This invention relates generally to receptacles, and, more specifically, to receptacles for storing and preserving packaged beverages.
Opening a packaged beverage invariably leads to oxidation of the beverage. Additionally, beverages that are carbonated or otherwise gas-dispensed, such as with carbon dioxide or nitrogen, will begin to lose the gas once the pressure is released, causing the beverage to go flat. The present disclosure contains systems and methods for preservation of packaged beverages.
This invention relates generally to receptacles, and, more specifically, to receptacles for storing and preserving packaged beverages. The receptacle is comprised essentially of a vessel and a lid, and it is designed to receive packaged beverages.
In some embodiments, the beverage preservation device may be comprised of a vessel; a lid with a top surface and a bottom surface, the lid removably coupled with the vessel; a gas valve, the gas valve disposed through the lid; and a tap port disposed through the lid. In some embodiments, the lid may further comprise a pressure relief valve disposed through the lid. In some embodiments, the lid may further comprise a gasket disposed on the bottom surface of the lid. In some embodiments, the lid may further comprise a pressure gauge port disposed through the lid. In some embodiments, the lid may further comprise a tap stem coupled with the tap port. In some embodiments, the tap stem may further comprise a rigid first portion coupled with the tap port; a flexible second portion coupled with the rigid first portion; and a rigid third portion coupled with the flexible second portion. In some embodiments, the flexible second portion of the tap stem may be slightly curved. In some embodiments, the lid and the vessel may be removably coupleable. In some embodiments, the lid coupled with the vessel may form an airtight seal.
In some embodiments, the beverage preservation device may comprise a vessel, the vessel further comprising: a base; a chamber joined with and perpendicular to the base, wherein the joint is airtight. The beverage preservation device may be further comprised of a lid with a top surface and a bottom surface, wherein an area of the lid is approximately equal to an area of the base, the lid further comprising: a gasket disposed on the bottom surface of the lid, wherein a perimeter formed by the gasket is approximately equal to a perimeter of the chamber; a gas valve, the gas valve disposed inside the perimeter of the gasket and through the top surface and the bottom surface of the lid, wherein the inlet of the valve is accessible from the top surface of the lid; and a pressure relief valve disposed inside the perimeter of the gasket and through the top surface and the bottom surface of the lid, wherein a control handle of the pressure relief valve is accessible from the top surface of the lid. In some embodiments, the lid may further comprise a pressure gauge port disposed within the perimeter of the gasket and through the top surface and the bottom surface of the lid. In some embodiments, the lid may further comprise a tap port disposed within the perimeter of the gasket and through the top surface and the bottom surface of the lid. In some embodiments, the lid may further comprise a tap stem, the tap stem further comprising: a rigid first portion coupled with the tap port and descending into the chamber; a flexible second portion with a first end and a second end, the first end coupled with the first portion; and a rigid third portion, the third portion coupled with the second end of the second portion. In some embodiments, the flexible second portion may be slightly curved.
In some embodiments, the beverage preservation device may comprise a vessel, the vessel further comprising: a base; a chamber joined with and perpendicular to the base, wherein the joint is airtight; and at least one bolt coupled with the base, disposed parallel and external to the chamber, wherein the bolt extends beyond the length of the chamber. In some embodiments, the beverage preservation device may be further comprised of a lid with a top surface and a bottom surface, wherein an area of the lid is approximately equal to an area of the base, the lid further comprising: a gasket disposed on the bottom surface of the lid, wherein a perimeter formed by the gasket is approximately equal to a perimeter of the chamber; a gas valve disposed inside the perimeter of the gasket and through the top surface and the bottom surface of the lid, wherein the inlet of the valve is accessible from the top surface of the lid; and a pressure relief valve disposed inside the perimeter of the gasket and through the top surface and the bottom surface of the lid, wherein a control handle of the pressure relief valve is accessible from the top surface of the lid; wherein the lid is removably coupleable with the vessel, the gasket of the lid forming an airtight joint between the lid and the vessel. In some embodiments, the beverage preservation device may be further comprised of a tap system disposed inside the perimeter of the gasket and through the top surface and the bottom surface of the lid. In some embodiments, the tap system may be coupleable with a standard keg tap system. In some embodiments, the beverage preservation device is further comprised of a pressure gauge port disposed inside the perimeter of the gasket and through the top surface and the bottom surface of the lid; and a pressure gauge removably inserted into the pressure gauge port.
In some embodiments, a beverage preservation device may comprise a vessel including at least a base and a tube; a lid, the lid removably coupled with the vessel; a gas valve, the gas valve disposed through a top surface of the base; a passage disposed through an interior portion of the base, the passage including at least: an end of the passage coupled with the gas valve; and a vent into the vessel disposed at an opposing end of the passage; and a tap port, the tap port disposed through the lid.
In some embodiments, the passage disposed through an interior portion of the base comprises a passage disposed between the top surface of the base and the bottom surface of the base, the passage including at least a portion extending laterally through the base. In some embodiments, the beverage preservation device, further comprises the passage including at least one substantially vertical portion at an interior end of the portion extending laterally through the base, the first substantially vertical portion extending to an aperture in the top surface of the base to form the vent into the vessel. In some embodiments, the vessel including at least a base and tube comprises a vessel including at least the base having a circular square-cut channel on the top surface of the base configured for receiving the tube.
In some embodiments, the passage disposed through an interior portion of the base comprises a passage disposed through an interior portion of the base, the passage passing underneath a channel in the base for receiving the tube. In some embodiments, the vessel including at least a base and tube comprises a vessel, the vessel including at least a one-piece vessel including at least a base section and a tube section of the one-piece vessel. In some embodiments, the beverage preservation device further comprises a pressure gauge port. In some embodiments, the beverage preservation device further comprises at least one of another passage disposed through another interior portion of the base, the another passage including at least an end coupled with a pressure relief and a vent into the vessel disposed at an opposing end; and another passage disposed through another interior portion of the base, the another passage including at least an end coupled with a pressure gauge port and a vent into the vessel disposed at an opposing end.
In some embodiments, the beverage preservation device further comprises a pressure relief. In some embodiments, the lid further comprises a gasket disposed on the bottom surface of the lid. In some embodiments, the beverage preservation device further comprises at least one of a fastener arrangement or closure arrangement configured for compressing together the lid, gasket, and tube to form an airtight seal of the receptacle.
In some embodiments, the beverage preservation device further comprises a yoke configured for compressibly closing the lid over the tube. In some embodiments, the vent into the vessel disposed at an opposing end of the passage comprises a gas diffuser. In some embodiments, the lid comprises a tap stem coupled with the tap port. In some embodiments, the tap stem comprises a rigid first portion coupled with the tap port; a flexible second portion coupled with the rigid first portion; and a rigid third portion coupled with the flexible second portion. In some embodiments, the flexible second portion of the tap stem is slightly curved. In some embodiments, the lid and the vessel are removably coupleable. In some embodiments, the lid coupled with the vessel forms an airtight seal.
In some embodiments, a beverage preservation system includes, but is not limited to, a receptacle for removably receiving at least one beverage package; means for maintaining an airtight seal of the receptacle; means for pressurizing the receptacle; and means for enabling dispensing, upon the receptacle being pressurized, of a content contained by a beverage package received by the receptacle.
In some embodiments, a beverage preservation device includes, but is not limited to means for receiving at least one beverage package; means for pressurizing the means for receiving; and means for dispensing a content contained by the at least one beverage package from within the means for receiving.
In addition to the foregoing, various other methods, systems and/or program product embodiments are set forth and described in the teachings such as the text (e.g., claims, drawings and/or the detailed description) and/or drawings of the present disclosure.
The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is NOT intended to be in any way limiting. Other aspects, embodiments, features and advantages of the device and/or processes and/or other subject matter described herein will become apparent in the teachings set forth herein.
Certain embodiments of the present invention are described in detail below with reference to the following drawings:
This invention relates generally to receptacles, and, more specifically, to receptacles for storing and preserving packaged beverages. Specific details of certain embodiments of the invention are set forth in the following description and in
Importantly, a grouping of inventive aspects in any particular “embodiment” within this detailed description, and/or a grouping of limitations in the claims presented herein, is not intended to be a limiting disclosure of those particular aspects and/or limitations to that particular embodiment and/or claim. The inventive entity presenting this disclosure fully intends that any disclosed aspect of any embodiment in the detailed description and/or any claim limitation ever presented relative to the instant disclosure and/or any continuing application claiming priority from the instant application (e.g. continuation, continuation-in-part, and/or divisional applications) may be practiced with any other disclosed aspect of any embodiment in the detailed description and/or any claim limitation. Claimed combinations which draw from different embodiments and/or originally-presented claims are fully within the possession of the inventive entity at the time the instant disclosure is being filed. Any future claim comprising any combination of limitations, each such limitation being herein disclosed and therefore having support in the original claims or in the specification as originally filed (or that of any continuing application claiming priority from the instant application), is possessed by the inventive entity at present irrespective of whether such combination is described in the instant specification because all such combinations are viewed by the inventive entity as currently operable without undue experimentation given the disclosure herein and therefore that any such future claim would not represent new matter.
In some embodiments, vessel 100 may be further comprised of a chamber 110. In some embodiments, chamber 110 may be tubular, having a volume formed by a circular perimeter. In other embodiments, chamber 110 may have a rectangular volume. In still other embodiments, chamber 110 may have a triangular volume. The volume formed by chamber 110 may be any number of shapes without altering the function of the device. In some embodiments, chamber 110 may be comprised of a thermoplastic resin material. Such material may include, but is not limited to, acrylic resin, acrylic plastic, or another acrylic formulation. In other embodiments, chamber 110 may be comprised of a metal. Further, chamber 110 may be comprised of any number of rigid or semi-rigid materials without altering its function. In some embodiments, chamber 110 may be comprised of a material with specific heat properties, such as being able to withstand very high or very low temperatures. In some embodiments, chamber 110 may be comprised of a material with specific strength properties, such as being able to withstand very high pressures exerted from within the chamber, being able to withstand very high external pressures, or being able to withstand a significant difference between the internal and external pressures on the chamber.
In some embodiments, vessel 100 may be further comprised of a base 120. Base 120 will generally be coupled with chamber 110 in such a manner that the joint is airtight. For example, a channel 122 may be formed inside the top side of the base for receiving the chamber. The channel may be round and have substantially the same inner and outer diameters as the chamber 110 (“substantially the same” here meaning that the width of the channel defined as the distance between the inner and outer diameters may be slightly larger than the thickness of the chamber, e.g. 0.01″ larger, in order to snugly accommodate the chamber). The channel formed inside the top side of the base may be a square-cut channel and may receive the chamber 110 in a permanent, semi-permanent, or removable fashion. The channel may receive a gasket onto which the chamber is seated, the gasket having an appearance similar to that depicted in and discussed with respect to
In some embodiments, base 120 will be approximately the same area as the perimeter formed by chamber 110. In other embodiments, the area of base 120 will be larger than the perimeter formed by chamber 110. Base 120 may be comprised of the same material as chamber 110. In other embodiments, base 120 may be comprised of a different material than chamber 110. In still other embodiments, base 120 and chamber 110 may be formed as a single unit, such that no seam exists between the two elements.
In some embodiments, vessel 100 may be further comprised of fastener 130. In some embodiments, vessel 100 may have multiple fasteners 130. In a non-limiting example,
In some embodiments, a regulator may be disposed in the gas line, between the receptacle and gas tank of choice. The regulator facilitates a constant pressure within the receptacle. When beverage content is dispensed the regulator would provide more gas to the chamber up to the desired pressure set by the user.
In some embodiments, gas valve 210 may be a one-way valve, allowing a user to only add gas to chamber 110. In other embodiments, gas valve 210 may be a two-way valve, through which gas may be added or removed from the chamber. In some embodiments, lid 200 may be further comprised of a pressure relief valve 220. Pressure relief valve 220 allows a user to release a controlled or semi-controlled amount of gas to reduce the internal pressure of chamber 110. In different embodiments, the gas valve and pressure relief valve may be the same valve. Lid 200 may be further comprised of a pressure gauge port 230. Vessel 100 is designed to withstand a wide range of pressures, and a pressure gauge port gives users the option of attaching a pressure gauge 231 to monitor and help control the pressure in chamber 110.
A gasket 240 disposed in a channel on the bottom surface of lid 200 may, in some embodiments, be included to facilitate the airtight seal between vessel 100 and lid 200. In some embodiments, gasket 240 may be substantially the same shape and perimeter as chamber 110. In some embodiments, gasket 240 may be slightly larger or slightly smaller than the perimeter formed by chamber 110, in order to facilitate the proper joint between vessel 100 and lid 200. More details about gasket 240 are included further herein.
Lid 200 may be coupled with vessel 100 through fasteners 130. In the embodiment depicted in
The receptacle for storing and preserving beverages may include a means by which the beverage or other content can be dispensed without removing the package entirely. In
The method of use of the embodiment in
The present invention allows a user to make custom gas and pressure settings. This is critical because different packaged beverages require different gas environments and pressures to maintain freshness, effervescence, and/or entrained gas content.
Fasteners 130 (not shown in
Particularly, alternate base 121 includes passages 123 (depicted in dashed lines in
As may be seen in
The yoke top 520 may have a yoke top strap 540 connected at an end of the yoke top opposite the hinge. The yoke bottom 530 may have a yoke bottom strap 550 connected at a corresponding end of the yoke bottom. The yoke top strap and/or the yoke bottom strap may have a closure for securably coupling the top and bottom straps. In some embodiments, the closure may be a ratchet 560. In other embodiments, the closure may include a turnbuckle, a latch, a fastex buckle, or other mechanism for securably coupling and tightening the top and bottom straps.
When inserting a growler or other beverage package into the receptacle, the lid is removed to permit the beverage package to be placed in the tube as described elsewhere herein. Also as described elsewhere herein, lid 200 is placed atop tube 110. With the instant alternate embodiment, the operation of completing the airtight seal of the enclosure and clamping the lid down over the tube does not utilize the fasteners and nuts described in
Importantly, while
A cam latch arrangement may include a column 710 for positioning the remainder of the cam latch arrangement for holding the lid in place upon closure of the cam latch arrangement. In some embodiments, the column may extend from the base 120 of the vessel to a position above the lid of the vessel. In other embodiments, such as that depicted in
A cam latch arrangement may include a latch, the latch including latch wheel 720 and handle 722. The latch may pivot about a hinge pin disposed through pivot pin holes 740 of the column and through the latch itself. The hinge pin may be an operating rod molded into the top of the column, or may be a fastener resembling a bolt passed through the pivot pin holes and latch wheel with a nut holding the operating rod in place. The latch also includes a hole for receiving a locking pin. The locking pin of each cam latch arrangement may include a knob attached to a shaft, and a lanyard (chain, nylon, cord, rope or other ligature) may couple the knob to the corresponding column so that the locking pin is not lost or misplaced.
To close the cam latch arrangement, the latch is rotated about the hinge pin using the handle, with the handle moving towards the center of the vessel. Upon reaching a closed position, the latch wheel engages the top of the lid, which rests onto top of an o-ring or gasket 780 (o-ring or gasket 780 not visible in
The o-ring or gasket is compressible, such that closure of the latch wheel presses the lid down compressing the o-ring or gasket. In a closed position, a locking pin may be passed through the locking pin holes 730 and through the mating hole in the latch wheel itself to maintain the cam latch arrangement in the closed position. Upon a user removing the locking pin, rotating the latch wheel and handle away from the center of the vessel and releasing downward pressure on the lid, the o-ring or gasket will have a tendency to push the lid in an upward direction.
In some embodiments, as shown in
The cam latch arrangement facilitates a quicker purge of air from the receptacle than possible with the pressure relief valve 220. Particularly, the lid may be left slightly open while the gas of the user's choice is introduced into the chamber. Leaving the lid slightly open may be accomplished by not fully closing one or more of the cam latch arrangements, for example. Upon venting most of the air from the chamber, the user can close the cam latch arrangements tightly and use the pressure relief valve to “fine-tune” the pressurization within the receptacle.
In this way, the receptacle for storing and preserving beverages may be provisioned with two means for purging entrained air from the vessel, a “coarse” means via leaving the cam latch arrangements slightly open during when introducing gas into the vessel and a “fine” means via the pressure relief valve used as described elsewhere herein when the cam latch arrangements are fully closed. The partially-open position of one or more cam latch arrangements allows a more liberal purge of oxygen laden air, as there is less resistance than there would be through operation of the pressure relief valve.
After an appropriate time of the cam latches being partially open during introduction of gas into the vessel to purge the air (the desired and appropriate time being empirically determined by the user through one or more trials), the cam latch arrangements are closed with the locking pins at which time the pressure relief may be operated to charge the chamber to the desired pressure. Using only the pressure relief means would require a longer amount of time to arrive at the desired pressure; the addition of the cam latch arrangements provides an additional means of controlling a rate of purge of air from the vessel.
The conical tap stem assembly provides ingress and egress of gas with respect to the vessel 100. During pressurization of the vessel, gas is emitted from the bottom face of a cone portion 820 of the conical tap stem assembly through a circular port disposed concentrically about the tap stem itself. When purging oxygen-laden air from the vessel via operation of a pressure relief valve coupled with the cone portion, the oxygen passes in the opposite direction through the same circular port (i.e. drawn upward through the bottom face of the cone portion), from the vessel en route to the pressure relief valve. The direction of travel facilitates a more complete purge of oxygen-laden air.
Additionally, it may be seen that the cone portion 820 includes the ports disposed through an exterior slanted face surrounding the cone portion. This orientation of the ports allows hoses, tubes and other lumen coupled with the ports to travel upwardly at an angle away from the vessel 100 in a less awkward direction than vertically up or down, reducing strain and stress on such lumen.
As disclosed elsewhere herein, a tap tube may include a combination of rigid and flexible sections enabling the tap tube to reach sides and corners of beverage packages. The appearance of the tap tube may vary as a function of the number or type of rigid of flexible sections (see, for example,
Referring to
At the opposite end of the center shaft of the cone section are the ports 870, shown as 870a and 870b in
At the top of ball lock adapter 860 is a threaded section which may threadably receive a ball lock fitting 840. An o-ring 862 may seal a coupling between the ball lock fitting and ball lock adapter. As disclosed elsewhere herein, the ball lock fitting may facilitate coupling of a picnic tap, beer faucet or other suitable dispensing means to the conical tap stem assembly. Other types of fittings may threaded onto the ball lock adapter to facilitate use with other dispensing systems (e.g. Sankey systems) as needed.
The cone portion may include an external threaded portion 829 at its bottom, which threadably mates with a center threaded section 852 disposed through the lid 850. A lower o-ring 822 of the cone portion creates a seal between the cone portion and the lid.
A top face of the cone portion 825 may have a threaded aperture 823 configured for receiving ball lock adapter 860. A lower portion of the ball lock adapter (i.e. the threaded portion below the hexagonal section 868 of the ball lock adapter) threads into the threaded aperture 823 through the top face 825 of the cone portion. A ball lock adapter lower o-ring 866 creates a seal between the ball lock adapter and the cone section. An off-the-shelf ball lock adapter, commonly used in home brewing, may be employed with a simple modification. Particularly, the center channel through the ball lock adapter 864 is drilled out to widen it for receiving the tap tube during assembly of the conical tap stem assembly.
In some embodiments, ice may be added to the vessel before the lid is closed for keeping beverages cool. A drain valve may be present, perhaps disposed through the side of the vessel, for draining water resulting from melting ice. Following a draining operation, pressurization inside the vessel may be re-adjusted via applying the gas to the chamber and purging any air having entered the chamber during the draining.
While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of this subject matter described herein. Furthermore, it is to be understood that the invention is defined by the appended claims. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.).
While preferred and alternative embodiments of the invention have been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of these preferred and alternate embodiments. Instead, the invention should be determined entirely by reference to the claims that follow.
The present application is related to and/or claims the benefits of the earliest effective priority date and/or the earliest effective filing date of the below-referenced applications, each of which is hereby incorporated by reference in its entirety, to the extent such subject matter is not inconsistent herewith, as if fully set forth herein: (1) this application constitutes a continuation of U.S. patent application Ser. No. 14/700,011, entitled SYSTEMS AND METHODS FOR BEVERAGE PRESERVATION, naming Keith W. McIntyre and John J. Parry as inventors, filed Apr. 29, 2015, issued as U.S. Pat. No. 9,193,577 on Nov. 24, 2015, which is currently co-pending or is an application of which a currently co-pending application is entitled to the benefit of the filing date; (2) this application constitutes a continuation of U.S. patent application Ser. No. 14/949,751, entitled SYSTEMS AND METHODS FOR BEVERAGE PRESERVATION, naming Keith W. McIntyre and John J. Parry as inventors, filed Nov. 23, 2015, which is currently co-pending or is an application of which a currently co-pending application is entitled to the benefit of the filing date; and (3) this application constitutes a non-provisional of U.S. Provisional Patent Application No. 62/193,274, entitled SYSTEMS AND METHODS FOR BEVERAGE PRESERVATION, naming Keith W. McIntyre and John J. Parry as inventors, filed Jul. 16, 2015, which is an application of which a currently co-pending application is entitled to the benefit of the filing date.
Number | Name | Date | Kind |
---|---|---|---|
2120297 | Reinecke | Jun 1938 | A |
2751127 | Mitton | Jun 1956 | A |
3676010 | Kirch | Jul 1972 | A |
4856680 | Sitton | Aug 1989 | A |
4869402 | Ash, Jr. | Sep 1989 | A |
5199609 | Ash, Jr. | Apr 1993 | A |
5240144 | Feldman | Aug 1993 | A |
5251787 | Simson | Oct 1993 | A |
5265766 | Kurtzahn | Nov 1993 | A |
6375048 | van der Meer | Apr 2002 | B1 |
7597124 | Litto | Oct 2009 | B2 |
8360278 | Fiedler | Jan 2013 | B2 |
8777057 | Fiedler | Jul 2014 | B2 |
9193577 | McIntyre | Nov 2015 | B2 |
20030102335 | Barnett | Jun 2003 | A1 |
20090145924 | Fiedler | Jun 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20160318749 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
62193274 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14700011 | Apr 2015 | US |
Child | 15067143 | US | |
Parent | 14949751 | Nov 2015 | US |
Child | 14700011 | US |