The present disclosure relates to fluid recovery. More specifically, the present disclosure relates to systems and methods for low speed, low volume fluid recovery, and even more specifically to oil field recovery systems.
Most known fluid recovery units are designed to maximize the amount of recovered fluid over a given length of time. These pumps, which pump a relatively large amount of fluid at a relatively high rate, typically operate with a symmetrical upstroke and downstroke. For instance, where such systems are driven by a crank wheel, the upstroke occurs over about 180 degrees of crank wheel rotation as does the downstroke. This scheme is desirable in high volume, high speed recovery systems because the upstroke, i.e., the only portion of unit motion where fluid is actually recovered, should occur at as high a frequency as possible. When the upstroke occurs at a high frequency, more fluid is pumped to the surface. However, the benefit provided by a fast, high frequency upstroke is offset by the costs associated with such an operation. Specifically, such a scheme places substantial shock loads on the recovery unit as the fluid and moving components are required to undergo relatively high accelerations. Moreover, these systems require a large amount of work to be performed in order to lift a higher weight of fluid per unit of time. Nevertheless, these offsetting costs are considered to be acceptable in view of the large amount of fluid that is brought to the surface. In sum, these systems remain profitable as long as an adequate amount of fluid is recovered, despite the large amount of work required to recover the fluid.
However, the considerations mentioned above are not usefully applied to a recovery unit operating at low speed, in a low volume well. In that case, the primary goal is not to recover a maximum amount of fluid per given length of time. Instead, the primary goal is to efficiently recover what fluid is available. Accordingly, a recovery unit operating with a symmetrical upstroke and downstroke is not desirable for a low volume, low speed recovery unit. In such case, the operating costs associated with a high frequency upstroke, namely the shock loads exerted upon the system and the high amount of work performed, outweigh the value of the recovered fluid. Ideally, a recovery unit operating to recover a low volume of fluid would do so in a way that minimizes work performed. As a natural result, such a system would recover fluid so that the recovered fluid and moving components are subject to low accelerations.
Notwithstanding the above, known fluid recovery systems are subject to other additional limitations. Namely, a number of design features found in known recovery systems leave much to be desired. These design features limit system productivity and increase operating costs, particularly where those systems are used to recover fluid while operating at low strokes per minute (SPM).
By way of example, known recovery systems are limited in efficiency because they utilize too many structural bearings. The number of structural bearings in a system is inversely related to mechanical advantage (as each bearing introduces parasitic loads in the form, e.g., friction, heat, etc.). As a natural result of these inefficiencies, known recovery units need intensive maintenance, requiring relubrication every 3 to 6 months. Also, such systems must run above a threshold stroke per minute rate (SPM) to maintain lubrication between working components. As such, these systems cannot be used for low SPM applications.
Known recovery systems are also overly expensive to build and operate as they incorporate a relatively large gearbox, which is required to handle the full torque capacity rating of the recovery unit. Larger gearboxes cost significantly more to manufacture than smaller gearboxes. Some known systems utilize a belt drive between the motor and gearbox, where the gearbox output drives the crank arm. However, such an arrangement requires that the gearbox have a torque capacity at least as large as that of the recovery unit. Other known systems utilize two belt drives but do not achieve additional speed reduction between those drives (e.g., where a flywheel is used between the first and second drive). However, such a combination is particularly undesirable for low SPM operations because of the high rotational inertia effect of the flywheel.
Moreover, the majority of known recovery units typically have symmetrical operating geometries, meaning that it takes about 180 degrees of crankshaft rotation for the recovery unit to move the polished rod up or down in the well. This is often a necessary feature where the unit is operated at a relatively high SPM rate, typically 5 SPM to 15 SPM. However, these high SPM systems waste much energy when a low volume well is being pumped.
Known recovery units tend to suffer from a high cyclic load factor (CLF), which is defined as the quotient of the root-mean-square and average motor current. The CLF can be interpreted as a measure of electrical heating and cyclic loading observed during operation. The symmetrical operating geometry and relatively high speeds associated with known recovery systems (as mentioned above) largely contribute to the high CLF of known systems.
Other systems known in the art operate at a mechanical disadvantage as they utilize either of 1) a dual pitman arm arrangement, or 2) a single pitman arm arrangement that is not counterbalanced. As a result, these systems suffer from side loading on system bearings and/or a propensity to rotate about an axis drawn between the center of the wrist pin and tail bearing. This can cause unusual wear and early failures. Known systems are at a further disadvantage because they require manual adjustments in order to maintain tension across their drive belts. That is, the distance between drive components must be manually adjusted to maintain tension on belts extending therebetween. This is cumbersome and expensive in terms of manual labor and system downtime.
The present invention solves the problems described above. In doing so, the present invention provides a method and system for recovering underground fluid from a well using an asymmetrical recovery motion. According to the system and method, a walking beam is actuated about a first pivot point between an upstroke motion and a downstroke motion in response to rotation of a crank wheel. The crank wheel rotates more than 180 degrees during the upstroke and rotates less than 180 degrees during the downstroke. Further, the walking beam and the crank wheel are in communication with one another by an arm extending there between, wherein the arm is positioned on an opposite side of the first pivot point from the well.
In accordance with the description above, the present invention is generally directed to systems and methods for improved fluid recovery. As part of these systems and methods, the invention disclosed herein improves the efficiency of belt driven systems and improves the way in which torque loads are handled by those systems. These improvements are the result of a recovery system that is designed to efficiently operate at low SPM, e.g., 2 SPM to 5 SPM. As will be described in more detail, the design provides, among other things, a system having an asymmetrical and slow upstroke, a three stage speed reduction, a relatively small gearbox, automatic belt tensioning, and the effect of an adjustable counterbalance.
As a result of the features described above, preferred embodiments of the present invention provide a recovery system whereby fiberglass rods can be used in place of steel rods. The use of fiberglass rods in place of steel rods is possible because systems according to the present invention subject the rods to low acceleration. For a given load and cross section, fiberglass rods stretch further than steel rods. As such, when fiberglass is used, the initial phase of the upstroke does not move the pump, and accordingly, no work associated with moving the fluid is being performed during the initial phase.
The recovery unit effectively reduces the number of parasitic loads exerted upon the recovery system by reducing the number of required bearings for operation. As such, the recovery unit utilizes only a single tail bearing assembly, a single wrist pin bearing assembly, a single Sampson shaft bearing assembly, and a single crankshaft bearing assembly. The reduction in required structural bearings reduces operating friction, heat, and the need for lubrication. Also, the crankshaft does not rotate, but instead the bearing housing rotates about the crankshaft. These features effectively improve the operating efficiency of the recovery unit.
The recovery unit gearbox is approximately only ⅕ of the recovery unit torque capacity. This feature is possible because the belt ratio between the gearbox output sheave and the crank wheel provides a step up in torque to achieve unit rated torque capacity. As a result, manufacturing costs are greatly reduced.
The recovery unit is specifically designed to operate at low strokes per SPM (e.g., in the range of 2 to 5 SPM). This design results in a geometry of the recovery unit that provides several benefits not otherwise available. By way of example, maintenance intervals are greatly extended because the slow rotational speeds and sealing of the bearings extend maintenance intervals to an order of 3 to 5 years.
Also, the geometry contributes to high energy efficiency. That is, the recovery unit achieves an upstroke speed that is slower than the down stroke speed, where the upstroke is fully achieved in 204 degrees of crankshaft rotation. The slower upstroke speed yields a lower acceleration force on the polished rod. Since force is equal to the product of mass and acceleration, a lower acceleration on the polished rod and recovered fluid will require a lower force or required energy to lift the same. This lower force translates into a reduced power requirement from the electric motor. Also, as mentioned, the utilization of much lighter weight sucker rods (i.e., fiberglass) reduces the mass that must be accelerated. This reduced mass along with lower acceleration further improves energy efficiency.
The geometry, in combination with lightweight fiberglass rods, produce a lower Cyclic Load Factor (CLF). As used herein, CLF is defined as the quotient of the root-mean-square and average motor current, and is a measure of electrical heating and cyclic loading. It is very desirable to achieve the lowest possible CLF, as doing so improves operating efficiency by lowering energy waste due to unnecessary electrical heating and reduces the horsepower rating of the electrical motor necessary to run the installation. To accomplish a lower CLF, a modified geometric motion of the 4 bar linkage is used to produce a polished rod motion that is conducive to lower CLFs. This modified geometric motion generates an asymmetrical upstroke having low speed and low acceleration. As will be further discussed, the slow operating speeds allow the geometry to use a 204 degree crank wheel rotation to fully achieve the upstroke. Finally, the low modulus of elasticity of fiberglass as compared to steel rods means that, as an abrupt change in load is encountered, fiberglass rods will stretch like a spring and absorb this impact and dampen the load change at the surface.
Operating efficiency is also improved by utilizing a combination of 1) an adjustable counterbalance weight along the walking beam and 2) an adjustable, phased rotating counterbalance weight along the crank wheel. As used herein, the counterbalance is the effort necessary to counterbalance the buoyed weight of the rod string and the load due to the weight of fluid being lifted.
The geometry also provides a recovery unit that has a much lower torque capacity-to-stroke length ratio. The American Petroleum Institute (API) has a method of rating recovery units that uses a number consisting of three groups. The first group is the torque rating of the unit x1000 in in-lb. (e.g., 80,000 in-lb). The second group is the structural rating of the unit, i.e., how much polished rod load the unit can support x100 (e.g., 10,900 lbs.). The third group is the stroke length of the unit in inches (e.g., 42 inch stroke). A complete list of these ratings is given in “API standard 11 E,” which is incorporated herein by reference. The recovery unit has low torque and structural ratings for a give stroke length, e.g., 25-30-58. This is made possible by utilizing fiberglass rods. The combination of lower torque and structure ratings further reduces energy consumption and the cost to manufacture the unit.
Preferred embodiments further provide a recovery unit that utilizes a single pitman arm which has an adjustable counterbalance to reduce axial rotation about a line drawn from the center of the wrist pin bearing through the center of the tail bearing. Utilizing a single pitman arm allows all the structural bearing centerlines to fall on a common plane. This eliminates any side loading on the bearings. This feature also minimizes the parasitic loads exerted upon the recovery unit structure and minimizes manufacturing cost.
Preferred embodiments further provide a recovery unit that utilizes a geometric motion of the polished rod that causes the rod to rise more slowly, thereby providing greater mechanical advantage on the upstroke. As mentioned, geometries of prior art pumping units provide for the upstroke and down stroke polished rod velocities to be similar. This is to accommodate higher pumping speeds associated with higher volumes of recovered fluid. However, because of the slow operational speeds of the present invention, the geometry has been designed to provide for a much slower upstroke and a more rapid down stroke. To that end, the upstroke is accomplished in a range of 175 to 225, and preferably 204 degrees, of crank wheel rotation. This slower upstroke means that the unit has a greater mechanical advantage of the linkages on the upstroke when the unit is subject to a maximum well torque. This greater mechanical advantage tends to lower the CLF and correspondingly uses less energy.
Preferred embodiments further provide a recovery unit that automatically adjusts belt tension under varying operating conditions, i.e., changing operating speed and torque loads. According to one aspect of the tensioning system, the weight of the motor, the weight of the gearbox, reactionary motor stator torque, and motor mount rotation are all utilized to accomplish belt tensioning. According to another aspect of the tensioning system, the belt drive between the gearbox output and crank wheel is automatically adjusted using a spring acting upon the gearbox swing assembly. As the operational torque increases, the belt is tightened, and as the torque requirement decreases, the belt tension is relaxed. This action automatically adjusts for the required belt tension and also adds greatly to belt life because the belt only experiences high tensioning forces when they are needed to transmit the required torque. Accordingly, the tensioning system greatly reduces the maintenance requirements of the unit.
Preferred embodiments further provide a recovery unit that achieves speed reduction between its respective drives to operate at low SPM. According to this aspect of the invention, speed is reduced in three stages: 1) along a first belt drive between the motor and gearbox, 2) at the gearbox, and 3) along a second belt drive between the gearbox and crank wheel. By way of example, consider a typical scenario where motor RPM is 1750. In that scenario, the motor RPM must be reduced to 2 to 5 RPM (SPM) at the crank wheel. At the same time, the drive must have the torque capacity to meet the rating of the recovery unit. These requirements are satisfied by speed reduction between the three stages discussed above.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
As seen, walking beam 102 is actuated about a support point, which in the depicted embodiment, is Sampson bearing center 104. On the opposite side of walking beam 102 from horse head 101 is tail bearing center 103 and adjustable beam counterbalance weights 107. Pitman arm 106 extends from tail bearing center 103 to wrist pin center 105, which itself is located on crank wheel 108. During operation of system 100, crank wheel 108 rotates about an axis at crank shaft center 109. As crank wheel 108 rotates, wrist pin center 105 sweeps out a circle defined by the circumference of crank wheel 108. As a result, the end of pitman arm 106 connected at wrist pin center 105 also undergoes circular motion, and in doing so, rises and falls between a maximum and minimum height. This rise and fall motion causes pitman arm 106 at tail bearing center 103 to reciprocate between a top and bottom position, and therefore, this rise and fall motion is translated to walking beam 102.
The rotation of crank wheel 108 is driven by electric motor 111 in combination with speed reducer 112, which may be, e.g., a planetary-type reducer. According to the embodiment depicted at
The embodiment depicted at
Counterbalance Subsystem
According to the preferred embodiment depicted at
According to a first counterbalancing method, the CBE provided by weights 107 is adjusted by 1) adding or removing one of a plurality of weights 107 from beam 102, and/or 2) moving weights 107 along the length of beam 102 to be closer to or further from Sampson bearing center 104. According to a preferred embodiment, this may be accomplished by using adjustment bolts and the like, or weights 107 may be actuated along the length of beam 102 using electromechanical or hydraulic mechanisms as will be apparent to those skilled in the art. The CBE provided by weights 107 could be changed at relatively short intervals, e.g., where weights 107 are moved closer to center 104 during downstroke and further from tail bearing center 104 during upstroke. Or, the CBE provided by weights 107 could be changed at relatively long intervals, e.g., in response to changing fluid levels beneath the surface. In effect, counter weights 107 balance opposing forces exerted upon bean 102, much like a teeter-totter. In this way, changing the position of counterweights 107 along walking beam 102 changes the effective counterweight provided by weights 107. Notably, an adjustable CBE is provided by counterweights 107 by virtue of the geometry of system 100. Referring to
According to a second counterbalancing method, the CBE is further adjustable by virtue of crank wheel counterweights 117. That is, the amount of CBE caused by crank wheel counterweight 117 is adjusted by adding weights to a stack along crank wheel 108. According to a preferred embodiment, the center of gravity of crank wheel counterweights 117 is rotationally phased from a line extending between the center of crank wheel 108 and wrist pin center 105 (which, as discussed above, is joined with pitman arm 106). In the depicted embodiment, crank wheel counterweights 117 are rotationally phased by 27 degrees, lagging behind the rotational direction of wrist pin center 105. However, other useful embodiments are envisioned where crank wheel counterweights 117 are rotationally phased by an amount ranging from 0 degrees to 50 degrees. The amount of rotational phasing will depend upon specific operating configurations, including the specific dimensions or arrangement of crank wheel counterweights 117. Nevertheless, irrespective of the specific dimension of the system or the exact amount of rotational phasing, crank wheel counterweights 117 are phased to maximize their counterbalance effect about the point where the well torque load is at a maximum.
Consider the case where crank wheel 108 rotates in the counter clockwise direction and where wrist pin center 105 is slightly offset in the counter clockwise direction from its highest point during rotation about crank shaft center 109. In such case, crank wheel counterweights 117 are close to a maximum height, but slightly offset therefrom in the clockwise direction. And specifically, according to the embodiment depicted at
According to the embodiment depicted at
Belt Tensioning Subsystem
A preferred embodiment of the invention described herein comprises an automatic belt tensioning subsystem, which itself comprises a first tension component (e.g. a motor swing assembly) and a second tension component (e.g., a speed reducer swing assembly).
Further, as motor 111 rotates it generates torque in direction 325. As a natural result, reactionary torque 329 is generated in motor 111 stator. As seen, reactionary torque 329 is in the opposite direction of torque 325 and directly proportional thereto. These torques are largely exerted upon motor swing assembly 202. The resulting forces exerted upon motor swing assembly 202 are depicted as force 331 and force 332, respectively. As can be easily seen, force 331 tends to push motor swing assembly 202 downward while force 332 tends to push motor swing assembly 202 upward. Moreover, force 331 has a mechanical advantage over force 332 because its torque moment felt at pivot point 203 is larger than that of force 332 (i.e., the product of force 331 and its distance from pivot point 203 is greater than the product of force 332 and its distance from pivot point 203). The sum of these forces cause swing assembly 202 to rotate about pivot point 203 in the counter clockwise direction (shown as vector 334). As such, similar to the discussion above, the distance between motor 111 and speed reducer 112 (and therefore the distance between motor shaft 328 and speed reducer shaft 333) increases, thereby causing an increase in tension across belt 118. The resulting force changes in response to changes in torque placed upon motor 111, and serves to tighten belt 118 as the torque itself changes.
Another component of automatic belt tensioning involving motor swing assembly 202 is produced as motor sheave 327 pulls on V-belt 118, i.e., as the lower (tight) side of belt 118 is pulled by motor sheave 327 in direction 330. As shown, belt 118 is below pivot point 203 of motor swing assembly 202. Because of this arrangement, when motor 111 drives belt 118 in the clockwise direction, the resulting tension on the low side of belt 118 pulls motor 111 in the counter clockwise direction around pivot point 203. This force must necessarily be offset by belt 118 at its top side, and therefore, tension is increased along that side. The output torque of motor 111 determines this force. As the load on motor 111 increases, the tension across V-belt 118 increases, and vice versa. Not only does this feature add to belt life because belt tension is relaxed when motor 111 is under minimum load, but it automatically compensates for belt and sheave wear. Further, belt 118 will not slip out and burn up due to insufficient tension.
Notably, the resulting forces described above act upon motor swing assembly 202 to rotate motor swing assembly 202 about pivot point 203 in response to changing torque conditions. As motor swing assembly 202 rotates about pivot point 203, the distance between motor 111 and speed reducer 112 varies. As can be easily seen, as the distance between motor 111 and speed reducer 112 decreases, tension across belt 118 is decreased. On the other hand, as the distance between motor 111 and speed reducer 112 increases, tension across belt 118 increases. In this way, the rotation of motor swing assembly 202 is responsive to the torque loads described above, which are exerted upon belt 118 and effective to vary the distance, and therefore the tension, between motor 111 and speed reducer 112.
The summed forces of the weight of motor 111 and speed reducer 112 (each mounted on speed reducer swing assembly 206) tend to cause speed reducer swing assembly 206 to rotate in the counter clockwise direction about ABT pivot point 201, or more precisely in the same direction as the rotation of belt 110, shown as 403. This can be seen by reference to
According to another aspect of speed reducer swing assembly 206, as the load on belt 110 increases in response to a higher demand for torque to turn crank wheel 108, the tension on the top side of belt 110 increases. This higher topside belt tension, resulting from the increased torque demand, tends to cause speed reducer swing assembly 206 to rotate about ABT shaft 201 in the clockwise direction shown as vector 402. However, as seen, ABT shaft 201 is positioned between the top side of belt 110 (where the tension increase is observed) and a line extending between crankshaft center 109 and gearbox shaft 333, shown as dashed line 404. As a result of this arrangement, the clockwise rotation of speed reducer swing assembly 206 causes tension to increase along the bottom side of belt 110 (i.e., the resulting rotation of assembly 206 tends to cause the distance between speed reducer 112 and crank wheel 108 to increase). This increase in tension on the bottom side of belt 110 increases as the distance between swing assembly 206 and crank wheel 108 increases and decreases as that distance decreases. In this way, the tensioning of belt 110 can be thought of as dynamic and responsive to forces exerted upon belt 110 under changing belt speeds and torque loads. These dynamic tensioning features provide a number of advantages, namely: extension in belt life (unnecessary tension is avoided and belt slippage and burnouts are eliminated), reduction in belt and sheave wear, and reduction in system maintenance requirements.
The resulting forces described above act upon speed reducer swing assembly 206 to rotate speed reducer swing assembly 206 about pivot point 201 in response to changing torque conditions. As speed reducer swing assembly 206 rotates about pivot point 201, the distance between speed reducer 112 and crank wheel 108 varies. As can be easily seen, as the distance between speed reducer 112 and crank wheel 108 decreases, tension across belt 110 is decreased. On the other hand, as the distance between speed reducer 112 and crank wheel 108 increases, tension across belt 110 increases. In this way, the rotation of speed reducer swing assembly 206 is responsive to the torque loads described above, which are exerted upon belt 110 and effective to vary the distance and therefore the torque between speed reducer 112 and crank wheel 108.
Of course, as will be apparent to those skilled in the art, the specific directions designated as rotational directions for specific components, i.e., clockwise and counter clockwise directions, are independent of the inventive concepts described above. For example, these directions could be reversed for each component, depending upon the specific configuration of the implemented system.
Low Speed Geometry Subsystem
Preferred embodiments of the present invention provide a recovery system that is specifically designed for low speed, low volume fluid recovery. The resulting geometry allows system 100 to operate such that its upstroke is relatively slow and asymmetrical, i.e., occurring over a broader range than its downstroke. Such an upstroke avoids shock loads, reduces work, and improves overall efficiency.
As seen by reference to
Referring to
The permissible load diagrams (PLD) are represented by curves 700 and 703, which are plots of the highest and lowest possible loads exerted upon the polished rod that cause the torque capacity of the unit to be fully utilized, respectively. Curve 700 corresponds to operation during upstroke, as reflected by curve 701 while curve 703 corresponds to operation during down stroke, as reflected by curve 702. The area defined by curves 700 and 703 represents the permissible range of operations and is dictated by the pumping unit geometry and the CBE. The area between the PLD curves is defined as the amount of “work” that the unit is capable of performing without being overloaded.
For purposes of comparison,
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application claims priority to U.S. Provisional Patent Application No. 61/067,697 filed Mar. 1, 2008 entitled “A Specialized Oil/Gas Industry Pumping Unit With Special Design FEATURES For Low Volume. High Efficiency Pumping Utilizing Fiberglass Sucker Rods;” and is related to U.S. patent application Ser. No. 12/394,206, entitled “Systems and Methods For AUTOMATIC BELT TENSIONING IN LOW SPEED, LOW VOLUME Fluid Recovery Operations,” filed concurrently herewith, and U.S. patent application Ser. No. 12/394,242, entitled “SYSTEMS AND METHODS For providing adjustable counterbalance in LOW SPEED, LOW VOLUME FLUID RECOVERY operations,” filed concurrently herewith; the disclosures of which are all incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2180880 | Poulsen | Nov 1939 | A |
2294094 | O'Leary | Aug 1942 | A |
2631011 | Kendrick | Mar 1953 | A |
2972254 | Lambert | Feb 1961 | A |
3406581 | Eyler et al. | Oct 1968 | A |
4603592 | Siebold et al. | Aug 1986 | A |
5441108 | Jenkins et al. | Aug 1995 | A |
Number | Date | Country | |
---|---|---|---|
61067697 | Mar 2008 | US |