.g., a computer readable medium. For example, the application may dynamically control the switching of the switch 2208 based on a detected signal 2212, 2214, and/or 2216. The application may, for example, control the splitter 2206 or filter 2204 to set the frequency and/or bandwidth for filtering or splitting. The microprocessor may include a digital signal processor (DSP), running microcode or the like, to perform certain functions. Any of the various illustrative systems disclosed herein may include a microprocessor controller as described above. In some embodiments, any of the signals, at any stage of signal processing, may be converted and processed as digital signals, and then converted to an analog signal for driving the output audio and/or haptic signals.
The switch 2208 and processing circuitry 2210 arrangement are one example of how signals may be combined and/or separately provided to the speaker 2000 or a driver circuit. Other arrangements may be employed. For example, a set of switches may be used to block or pass any one of the signals to the speaker 2000. An amplifier may be used to combine the signals 2214 and 2218 while a switch is enabled or disabled to pass the combined signal to the speaker 2000 or a driver circuit or other component. Those of ordinary skill will understand that various other arrangements may be employed to effect the combining and/or selection of various signals.
In certain embodiments, the incoming electrical audio signal 2212 may be a stereo signal configured to be processed and transformed to sound by a plurality of transducers.
Acousto-Haptic Systems 2200 and 2300 described above may receive electrical signals containing audio information from a variety of media and devices. Example media include music, movies, television programs, video games, and virtual reality environments. Example devices that can provide data and be used in conjunction with a vibration device include portable music players, portable video players, portable video game consoles, televisions, computers, and home entertainment systems. Exemplary acousto-haptic systems may connect to exemplary devices via an audio jack coupled to a wire or may contain a wireless receiver for wirelessly receiving signals from a device equipped with a wireless transmitter.
Using an acousto-haptic device in conjunction with a media device can enhance the user's interaction with the media by creating tactile sensations that synchronize with the data being presented by the media device. For example, soundtracks that accompany movies typically have, in addition to music and dialogue, sounds that accompany the action in the movie, such as a door slamming or an explosion. The acousto-haptic device, by transforming these sounds into vibrations, allows the user to simultaneously feel this action in addition to seeing and hearing it, which can create a more immersive experience for the user. This immersive effect can be especially desirable when the visual data is poor, for example portable devices with small video screens or computer monitors with relatively low resolution. As another example, the user's perception of music may be enhanced by the vibration device, which can create a tactile sensation synchronized with the music by using the same data source as the audio speakers. This enhancement can be especially desirable for experiencing the low frequency component, also known as bass.
As noted above the acousto-haptic systems 2200 and 2300 can include processing circuitry capable of processing electrical signals for enhancing the content perceived by the user or allowing the user to modify the content. Exemplary functions of processing circuitry include selecting acoustic and/or haptic signal portions, pitch control, volume control, fade-in, amplitude-ceiling, auto shut-off, channel separation, phase-delay, and bass enhancement, whose implementations are well-known to one skilled in the art. Pitch control allows a user to increase or decrease the overall frequency of an electrical signal. Volume control allows a user to increase or decrease the overall amplitude of an electrical signal. Fade-in gradually increases the amplitude of the beginning of an electrical signal to lessen the initial impact of vibrations on a user. Amplitude-ceiling creates an upper bound on the magnitude of the amplitude of the electrical signal to prevent the user from experiencing excessively intense vibrations. Auto shut-off turns off the processing circuitry to conserve power without receiving input from the user and when an electrical signal has not been received for a preset amount of time. Channel separation separates a stereo or multichannel signal into its component channels. Phase-delay delays a signal sent to a second vibrator with respect to a signal sent to a first transducer to give the user the impression the sound originated from a location closer to the first transducer than the second transducer. Bass enhancement increases the amplitude of the bass component of an electrical audio signal relative to the rest of the signal.
Examples of multichannel signals that can be separated by processing circuitry include stereo sound, surround sound, and multichannel haptic data. Stereo sound typically uses two channels. Channel separation circuitry can separate a stereo sound two-channel electrical audio signal into a left channel signal and a right channel signal intended to be experienced by the user from, respectively, a left-hand side and a right-hand side. Multichannel electrical audio signals, such as those used in 5.1 and 6.1 surround sound, can similarly be separated, and typically contain rear channel signals intended to be experienced by the user from the rear. Channel separation circuitry can also separate multichannel haptic data, such as those used with video games or virtual reality environments, that similarly contain data intended to be experienced by the user from a specific direction.
Multiple implementations of bass enhancement are possible. In one implementation, an electrical signal is received at an input for transmitting to a transducer and/or audio speakers. A low frequency cross-over circuit can filter through only the bass component of the received electrical signal, whose overall amplitude is increased by an amplifier before reaching a transducer.
Another bass enhancement implementation increases the bass component without filtering out the rest of a signal. Processing circuitry can sample a received electrical signal to create a sampled signal, modulate the pitch of the sampled signal to create a modulated sampled signal, and mix the modulated sampled signal with the received electrical signal to create a signal for the transducer. The modulation of the pitch preferably lowers the pitch of the sampled signal to increase the bass component of the signal received by the transducer. The user may also control the degree of bass enhancement by lowering the overall frequency of a signal using pitch control.
In certain embodiments, one or more buttons on the input device may be used to perform one or more functions in connection with controlling the operation or level of vibration. For example, the middle scroll button 2406 on the mouse, typically located between the right button 2404 and the left button 2402, can be used as a vibration intensity controller. The middle scroll button 2406 may also be configured to be used as a “depth of field” selector, especially for the non-self mode, where closer effects such as nearby explosions etc. are more important than those at a larger distance. In certain embodiments, the input device may include one or more acousto-haptic speakers configured for generating acoustic and haptic effects using audio signals. For example, the vibrator 2410 may be an acousto-haptic speaker. In such input devices, one or more buttons or input switches may be configured to, directly or indirectly, activate, generate, control, modulate, reconfigure, and adjust the intensity of one or more haptic effects. In an acousto-haptic mouse, where audio information from the game activates/generates the haptic effects, the scroll wheel 2406 (when pressed) can change the input volume to the low-pass/acousto-haptic driver module. Alternatively, a separate scroll wheel can control the depth of field. Many other effects incorporating any suitable vibrators as described above in reference to
In certain embodiments, the apparatus as described herein is connectable with a portable electronic and/or consumer electronics device and provides haptic information and/or feedback to a user of the portable electronic device. The apparatus may also function as a partial housing for a portable electronic device. The apparatus may include an electrical and/or mechanical connection with a portable electronic device to enable to the exchange of electronic data between the apparatus and portable electronic device. The apparatus may include one or more transducers that provide at least one of audio and haptic output to a user of the portable electronic device. The haptic and/or audio information may be associated with media being displayed, played, and/or stored on the portable electronic device. The apparatus housing may include a hard case having a relatively low mass to enhance the propagation of haptic information (e.g., vibrations). A user may interface with the apparatus via one or both hands. In certain embodiments, the apparatus may clip on to a portable electronic device such that user may interface with the portable electronic device via one or both hands. The apparatus may be segregated into a plurality of physical regions where each region is associated with a vibration unit providing certain haptic information. User input received on the portable electronics device may be processed by the portable electronic device directly to determine if audio signal corresponding to the self or non-self modes should be transmitted to the haptic housing. User input may be received on the portable electronic device directly, or through a user input interface embedded in the haptic housing. User input may be analyzed by the portable electronics device or by processing circuitry included in the haptic housing to control haptic signal output.
The docking apparatus may be arranged in any number of dimensions so as to releasbly hold a portable electronic device. A portable electronic device may include a cellular telephone, portable computer, tablet computer, personal digital assistant (PDA), portable electronic game device, a consumer electronic device, and/or a hand-held electronic device.
In some configurations, as shown in
The application also discloses a vibrating unit that includes an acousto-haptic (ACH) speaker as described in U.S. Patent Publication No. 2010/0260371, the contents of which are incorporated by reference herein in their entirety, and described in detail above in reference to
The application includes an apparatus connectable with a portable electronic and/or consumer electronics device such as a mobile phone or smartphone device that provides haptic information and/or feedback to a user of the portable electronic device. As depicted in
During operation, a portable electronic device may be coupled with the ACH apparatus as shown in dashed lines in
In certain embodiments, as depicted in
Not to be bound by theory, but a point source of waves generally radiates its power radially, and thus points farther away from the source receive less power compared to those closer to the source. Generally waveguides are media with low dissipation that allow an efficient transfer of the waveform from one point to the next in order to avoid this weakness. This principle typically applies to both transverse as well as longitudinal waves.
Haptic vibrations are also waveforms that, depending on the type of source, generate omnidirectional (offset mass motor) or unidirectional vibrations (linear motor shakers). As shown in
In certain embodiments, as shown in
In certain embodiments, the vibration may be isolated to the rigidly connected members to the shaker, by either suspending the vibrating parts, or putting compressible membranes such as foam or thin rubber between the vibrating and non-vibrating parts. As shown in
Applicant considers all operable combinations of the embodiments disclosed herein to be patentable subject matter. Those skilled in the art will know or be able to ascertain using no more than routine experimentation, many equivalents to the embodiments and practices described herein. Accordingly, it will be understood that the disclosure is not to be limited to the embodiments disclosed herein.
This application claims the benefit of U.S. Provisional Application No. 61/691,583, filed Aug. 21, 2012, the contents of which are incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61691583 | Aug 2012 | US |