The present disclosure relates generally to systems and methods for aliquoting therapeutic products and, more specifically, to systems and methods for aliquoting therapeutic products such as cancer cell therapy products prior to cryopreservation.
The systems and methods generally facilitate the aseptic transfer of therapeutic fluid from an input container (e.g., flexible solution container) to a plurality of output containers (e.g., cryogenic vials) via a manifold (e.g., single-use manifold including tubing and valving). The systems may include a control system, a pump, control valves and one or more sensors for aseptically routing the therapeutic fluid from the input container to the output containers in an at least partially automated manner. System components may further include an agitation mechanism to ensure substantial homogenization of the therapeutic fluid prior to and during transfer and one or more temperature control devices to maintain the therapeutic fluid being transferred within a desired temperature range.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details. In other instances, well-known devices, structures and techniques associated with fluid transfer systems, components thereof and related fluid transfer methods and techniques may not be shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
As shown in the example embodiment of
With continued reference to
With continued reference to
The output fixture 30 may be selectively configurable for different types or sizes of output containers 16. For example, the output fixture 30 may include a first configuration to receive output containers 16 in the form of flexible solution containers (e.g., bags) of differing capacities (e.g., 50 ml, 500 ml) and may include a second configuration to receive output containers 16 in the form of rigid solution containers (e.g., vials) of differing capacities (e.g., 1 ml, 2 ml, 3 ml, 4 ml, 5 ml). The output fixture 30 may be readily convertible between the first and second configurations, or may be adapted to interchangeably receive different types and sizes of output containers 16 without modification. In some embodiments, the output fixture 30 may include or otherwise accommodate one or more actuators or other mechanisms for automated manipulation of valving 48, 50 associated with the output containers 16. In other embodiments, the output fixture 30 may facilitate manual manipulation of valving 48, 50 associated with the output containers 16.
In some embodiments, the output containers 16 may be cryogenic storage compatible. In some embodiments, the output containers 16 may be preassembled to the manifold 36, 37 and the combination of the manifold 36, 37 and output containers 16 may be sold as a single-use kit for use in connection with the aseptic fluid transfer systems and methods described herein. Moreover, although the illustrated embodiment of
The fluid transfer system 10 may further include a control module 40 to assist in moving the therapeutic fluid 12 between the input container 14 and the output containers 16. For example, the control module 40 may include a fluid pump, such as a peristaltic pump, for moving the therapeutic fluid 12 between the input container 14 and the output containers 16. The control module 40 may further include one or more sensors for assisting in controlling the transfer procedure, ensuring proper function and/or providing quality control. For instance, the control module 40 may include an integrated sensor (e.g., optical sensor, electrical impedance sensor) that is configured to verify that a composition of the therapeutic fluid 12 being delivered to the output containers 16 is substantially homogenous within a defined range to ensure output container composition parity.
According to the illustrated embodiment shown in
For example, the control system 60 may be communicatively coupled to the mixing mechanism of the input fixture 20 and include programming to control the mixing mechanism to ensure substantial homogenization of the therapeutic fluid 12 prior to and during transfer. In some instances, the mixing mechanism may comprise a mechanical agitation device that rocks the input container 14 to mix the contents thereof, and the control system 60 may be configured to agitate the input container intermittently or continuously for a predetermined period of time prior to or during fluid transfer. In some instances, composition feedback may be provided and agitation of the input container 14 may be controlled in response thereto. In other instances, the mixing mechanism may comprise a fluid circulation circuit having a recirculating pump and a composition sensor positioned to sense the composition of the recirculating fluid which are configured to circulate the fluid until a signal of the composition sensor is consistent within a predetermined variance, at which point a valve may be opened to divert fluid to the output containers 16.
The control system 60 may also be communicatively coupled to the temperature control device(s) (e.g., refrigerated enclosure 22 or cooling plate of the input fixture 20 and/or the output fixture 30 to maintain the therapeutic fluid 12 transferred from the input container 14 to the output containers 16 within a desired temperature range (e.g., about 2° C. to about 8° for the transfer of a fluid comprising mammalian cells suspended in a cryoprotectant solution). The control system 60 may be coupled to one or more temperature sensors to receive feedback temperature data to assist in controlling the temperature control device(s) of the input fixture 20 and/or output fixture 30 based at least in part on the same.
The control system 60 may be communicatively coupled to the control module 40 and may include programming to control the pump thereof for aseptically transferring fluid from the input container 14 into the plurality of output containers 16 via the manifold 36, 37. In some embodiments, including the example embodiment of
The manifold 36, 37 may further include an integrated mechanical module (not shown) provided for connecting the manifold 36, 37 to the input container 14 aseptically. As an example, the integrated mechanical module could be a tube welder that directly attaches tubing from the manifold 36, 37 to tubing associated with the input container 14. As another example, the integrated mechanical module could be a fixture that automates or manually assists the connection of a molded aseptic connector 41 provided at the end of the manifold 36, 37. When provided, the integrated mechanical module may be operably controlled by the control system 60. The control system 60 may also be communicatively coupled to at least one sensor, such as, for example, one or more pressure sensors 52, for monitoring or testing manifold pressure to ensure integrity of the connection prior to processing.
The control system 60 may also be communicatively coupled to at least one sensor, such as, for example, an optical sensor, for detecting a flow boundary of the therapeutic fluid 12 (e.g., leading boundary adjacent the preceding volume of buffer) to assist in determining fluid location inside the manifold 36, 37 and coordinating the delivery of each of the distinct defined volumes of the therapeutic fluid 12 with a respective one of the output containers 16. The control system 60 may be communicatively coupled to a plurality of valves 48 (e.g., stop cocks, pinch valves) or actuators therefor for selectively switching the output branches 44 to direct the distinct volumes of therapeutic fluid 12 into the output containers 16 with the result being that predetermined volumes (e.g., 10 ml) of the therapeutic fluid 12 are delivered to each of the output containers 16. Similarly, the control system 60 may be communicatively coupled to one or more valves 50 (e.g., stop cocks, pinch valves) or actuator(s) therefor for selectively switching the input branches 42a, 42b to create the distinct volumes of therapeutic fluid 12 separated by the buffer and controlling each respective volume of the therapeutic fluid 12. In some embodiments, the control system 60 may also include programming for pumping an initial volume of the therapeutic fluid 12 into the manifold 36, 37 prior to creating distinct defined volumes of the therapeutic fluid 12 to reduce fluid loss during transfer of the therapeutic fluid 12 from the input container 14 to the output containers 16. The valves 48, 50 may be sequenced to direct the distinct volumes of the therapeutic fluid 12 into the desired output containers in an orderly predetermined manner.
The control system 60 may also be communicatively coupled to at least one sensor, such as, for example, an optical sensor, for detecting whether the composition of the distinct volumes of the therapeutic fluid 12 delivered to the output containers 16 is substantially homogenous within a predetermined range to ensure output container composition parity, the composition sensor(s) being operable to quantify an attribute associated with the composition of the therapeutic fluid from outside of the container 16 or manifold 36, 37. In some instances, a single composition sensor may be provided upstream of the output containers 16 to sense the composition of the therapeutic fluid 12 as it is being delivered towards the output containers 16. In other instances, a separate composition sensor may be provided in connection with each of the output containers 16 to sense the composition of the therapeutic fluid 12 after is received by the output containers 16. Still further, a composition sensor may be provided such that, under the control of the control system 60, the output containers 16 are transported to the sensor to sense the composition of the therapeutic fluid 12 received by the output containers 16. In some instances, the control system 60 may be configured to compare a measured composition attribute from one output container 16 with a measurement or measurements from one or more other output containers 16 to verify substantial composition homogeneity between the output containers 16.
The control system 60 may also be communicatively coupled to at least one sensor 76 such as, for example, an optical sensor, for detecting a fluid level of the therapeutic fluid in each of the output containers 16 relative to a feature of the container 16 from outside of the container 16. In some instances, a separate fluid level sensor may be provided in connection with each of the output containers 16 to measure the fluid level in each container 16. In other instances, a fluid level sensor 76 may be provided such that, under the control of the control system 60, the output containers 16 are transported to the sensor to sense the level of the therapeutic fluid 12 received by the output containers 16. In either event, the control system 60 may be configured to calculate fluid volume based on input from the one or more fluid level sensors and physical attributes of the output container 16, and confirm the fluid volume is within a predetermined tolerance.
After the therapeutic fluid 12 is delivered to the output containers 16, the output containers 16 may be hermetically sealed and then stored for subsequent use, including storage in a cryogenic state. For this purpose, the fluid transfer system 10 may further include one or more integrated hermetic container sealing devices 74 such as, for example, a tube sealer device, a crimp device, a single use valve/closure or other device that is configured to selectively hermetically seal the plurality of output containers 16 after receipt of the therapeutic fluid 12 from the input container 14. As an example, the tube sealer device may be mounted such that, under the control of the control system 60, the output containers 16 are transported to the tube sealer for selective sealing of the output containers 16 with the distinct volumes of the therapeutic fluid 12 received therein. Sealing of the output containers 16 may occur after volume and composition verification steps are performed. In a similar manner, the fluid transfer system 10 may further include an integrated cutter device 72 or other device that is configured to cut or otherwise severe the output branch 44 at or upstream of the seal associated with each output container 16 to separate the output containers 16 from the manifold 36, 37 with the distinct volumes of therapeutic fluid 12 hermetically sealed therein.
The control system 60 may also be communicatively coupled to a detector 70 (e.g., laser code scanner) capable of detecting a unique container identifier of each output container 16. In this manner, the control system 60 may distinguish one output container 16 from other output containers and may associate various information therewith, including, for example, volume data and composition data relating to the volume and the composition of the therapeutic fluid 12 received therein. Other information that may be associated with the output container 16 includes patient data, date and time of storage, equipment identification data (e.g., equipment serial no.), single-use manifold lot number, and output container location on the manifold. The control system 60 may store such data and/or transmit the data to remote systems for various purposes.
The fluid transfer system 10 may further include one or more pressure sensors 52 to monitor manifold pressure to ensure integrity of the manifold 36, 37 and/or to confirm tube seal integrity via a leak test after sealing of the plurality of output containers 16. The one or more pressure sensors 52 may be provided in-line with or coupled to the manifold 36, 37 and may be communicatively coupled to the control system 60 such that the control system 60 may receive pressure signals indicative of a system leak or overpressure condition and provide an indication of the same and/or pause or terminate the transfer process until corrective action is taken.
In accordance with the example embodiment of the fluid transfer system 10 of
As shown in the example embodiment of
With continued reference to
The output fixture 130 may be selectively configurable for different types or sizes of output containers 116. For example, the output fixture 130 may include a first configuration to receive output containers 116 in the form of flexible solution containers (e.g., bags) of differing capacities (e.g., 50 ml, 500 ml) and may include a second configuration to receive output containers 116 in the form of rigid solution containers (e.g., vials) of differing capacities (e.g., 1 ml, 2 ml, 3 ml, 4 ml, 5 ml). The output fixture 30 may be readily convertible between the first and second configurations, or may be adapted to interchangeably receive different types and sizes of output containers 116 without modification. In some embodiments, the output fixture 130 may include or otherwise accommodate one or more actuators or other mechanisms for automated manipulation of valving 150 associated with the output containers 116. In other embodiments, the output fixture 130 may facilitate manual manipulation of manipulation of valving 150 associated with the output containers 116.
In some embodiments, the output containers 116 may be cryogenic storage compatible. In some embodiments, the output containers 116 may be preassembled to the manifold 136 and the combination of the manifold 136 and output containers 116 may be sold as a single-use kit for use in connection with the aseptic fluid transfer systems and methods described herein. Moreover, although the illustrated embodiment of
The fluid transfer system 110 may further include a control module 140 to assist in moving the therapeutic fluid 112 between the input container 114 and the output containers 116. For example, the control module 140 may include a fluid pump, such as a peristaltic pump, for moving the therapeutic fluid 112 between the input container 114 and the output containers 116. The control module 140 may further include one or more sensors for assisting in controlling the transfer procedure, ensuring proper function and/or providing quality control. For instance, the control module 140 may include an integrated sensor (e.g., optical sensor, electrical impedance sensor) that is configured to verify that a composition of the therapeutic fluid 112 being delivered to the output containers 116 is substantially homogenous within a defined range to ensure output container composition parity.
According to the illustrated embodiment shown in
For example, the control system 160 may be communicatively coupled to the mixing mechanism of the input fixture 120 and include programming to control the mixing mechanism to ensure substantial homogenization of the therapeutic fluid 112 prior to and during transfer. In some instances, the mixing mechanism may comprise a mechanical agitation device that rocks the input container 114 to mix the contents thereof, and the control system 160 may be configured to agitate the input container intermittently or continuously for a predetermined period of time prior to or during fluid transfer. In some instances, composition feedback may be provided and agitation of the input container 114 may be controlled in response thereto. In other instances, the mixing mechanism may comprise a fluid circulation circuit having a recirculating pump and a composition sensor positioned to sense the composition of the recirculating fluid which are configured to circulate the fluid until a signal of the composition sensor is consistent within a predetermined variance, at which point a valve may be opened to divert fluid to the output containers 116.
The control system 160 may also be communicatively coupled to the temperature control device(s) (e.g., refrigerated enclosure 122 or cooling plate 132) of the input fixture 120 and/or the output fixture 130 to maintain the therapeutic fluid 112 transferred from the input container 114 to the output containers 116 within a desired temperature range (e.g., about 2° C. to about 8° for the transfer of a fluid comprising mammalian cells suspended in a cryoprotectant solution). The control system 160 may be coupled to one or more temperature sensors to receive feedback temperature data to assist in controlling the temperature control device(s) of the input fixture 120 and/or output fixture 130 based at least in part on the same.
The control system 160 may be communicatively coupled to the control module 140 and may include programming to control the pump thereof for aseptically transferring fluid from the input container 114 into the plurality of output containers 116 via the manifold 136. In some embodiments, including the example embodiment of
The manifold 136 may further include an integrated mechanical module (not shown) provided for connecting the manifold 136 to the input container 114 aseptically. As an example, the integrated mechanical module may be a tube welder that directly attaches tubing from the manifold 136 to tubing associated with the input container 114. As another example, the integrated mechanical module may be a fixture that automates or manually assists the connection of a molded aseptic connector 141 provided at the end of the manifold 136. When provided, the integrated mechanical module may be operably controlled by the control system 160. The control system 160 may also be communicatively coupled to at least one sensor, such as, for example, one or more pressure sensors 152, for monitoring or testing manifold pressure to ensure integrity of the connection prior to processing.
The control system 160 may also be communicatively coupled to at least one sensor, such as, for example, an optical sensor, for detecting a flow boundary of the therapeutic fluid 112 (e.g., leading boundary adjacent the preceding volume of buffer) to assist in determining fluid location inside the manifold 136 and coordinating the delivery of each of the distinct defined volumes of the therapeutic fluid 112 with a respective one of the output containers 116. The control system 160 may be communicatively coupled to a plurality of valves 148 (e.g., stop cocks, pinch valves) or actuators therefor for selectively switching the output branches 144 to direct the distinct volumes of therapeutic fluid 112 into the output containers 116 with the result being that predetermined volumes (e.g., 10 ml) of the therapeutic fluid 112 are delivered to each of the output containers 116. Similarly, the control system 160 may be communicatively coupled to one or more valves 150 (e.g., stop cocks, pinch valves) or actuator(s) therefor for selectively switching the input branches 142a, 142b to create the distinct volumes of therapeutic fluid 112 separated by the buffer and controlling each respective volume of the therapeutic fluid 112. In some embodiments, the control system 160 may also include programming for pumping an initial volume of the therapeutic fluid 112 into the manifold 136 prior to creating distinct defined volumes of the therapeutic fluid 112 to reduce fluid loss during transfer of the therapeutic fluid 112 from the input container 114 to the output containers 116. The valves 148, 150 may be sequenced to direct the distinct volumes of the therapeutic fluid 112 into the desired output containers in an orderly predetermined manner. For example, with reference to the example manifold 136 and associated output containers 116 coupled thereto shown in
The control system 160 may also be communicatively coupled to at least one sensor, such as, for example, an optical sensor, for detecting whether the composition of the distinct volumes of the therapeutic fluid 112 delivered to the output containers 116 is substantially homogenous within a predetermined range to ensure output container composition parity, the composition sensor(s) being operable to quantify an attribute associated with the composition of the therapeutic fluid from outside of the container 116 or manifold 136. In some instances, a single composition sensor may be provided upstream of the output containers 116 to sense the composition of the therapeutic fluid 112 as it is being delivered towards the output containers 116. In other instances, a separate composition sensor may be provided in connection with each of the output containers 116 to sense the composition of the therapeutic fluid 112 after is received by the output containers 116. Still further, a composition sensor may be provided on a movable sensor head to move under the control of the control system 160 to sense the composition of the therapeutic fluid 112 received by the output containers 116 by moving the sensor head adjacent to each output container 116 to be measured. In some instances, the control system 160 may be configured to compare a measured composition attribute from one output container 116 with a measurement or measurements from one or more other output containers 116 to verify substantial composition homogeneity between the output containers 116.
The control system 160 may also be communicatively coupled to at least one sensor (not shown), such as, for example, an optical sensor, for detecting a fluid level of the therapeutic fluid in each of the output containers 116 relative to a feature of the container 116 from outside of the container 116. In some instances, a separate fluid level sensor may be provided in connection with each of the output containers 116 to measure the fluid level in each container 116. In other instances, a fluid level sensor may be provided on a movable sensor head to move under the control of the control system 160 to measure the fluid level of the therapeutic fluid 112 received in each of the output containers 116 by moving the sensor head adjacent to each output container 116 to be measured. In either event, the control system 160 may be configured to calculate fluid volume based on input from the one or more fluid level sensors and physical attributes of the output container 116, and confirm the fluid volume is within a predetermined tolerance.
After the therapeutic fluid 112 is delivered to the output containers 116, the output containers 116 may be hermetically sealed and then stored for subsequent use, including storage in a cryogenic state. For this purpose, the fluid transfer system 110 may further include one or more integrated hermetic container sealing devices (not shown), such as, for example, a tube sealer device, a crimp device, a single use valve/closure or other device that is configured to selectively hermetically seal the plurality of output containers 116 after receipt of the therapeutic fluid 112 from the input container 114. As an example, the tube sealer device may be mounted on a movable sealing head to move under the control of the control system 160 to selectively seal the output containers 116 with the distinct volumes of the therapeutic fluid 112 received therein. Sealing of the output containers 116 may occur after volume and composition verification steps are performed. In a similar manner, the fluid transfer system 110 may further include an integrated cutter device (not shown) or other device that is configured to cut or otherwise severe the output branch 144 at or upstream of the seal associated with each output container 116 to separate the output containers 116 from the manifold 136 with the distinct volumes of therapeutic fluid 112 hermetically sealed therein.
The control system 160 may also be communicatively coupled to a detector 180 (e.g., laser code scanner) capable of detecting a unique container identifier of each output container 116. In this manner, the control system 160 may distinguish one output container 116 from other output containers and may associate various information therewith, including, for example, volume data and composition data relating to the volume and the composition of the therapeutic fluid 112 received therein. Other information that may be associated with the output container 116 includes patient data, date and time of storage, equipment identification data (e.g., equipment serial no.), single-use manifold lot number, and output container location on the manifold. The control system 160 may store such data and/or transmit the data to remote systems for various purposes.
The fluid transfer system 110 may further include one or more pressure sensors 152 to monitor manifold pressure to ensure integrity of the manifold 136 and/or to confirm tube seal integrity via a leak test after sealing of the plurality of output containers 116.
The one or more pressure sensors 152 may be provided in-line with or coupled to the manifold 136 and may be communicatively coupled to the control system 160 such that the control system 160 may receive pressure signals indicative of a system leak or overpressure condition and provide an indication of the same and/or pause or terminate the transfer process until corrective action is taken.
In accordance with the example embodiment of the fluid transfer system 110 of
Although the aforementioned method of transferring therapeutic fluid is described as including the pumping of discrete volumes of the therapeutic fluid 112 by alternately pumping therapeutic fluid 112 and a buffer, it is appreciated that other methods and techniques may be used to move therapeutic fluid 112 from an input container 114 to a plurality of output containers 116. For example, a method for aseptic transfer of therapeutic fluid 112 from an input container 114 to a plurality of output containers 116 according to another embodiment may, with reference to
Although the systems and methods described herein are predominately discussed in the context of transferring therapeutic fluids into output containers for cryogenic storage, it is appreciated that in other instances aspects of the systems and methods may be used with other types of fluids and for other purposes, including fluids which may not have therapeutic applications or which are not intended to be cryogenically stored.
Moreover, aspects and features of the various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled.
| Number | Date | Country | |
|---|---|---|---|
| 62164453 | May 2015 | US | |
| 62305986 | Mar 2016 | US |