A portion of the material in this patent document is subject to copyright protection under the copyright laws of the United States and of other countries. The owner of the copyright rights has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the United States Patent and Trademark Office publicly available file or records, but otherwise reserves all copyright rights whatsoever. The copyright owner does not hereby waive any of its rights to have this patent document maintained in secrecy, including without limitation its rights pursuant to 37 C.F.R. § 1.14.
1. Field of the Invention
This invention relates to the field of medical devices, and more particularly to a system and method for locally delivering materials within the body of a patient. Still more particularly, it relates to a system and method for locally delivering interventional medical devices into branch body lumens from a main lumen, and in particular delivering guidewires bilaterally into renal arteries or veins extending from an abdominal aorta or vena cava, respectively, in a patient.
2. Description of Related Art
Many challenges exist with conventional technology available to physicians who desire to perform renal artery diagnosis or intervention. In general, the conventional devices and methods require a relatively high level of skill, familiarity, and technique experience in ordered to cannulate even a single renal artery with a guidewire and catheter. This is because the renals typically have asymmetrical anatomical features and morphology, are located directly off of and somewhat perpendicular to the aorta, and are not easily accessed as the aorta is large relative to the renals. Thus, cannulation often uses backing and support off the opposite aortic wall to stabilize the catheter and guidewire tools to gain renal artery entrance. Additionally, there is significant variation among patients as to the exact locations, angles, and height differences among patients. Thus, a universal technique has been elusive to employ.
Current procedures to place such intravascular devices into the renal arteries or veins also involve the manipulation of guidewires and/or diagnostic or guiding catheters in the abdominal aorta/inferior vena cava in the area of the renal arteries/veins in order to gain access, and then following over (guidewires) or through (guiding catheters) these devices for placement of the intended interventional diagnostic, therapeutic, or prophylactic device. Such access procedures may require numerous expensive devices and be time consuming, increasing both the time of the procedure and its cost. As well, significant manipulation of various devices within the vasculature may lead to untoward clinical sequelae arising from trauma to the interior of the blood vessel walls or extensive x-ray or contrast media exposure.
Therefore, a need exists for a simpler, quicker, single device that may provide guidewire access to the renal vasculature for the delivery of interventional devices. There is in particular a need for such a device that may provide safe, quick, and easy access to both renals arteries or both renal veins simultaneously. Accordingly, there is also a need for an improved delivery device that is adapted to provide rapid, remote access for delivering interventional devices into a branch vessel extending at a unique location from a main vessel. There is in particular such a need for a bilateral delivery device assembly that is adapted to provide such access for interventional device delivery into multiple branch vessels extending at relatively unique locations from the main vessel. At least some of these needs will be met by the inventions described herein.
According to the present invention, methods and systems for positioning guidewires into branched lumens from a main vessel utilize a deployment catheter for manipulating the guidewires, either simultaneously or separately. In the methods of the present invention, the deployment catheter has a first lumen and a second lumen for receiving the first and second guidewires therein. The deployment catheter is positioned in the main vessel, such as an abdominal aorta, and the first guidewire is placed from the first guidewire lumen into a first targeted branched lumen and the second guidewire is placed from the second catheter lumen into a second targeted branched lumen. The targeted branch lumens are typically the right and left renal arteries, respectively. The deployment catheter may then be removed, typically in a proximal direction, from over the guidewires, leaving both guidewires available for over-the-wire placement of one or more catheters for diagnostic procedures, therapeutic procedures, or some combination thereof.
In a first specific embodiment of the methods of the present invention, the deployment catheter is axially advanced and/or retracted with the first and second guidewires extended laterally from a distal end thereof. The distal tips of the guidewires will be resilient or spring-like and oriented so that they simultaneously engage opposed regions of the main vessel wall. In this way, the guidewires apply generally equal, balanced forces against the main lumen wall and are able to enter the ostia of the branched target lumens when they reach the ostia.
Many times, axial movement of the deployment catheter will be sufficient in itself to place at least one and usually two of the guidewires into the branched ostia. In other cases, however, the branched ostia may not be axially aligned and/or rotationally aligned so that simultaneous movement of the lateral extensions of the guidewires do not automatically locate and enter the branched ostia. When that is the case, the individual guidewires can be manipulated relative to the deployment catheter, either while the deployment catheter is being moved or while it is stationary. In particular, the individual guidewires may be axially advanced and retracted relative to the deployment catheter in order to help position either or both of the guidewires into the target branched lumen. Alternatively or in addition, the guidewires may also be rotated about their own axes in order to help position the guidewire tips in the branched ostia.
In an alternate aspect of the methods of the present invention, the deployment catheter may be held stationary within the main vessel while the guidewires are individually advanced and manipulated, e.g., by rotating, in order to locate and enter the branched vessel through their respective ostia. The guidewires will typically viewed by fluoroscopic or other conventional techniques to assist in locating the branched luminal ostia. In all cases, after the guidewires have been positioned within the branched lumens, the deployment catheter may then be removed, leaving the guidewires available for subsequent catheter placement, as generally described above. The guidewires will usually each have deflected distal ends with a lateral extension, i.e., lateral distance from the axis of the guidewire when no forces are being applied, typically of at least 15 mm, preferably of at least 25 mm.
Preferably, the systems of the present invention will further comprise an introducer sheath. The introducer sheath may have a relatively short length, typically in the range from 5 cm to 25 cm, or may have a relatively long length, typically in the range from 20 cm to 60 cm, preferably from 30 cm to 45 cm. The use of long introducer sheaths can facilitate the introduction of the deployment catheter with the guidewires pre-advanced from a distal tip of the deployment catheter. In such cases, the laterally deflected distal ends of the guidewires will then be constrained within the long introducer sheath until they reach the general location of the target branched lumens, typically the renal arteries.
According to one present embodiment, a catheter/guidewire based system is provided that is adapted to gain rapid guidewire access to the renal arteries, such as for example for the purposes of renal diagnostic angiograms and renal intervention (e.g., percutaneous transluminal angioplasty or “PTA”, stent placement, etc.). These wires are then in place to allow catheters and other catheter type tools to be advanced over them, such as for example after a dual lumen deployment catheter is removed from the blood vessels or other body lumens, as will be explained in further detail below.
In a further detailed embodiment, systems of the present invention include the deployment catheter and a pair of pre-shaped guidewires (for example typically between about 0.014″ and 0.038″ in diameter). These guidewires are held in general spatial relationship together via the dual lumen deployment catheter. The dual lumen deployment catheter is used to keep the two individual shaped wires in a generally straightened configuration to facilitate introduction and manipulation in the target body lumens as discussed below. Thus, the system allows for rapid bilateral cannulation of renal arteries or other branched target lumens, but can also be used for very rapid single renal artery cannulation when desired, such as for example utilizing only one directional aspect of a dual wire delivery system, or in another example using a second dummy arm as elsewhere disclosed herein for biased delivery catheter branch arm delivery. Or, one lateral delivery aspect may incorporate guidewire cannulation, whereas the second lateral delivery aspect may incorporate delivery lumen catheter cannulation. Once cannulation is achieved, the dual lumen catheter is drawn proximally of the wires (removed), leaving the wires in place. Then, the physician can advance whatever tool is desired over the now cannulated guidewire.
The dual wire and deployment catheter systems of the present invention provide substantial benefits over conventional technologies and methods. In one regard, the dual wires respectively provide a “built in” supportive backing against the opposing aortic wall or renal ostium. While the bifurcated delivery catheter systems of the prior applications which have been referred above can directly place shaped catheters, the present invention places guidewires instead of delivery catheter arms, thus allowing for other catheter tools to be used in conjunction with these wires, as they can be advanced over these wires as needed.
The deployment catheter holds the guidewires in a proper position (e.g., approximately 180 degree opposed alignment) for placement. By advancing the deployment catheter toward the distal end of the wires, the wires and catheter can behave as a single unit when desired, but also allow movement and alignment of individual wires as needed. Such adjustability includes for example up or down movement, and torque independently or together via rotation of the dual lumen holding catheter. This adjustability is well adapted for use in difficult anatomy where independent movement of wires may be necessary.
The systems of the present invention incorporating two shaped wires and the dual lumen deployment catheter can be advanced through either a standard, commercially-available sheath or custom designed delivery sheath, such as elsewhere herein described, for bilateral guidewire delivery to the renals. Or, the catheter shaft can be advanced over a single guidewire, including one of the system's own wires, or over a commercially available wire.
Once in position, the guidewires can be adjusted to a “self guiding” configuration, wherein they are adapted to cannulate the respectively spaced renal ostia by seeking to be spread open and navigate into the chamfered/radiused entrances with minimal torque and advancement. Such may be accomplished for example by self-expanding or spring-like recovery from respectively constrained configurations within the dual lumens of the delivery catheter, to respectively unconstrained memory configurations having shapes that are respectively biased away from each other toward the renal ostia along the aortic wall. In addition or alternative to the self-guiding mode, the wires may also be individually manipulated, which may be necessary for severely difficult anatomy or in the case of stenotic lesions.
The wires of the present embodiments may be constructed of typical guidewire materials, including for example stainless steel, or a superelastic or shape memory alloy such as nickel-titanium alloy, e.g. Nitinol. The wires may also be coated with a lubricious coating, such as for example polytetrafluoroethylene (PTFE), a hydrophilic coating, or another suitable lubricous coating. Furthermore, in highly beneficial illustrative embodiments the wires are pre-shaped, and in particular beneficial embodiments are shaped to have the combined appearance similar to a “Y” when placed together.
The dual lumen deployment catheter of the present invention is made of various conventional catheter shaft materials, such as for example of a polymer typical of catheters. In addition, the catheter can also employ a lubricous coating within the respective guidewire lumens, to allow easy removal and/or advancement of wires. In the present embodiments, the dual-lumen catheter is not adapted for cannulation into either renal artery, but rather another catheter would be incorporated into the overall system after removal (e.g. retraction over the wire) of the system's dual lumen catheter.
It is to be appreciated that various modifications may be made to the present illustrative embodiments for rapid guidewire cannulation without departing from various aspects herein contemplated for the invention. For example, various materials, coatings, dimensions, lengths, and respective configurations and spatial arrangements may be incorporated into either or both the guidewires, catheter shaft, or components thereof of the embodiments which differ than those specifically herein described. Moreover, the number of guidewires, and lumens of the catheter shaft accordingly, may be modified to suit a particular need. For example, as previously described above, a single guidewire may be used in the various embodiments for single ostium cannulation. Moreover, a design providing for three or more wires and/or respective catheter lumens may be employed for special cases where more than two ostia are to be cannulated. In addition, the systems and methods may be adapted for use in other anatomies and for other indications than for renal cannulation.
Referring now to
The deployment catheter 12 may be constructed in a variety of ways. For example, it may be formed as a single dual lumen extrusion typically having a tapered distal end 20 and a bifurcated proximal end 22. Alternatively, the deployment catheter 12 could be formed from a pair of single lumen extrusions which are attached or otherwise held together along their proximal lengths, for example by a coaxial outer cover or sheath. In all cases, the internal lumens 18 will typically terminate at their proximal ends in a hemostatic or other valve structure 24 which permits selective introduction and manipulation of the individual guidewires 14 through the catheter so that shaped distal ends 26 of each guidewire may be advanced from the distal end 20 of the catheter and individually manipulated, as shown in
The guidewires 14 may be formed from conventional guidewire materials, as described generally above. These specific geometry and dimensions of the shaped distal ends 26 will be chosen based on the bifurcated body lumens which are being targeted. In the case of the renal arteries, a preferred geometry is shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Additional modifications or improvements may be made by the embodiments shown and described herein without departing from the intended scope of the invention which is considered to be broadly beneficial according to various independent aspects described. For example, various modifications to or combinations with the present embodiments may be made in view of other available information to one of ordinary skill in the art upon review of this disclosure and remain within the intended scope of the invention.
Although the description above contains many details, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for.”
This application claims the benefit of prior provisional patent application No. 60/612,801 (Attorney Docket No. 022352-002700US), filed on Sep. 24, 2004, the full disclosure of which is incorporated herein by reference. This application is related to but does not claim priority from the following international applications which are incorporated herein by reference in their entirety: PCT/US01/13686 published as WO2001/83016A2; PCT/US03/21406; PCT/US03/29740 published as WO2004/026370A3; PCT/US04/08571; PCT/US03/29744 published as WO2004/032791A3; PCT/US03/29995 published as WO2004/030718A3; PCT/US03/29743 published as WO2004/026371A2; PCT/US03/29585 published as WO2004/034767A2; PCT/US03/29586; and PCT/US04/08573. This application is also related to but does not claim priority from the following U.S. applications which are incorporated herein by reference in their entirety: Ser. No. 09/229,390; Ser. No. 09/562,493; Ser. No. 09/724,691; and Ser. No. 10/251,915. This application is also related to U.S. Pat. No. 6,749,598 which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60612801 | Sep 2004 | US |