The present invention relates to a bone fixation plate and fastener systems used to stabilize vertebrae and other bony anatomy. More specifically, the present invention relates to systems and methods for locking a fastener into a bone plate.
Bones and bony structures are susceptible to a variety of weaknesses that can affect their ability to provide support and structure. Weaknesses in bony structures may have many causes, including degenerative diseases, tumors, fractures, and dislocations. Advances in medicine and engineering have provided doctors with a plurality of devices and techniques for alleviating or curing these weaknesses.
In the field of orthopedic surgery, and more specifically spinal surgery, bone fasteners may be used for fixation or for the fastening of orthopedic devices or instruments to bone tissue. An exemplary use of bone fastener may include using the bone fastener to fasten an orthopedic device, such as a bone plate, a spinal spacer, and/or a combination thereof, to a vertebral body for the treatment of a deformity or defect in a patient's spine. Bone fasteners can be secured to a number of vertebral bodies and a bone plate can then be connected to the vertebral bodies via the bone fasteners to fuse a segment of the spine. In another example, bone fasteners can be used to fix the location of a spinal spacer once the spacer is implanted between adjacent vertebral bodies. In yet another example, bone fasteners can be fastened to a number of vertebral bodies to anchor a spinal rod in place along a spinal column to treat a spinal deformity.
In the case of severely weakened bone, surgeons may face challenges in finding proper purchase of the bone fastener into the bone and proper attachment to the bone plate. Therefore, to overcome disadvantages noted above, the present disclosure provides bone fixation systems and methods using bone fasteners with threaded heads to engage and deform a textured portion of a bone plate.
To meet this and other needs, the present disclosure provides a bone fixation system having a bone plate and a locking fastener. The bone plate may include an upper surface and a lower surface that may be in contact with a bone. The bone plate may also include a locking hole extending from the upper surface to the lower surface, the locking hole may include a textured portion. The textured portion may include a texture that is a non-threaded surface. The locking fastener may include a head portion and a shaft portion and the locking fastener may be received by the locking hole and may be inserted into the bone. The head portion may be threaded and configured to engage the textured area of the locking hole.
The present disclosure also provides a bone fixation system including a spacer that may be inserted in between two adjacent vertebral bodies and a bone plate that may engage the spacer. The bone plate may have an upper surface and a lower surface that may be in contact with bone. The bone plate may further have a locking hole extending from the upper surface to the lower surface, the locking hole may include a textured portion and non-textured portion. The textured portion may include a texture that is a non-threaded surface. The bone fixation system may include a locking fastener that may be received in the locking hole and that may be inserted into the bone. The locking fastener may have a threaded head portion configured to lock to the bone plate. The threaded head portion may deform the textured portion of locking hole.
A more complete understanding of the present disclosure, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
Embodiments of the disclosure are generally directed to devices, systems, and methods for bone stabilization. Specifically, embodiments are directed to bone plating with locking and/or non-locking fasteners for engaging with a bone fastener. The hole designs may allow for fixed angle and/or variable angle fixation. Systems and methods disclosed herein may allow for locking bone screws into a spinal plate or integrated plate-spacer to create a rigid construct and prevent back-out of screws while maintaining a preferred screw trajectory using a spherical or conical screw head profile and with tapering dual-lead threads at a specified torque. Some embodiments further include locking fasteners with self-forming threads configured to displace the plate material, thereby locking the fastener to the plate.
The present disclosure relates to exemplary embodiments of locking screws into a plate or integrated plate spacer. This may be accomplished through interference/cross-threading of tapered dual-lead threads on a head of the locking screw engaging with a screw hole or socket with a series of helical sweeps, diamond knurls, or similar relief cuts arranged about the central axis of the screw hole or socket. Tightening of the dual-lead threads of the screw head into these relief cuts creates rigid fixation of the screw and prevents loosening and screw back-out. As an example, the material of the screw may be the same as the plate/integrated-plate spacer or a harder material to promote controlled deformation and rigid fixation. The helical sweeps, diamond knurls, or similar relief cuts may allow for both fixed and variable angle locking screws with conical variability up to 10 degrees.
The plate(s) and/or plate-spacer device(s) may be adapted to contact one or more vertebral bodies. The configuration of the locking screw and/or screw hole of the present disclosure may be used by various plates and plate-spacer devices known in the art. Such exemplary bone plates and plate-spacer devices have been described, for example, in U.S. Pat. Nos. 9,326,802; 9,095,387; 9,044,275; and 9,044,275 which are incorporated herein by reference in their entireties. For purposes of illustration, one exemplary bone fixation plate is described in
Plate 101 and the screws may be comprised of any material, such as a metal, alloy, or any combination of the two. Preferably, the material used to construct the plate and the screws allows the plate 101 to maintain its structural integrity while allowing for a desired amount of resiliency. Furthermore, the material used is preferably bio-compatible and capable of withstanding the conditions of a body over a desired period of time. In some embodiments, this is achieved by manufacturing the plate 101 and screws using metals such as titanium or stainless steel. Titanium has sufficient ductility to permit a desired amount of curving of the plate 101 to conform to the shape of the vertebrae, yet has the strength to maintain its structural integrity.
In the exemplary embodiment of
Bone plates may be comprised of titanium, stainless steel, cobalt chrome, carbon composite, plastic or polymer—such as polyetheretherketone (PEEK), polyethylene, ultra-high molecular weight polyethylene (UHMWPE), resorbable polylactic acid (PLA), polyglycolic acid (PGA), combinations or alloys of such materials or any other appropriate material that has sufficient strength to be secured to and hold bone, while also having sufficient biocompatibility to be implanted into a body. Similarly, the fasteners may be comprised of titanium, cobalt chrome, cobalt-chrome-molybdenum, stainless steel, tungsten carbide, combinations or alloys of such materials or other appropriate biocompatible materials. Although the above list of materials includes many typical materials out of which bone plates and fasteners are made, it should be understood that bone plates and fasteners comprised of any appropriate material are contemplated.
Referring now to
The material of the screw may be the same as the plate/integrated-plate spacer or a harder material to promote controlled deformation and rigid fixation. The helical sweeps, diamond knurls, or similar relief cuts allow for both fixed and variable angle locking screws with conical variability up to 10 degrees.
Specifically, locking fastener 200 of
An upper portion of the hole 402 may be tapered, without texturing, for example, to facilitate alignment of the fastener 200 with an opening of the locking hole 402. Locking hole 402 may be configured to receive a fixed or variable angle fastener 200. Locking hole 402 may be generally conical in shape such that it is wider near the top surface of plate 400 and narrower toward a bottom surface plate 400. The tapered portion and/or the textured portion 404 may be conical in shape.
In operation, shaft portion 204 may be threaded such that the fastener 200 may be threaded into the bone. The head portion 202 of the locking fastener 200 may include the textured area 206 around its outer surface that is sized and configured to engage with locking hole 402 of plate 400. Textured area 206 may include threads, ridges, bumps, dimples, serrations, or other types of textured areas. As shown, texture area 206 preferably includes a threaded portion extending substantially from the top of the head portion 202 to the bottom of the head portion 202 proximate to the shaft portion 204. The textured portion 404 of locking holes 402 may deform as head 202 interferes with the textured portion 404 of the hole 402, thereby providing a positive lock between the fastener 200 and the plate 400. Thus, as shown in
In an alternate embodiment, locking hole 402 may be configured to have a substantially smooth surface rather than having textured surface 404. In this embodiment, when locking fastener 200 is inserted into plate 400, textured area 206 digs into the substantially smooth inner surface of the locking hole 402 thereby locking fastener 200 into plate 400.
The locking screw feature described above combined with large cancellous threads of the screw may allow for a rigid connection of the screw to the implant in cases where weakened bone prevents lagging of bone onto the implant surface. The screw-implant construct provides greater stability in patients with poor bone quality.
The cutting/wedging behavior of the conical threads allows for the use of a locking-type screw in the same socket or screw hole geometry as a non-locking lagging screw that uses a blocking screw feature for retention. This offers greater versatility the surgeon in the types of screws they can used for fixation depending on patient anatomy and bone quality while not altering existing lag screws.
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to one skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. Thus, it is intended that the invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. It is expressly intended, for example, that all ranges broadly recited in this document include within their scope all narrower ranges which fall within the broader ranges. It is also intended that the components of the various devices disclosed above may be combined or modified in any suitable configuration.
This application is a continuation-in-part of U.S. patent application Ser. No. 15/238,772, filed on Aug. 17, 2016 (published as U.S. Patent Publication No. 2018-0049785), which is incorporated by reference herein in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1105105 | Sherman | Jul 1914 | A |
2486303 | Longfellow | Oct 1949 | A |
3716050 | Johnston | Feb 1973 | A |
4493317 | Klaue | Jan 1985 | A |
4524765 | de Zbikowski | Jun 1985 | A |
4651724 | Berentey et al. | Mar 1987 | A |
4683878 | Carter | Aug 1987 | A |
4781183 | Casey et al. | Nov 1988 | A |
4867144 | Karas et al. | Sep 1989 | A |
5002544 | Klaue et al. | Mar 1991 | A |
5041114 | Chapman et al. | Aug 1991 | A |
5151103 | Tepic et al. | Sep 1992 | A |
5259398 | Vrespa | Nov 1993 | A |
5275601 | Gogolewski et al. | Jan 1994 | A |
5364399 | Lowery et al. | Nov 1994 | A |
5372598 | Luhr et al. | Dec 1994 | A |
5423826 | Coates et al. | Jun 1995 | A |
5601553 | Trebing et al. | Feb 1997 | A |
5676667 | Hausman | Oct 1997 | A |
5709686 | Talos et al. | Jan 1998 | A |
5718704 | Medoff | Feb 1998 | A |
5746742 | Runciman et al. | May 1998 | A |
5785712 | Runciman et al. | Jul 1998 | A |
5938664 | Winquist et al. | Aug 1999 | A |
6001099 | Huebner | Dec 1999 | A |
6096040 | Esser | Aug 2000 | A |
6139550 | Michelson | Oct 2000 | A |
6152927 | Farris et al. | Nov 2000 | A |
6206881 | Frigg et al. | Mar 2001 | B1 |
6283969 | Grusin et al. | Sep 2001 | B1 |
6309393 | Tepic et al. | Oct 2001 | B1 |
6322562 | Wolter | Nov 2001 | B1 |
6364882 | Orbay | Apr 2002 | B1 |
6533786 | Needham et al. | Mar 2003 | B1 |
6605090 | Trieu et al. | Aug 2003 | B1 |
6623486 | Weaver et al. | Sep 2003 | B1 |
6669700 | Farris et al. | Dec 2003 | B1 |
6669701 | Steiner et al. | Dec 2003 | B2 |
6712820 | Orbay | Mar 2004 | B2 |
6719759 | Wagner et al. | Apr 2004 | B2 |
6730091 | Pfefferle et al. | May 2004 | B1 |
6866665 | Orbay | Mar 2005 | B2 |
6955677 | Dahners | Oct 2005 | B2 |
6974461 | Wolter | Dec 2005 | B1 |
7001387 | Farris et al. | Feb 2006 | B2 |
7063701 | Michelson | Jun 2006 | B2 |
7128744 | Weaver et al. | Oct 2006 | B2 |
7137987 | Patterson et al. | Nov 2006 | B2 |
7153309 | Huebner et al. | Dec 2006 | B2 |
7179260 | Gerlach et al. | Feb 2007 | B2 |
7250053 | Orbay | Jul 2007 | B2 |
7294130 | Orbay | Nov 2007 | B2 |
7322983 | Harris | Jan 2008 | B2 |
7341589 | Weaver et al. | Mar 2008 | B2 |
7354441 | Frigg | Apr 2008 | B2 |
7604657 | Orbay et al. | Oct 2009 | B2 |
7632277 | Woll et al. | Dec 2009 | B2 |
7635381 | Orbay | Dec 2009 | B2 |
7637928 | Fernandez | Dec 2009 | B2 |
7655029 | Niedernberger et al. | Feb 2010 | B2 |
7682379 | Mathieu et al. | Mar 2010 | B2 |
7695472 | Young | Apr 2010 | B2 |
7695502 | Orbay et al. | Apr 2010 | B2 |
7722653 | Young et al. | May 2010 | B2 |
7740648 | Young et al. | Jun 2010 | B2 |
7776076 | Grady, Jr. et al. | Aug 2010 | B2 |
7857838 | Orbay | Dec 2010 | B2 |
7867260 | Meyer et al. | Jan 2011 | B2 |
7867261 | Sixto, Jr. et al. | Jan 2011 | B2 |
7875062 | Lindemann et al. | Jan 2011 | B2 |
7905910 | Gerlach et al. | Mar 2011 | B2 |
7909858 | Gerlach et al. | Mar 2011 | B2 |
7951178 | Jensen | May 2011 | B2 |
7951179 | Matityahu | May 2011 | B2 |
7976570 | Wagner et al. | Jul 2011 | B2 |
D643121 | Millford et al. | Aug 2011 | S |
D646785 | Milford | Oct 2011 | S |
8043297 | Grady, Jr. et al. | Oct 2011 | B2 |
8057520 | Ducharme et al. | Nov 2011 | B2 |
8062296 | Orbay et al. | Nov 2011 | B2 |
8100953 | White et al. | Jan 2012 | B2 |
8100955 | Blain | Jan 2012 | B2 |
8105367 | Austin et al. | Jan 2012 | B2 |
8114081 | Kohut et al. | Feb 2012 | B2 |
8118846 | Leither et al. | Feb 2012 | B2 |
8162950 | Digeser et al. | Apr 2012 | B2 |
8167918 | Strnad et al. | May 2012 | B2 |
8177820 | Anapliotis et al. | May 2012 | B2 |
8246661 | Beutter et al. | Aug 2012 | B2 |
8252032 | White et al. | Aug 2012 | B2 |
8257403 | Den Hartog et al. | Sep 2012 | B2 |
8257405 | Haidukewych et al. | Sep 2012 | B2 |
8257406 | Kay et al. | Sep 2012 | B2 |
8262707 | Huebner et al. | Sep 2012 | B2 |
8267972 | Gehlert | Sep 2012 | B1 |
8317842 | Graham et al. | Nov 2012 | B2 |
8323321 | Gradl | Dec 2012 | B2 |
8337535 | White et al. | Dec 2012 | B2 |
8343155 | Fisher et al. | Jan 2013 | B2 |
8343196 | Schneider | Jan 2013 | B2 |
8382807 | Austin et al. | Feb 2013 | B2 |
8394098 | Orbay et al. | Mar 2013 | B2 |
8394130 | Orbay et al. | Mar 2013 | B2 |
8398685 | McGarity et al. | Mar 2013 | B2 |
8403966 | Ralph et al. | Mar 2013 | B2 |
8419775 | Orbay et al. | Apr 2013 | B2 |
8435272 | Dougherty et al. | May 2013 | B2 |
8439918 | Gelfand | May 2013 | B2 |
8444679 | Ralph et al. | May 2013 | B2 |
8491593 | Prien et al. | Jul 2013 | B2 |
8506607 | Eckhof et al. | Aug 2013 | B2 |
8506608 | Cerynik et al. | Aug 2013 | B2 |
8512385 | White et al. | Aug 2013 | B2 |
8518090 | Huebner et al. | Aug 2013 | B2 |
8523862 | Murashko, Jr. | Sep 2013 | B2 |
8523919 | Huebner et al. | Sep 2013 | B2 |
8523921 | Horan et al. | Sep 2013 | B2 |
8551095 | Fritzinger et al. | Oct 2013 | B2 |
8568462 | Sixto, Jr. et al. | Oct 2013 | B2 |
8574268 | Chan et al. | Nov 2013 | B2 |
8597334 | Mocanu | Dec 2013 | B2 |
8603147 | Sixto, Jr. et al. | Dec 2013 | B2 |
8617224 | Kozak et al. | Dec 2013 | B2 |
8632574 | Kortenbach et al. | Jan 2014 | B2 |
8641741 | Murashko, Jr. | Feb 2014 | B2 |
8641744 | Weaver et al. | Feb 2014 | B2 |
8663224 | Overes et al. | Mar 2014 | B2 |
8728082 | Fritzinger et al. | May 2014 | B2 |
8728126 | Steffen | May 2014 | B2 |
8740905 | Price et al. | Jun 2014 | B2 |
8747442 | Orbay et al. | Jun 2014 | B2 |
8764751 | Orbay et al. | Jul 2014 | B2 |
8764808 | Gonzalez-Hernandez | Jul 2014 | B2 |
8777998 | Daniels et al. | Jul 2014 | B2 |
8790376 | Fritzinger et al. | Jul 2014 | B2 |
8790377 | Ralph et al. | Jul 2014 | B2 |
8808333 | Kuster et al. | Aug 2014 | B2 |
8808334 | Strnad et al. | Aug 2014 | B2 |
8834532 | Velikov et al. | Sep 2014 | B2 |
8834537 | Castanada et al. | Sep 2014 | B2 |
8852246 | Hansson | Oct 2014 | B2 |
8852249 | Ahrens et al. | Oct 2014 | B2 |
8864802 | Schwager et al. | Oct 2014 | B2 |
8870931 | Dahners et al. | Oct 2014 | B2 |
8888825 | Batsch et al. | Nov 2014 | B2 |
8906076 | Mocanu et al. | Dec 2014 | B2 |
8911482 | Lee et al. | Dec 2014 | B2 |
8926675 | Leung et al. | Jan 2015 | B2 |
8940026 | Hilse et al. | Jan 2015 | B2 |
8940028 | Austin et al. | Jan 2015 | B2 |
8940029 | Leung | Jan 2015 | B2 |
8951291 | Impellizzeri | Feb 2015 | B2 |
8968368 | Tepic | Mar 2015 | B2 |
9011457 | Grady, Jr. et al. | Apr 2015 | B2 |
9023052 | Lietz et al. | May 2015 | B2 |
9050151 | Schilter | Jun 2015 | B2 |
9072555 | Michel | Jul 2015 | B2 |
9072557 | Fierlbeck et al. | Jul 2015 | B2 |
9103367 | Arnett | Aug 2015 | B2 |
9107678 | Murner et al. | Aug 2015 | B2 |
9107711 | Hainard | Aug 2015 | B2 |
9107713 | Horan et al. | Aug 2015 | B2 |
9107718 | Isch | Aug 2015 | B2 |
9113970 | Lewis et al. | Aug 2015 | B2 |
9149310 | Fritzinger et al. | Oct 2015 | B2 |
9155577 | Pfefferle et al. | Oct 2015 | B2 |
9161791 | Frigg | Oct 2015 | B2 |
9161795 | Chasbrummel et al. | Oct 2015 | B2 |
9168075 | Dell'Oca | Oct 2015 | B2 |
9179950 | Zajac et al. | Nov 2015 | B2 |
9179956 | Cerynik et al. | Nov 2015 | B2 |
9180020 | Gause et al. | Nov 2015 | B2 |
9211151 | Weaver et al. | Dec 2015 | B2 |
9259217 | Fritzinger et al. | Feb 2016 | B2 |
9259255 | Lewis et al. | Feb 2016 | B2 |
9271769 | Batsch et al. | Mar 2016 | B2 |
9283010 | Medoff et al. | Mar 2016 | B2 |
9295506 | Raven, III et al. | Mar 2016 | B2 |
9314284 | Chan et al. | Apr 2016 | B2 |
9320554 | Greenberg et al. | Apr 2016 | B2 |
9322562 | Takayama et al. | Apr 2016 | B2 |
9370388 | Globerman et al. | Jun 2016 | B2 |
9433407 | Fritzinger et al. | Sep 2016 | B2 |
9433452 | Weiner et al. | Sep 2016 | B2 |
9433454 | Paolino et al. | Sep 2016 | B2 |
9468479 | Marotta et al. | Oct 2016 | B2 |
9480512 | Orbay | Nov 2016 | B2 |
9486262 | Andermahr et al. | Nov 2016 | B2 |
9492213 | Orbay | Nov 2016 | B2 |
9510878 | Nanavati et al. | Dec 2016 | B2 |
9510880 | Terrill et al. | Dec 2016 | B2 |
9526543 | Castaneda et al. | Dec 2016 | B2 |
9545277 | Wolf et al. | Jan 2017 | B2 |
9566097 | Fierlbeck et al. | Feb 2017 | B2 |
9636157 | Medoff | May 2017 | B2 |
9649141 | Raven, III et al. | May 2017 | B2 |
9668794 | Kuster et al. | Jun 2017 | B2 |
10335211 | Chan et al. | Jul 2019 | B2 |
20020045901 | Wagner et al. | Apr 2002 | A1 |
20020156474 | Wack et al. | Oct 2002 | A1 |
20040097937 | Pike et al. | May 2004 | A1 |
20050107796 | Gerlach et al. | May 2005 | A1 |
20050131413 | O'Driscoll et al. | Jun 2005 | A1 |
20050187551 | Orbay et al. | Aug 2005 | A1 |
20050261688 | Grady | Nov 2005 | A1 |
20060149265 | James et al. | Jul 2006 | A1 |
20060195104 | Schlafli | Aug 2006 | A1 |
20060241607 | Myerson et al. | Oct 2006 | A1 |
20070270849 | Orbay et al. | Nov 2007 | A1 |
20080021477 | Strnad et al. | Jan 2008 | A1 |
20080234677 | Dahners | Sep 2008 | A1 |
20080234749 | Forstein | Sep 2008 | A1 |
20080275510 | Schonhardt et al. | Nov 2008 | A1 |
20090024172 | Pizzicara | Jan 2009 | A1 |
20090024173 | Reis, Jr. | Jan 2009 | A1 |
20090118773 | James et al. | May 2009 | A1 |
20090198285 | Raven, III | Aug 2009 | A1 |
20090228010 | Gonzalez-Hernandez et al. | Sep 2009 | A1 |
20090228047 | Derouet et al. | Sep 2009 | A1 |
20090248084 | Hintermann | Oct 2009 | A1 |
20090281543 | Orbay et al. | Nov 2009 | A1 |
20090312760 | Forstein et al. | Dec 2009 | A1 |
20100057086 | Price et al. | Mar 2010 | A1 |
20100114097 | Siravo et al. | May 2010 | A1 |
20100121326 | Woll et al. | May 2010 | A1 |
20100274247 | Grady, Jr. et al. | Oct 2010 | A1 |
20110106086 | Laird | May 2011 | A1 |
20110218580 | Schwager et al. | Sep 2011 | A1 |
20120059424 | Epperly et al. | Mar 2012 | A1 |
20120323284 | Baker et al. | Dec 2012 | A1 |
20130018426 | Tsai et al. | Jan 2013 | A1 |
20130060291 | Petersheim | Mar 2013 | A1 |
20130096631 | Leung et al. | Apr 2013 | A1 |
20130123841 | Lyon | May 2013 | A1 |
20130138156 | Derouet | May 2013 | A1 |
20130150902 | Leite | Jun 2013 | A1 |
20130165981 | Clasbrummet et al. | Jun 2013 | A1 |
20130211463 | Mizuno et al. | Aug 2013 | A1 |
20130325071 | Niemiec et al. | Dec 2013 | A1 |
20140005728 | Koay et al. | Jan 2014 | A1 |
20140018862 | Koay et al. | Jan 2014 | A1 |
20140031879 | Sixto, Jr. et al. | Jan 2014 | A1 |
20140053696 | Reed | Feb 2014 | A1 |
20140094856 | Sinha | Apr 2014 | A1 |
20140121710 | Weaver et al. | May 2014 | A1 |
20140180345 | Chan et al. | Jun 2014 | A1 |
20140277178 | O'Kane et al. | Sep 2014 | A1 |
20140277181 | Garlock | Sep 2014 | A1 |
20140316473 | Pfeffer | Oct 2014 | A1 |
20140330320 | Wolter | Nov 2014 | A1 |
20140378975 | Castaneda et al. | Dec 2014 | A1 |
20150051650 | Verstreken et al. | Feb 2015 | A1 |
20150051651 | Terrill et al. | Feb 2015 | A1 |
20150073486 | Marotta et al. | Mar 2015 | A1 |
20150105829 | Laird | Apr 2015 | A1 |
20150112355 | Dahners et al. | Apr 2015 | A1 |
20150134011 | Medoff | May 2015 | A1 |
20150142065 | Schonhardt et al. | May 2015 | A1 |
20150190185 | Koay et al. | Jul 2015 | A1 |
20150209091 | Sixto, Jr. et al. | Jul 2015 | A1 |
20150216571 | Impellizzeri | Aug 2015 | A1 |
20150223852 | Lietz et al. | Aug 2015 | A1 |
20150272638 | Langford | Oct 2015 | A1 |
20150282851 | Michel | Oct 2015 | A1 |
20150313653 | Ponce et al. | Nov 2015 | A1 |
20150313654 | Horan et al. | Nov 2015 | A1 |
20150327898 | Martin | Nov 2015 | A1 |
20150351816 | Lewis et al. | Dec 2015 | A1 |
20160022336 | Bateman | Jan 2016 | A1 |
20160030035 | Zajac et al. | Feb 2016 | A1 |
20160045237 | Cerynik et al. | Feb 2016 | A1 |
20160045238 | Bohay | Feb 2016 | A1 |
20160074081 | Weaver et al. | Mar 2016 | A1 |
20160166297 | Mighell et al. | Jun 2016 | A1 |
20160166298 | Mighell et al. | Jun 2016 | A1 |
20160262814 | Wainscott | Sep 2016 | A1 |
20160278828 | Ragghianti | Sep 2016 | A1 |
20160310183 | Shaw et al. | Oct 2016 | A1 |
20160310185 | Sixto et al. | Oct 2016 | A1 |
20160324552 | Baker et al. | Nov 2016 | A1 |
20160354122 | Montello et al. | Dec 2016 | A1 |
20170035478 | Andermahr et al. | Feb 2017 | A1 |
20170042592 | Kim | Feb 2017 | A1 |
20170042596 | Mighell et al. | Feb 2017 | A9 |
20170049493 | Gauneau et al. | Feb 2017 | A1 |
20170065312 | Lauf et al. | Mar 2017 | A1 |
20170202585 | Leak | Jul 2017 | A1 |
20170215931 | Cremer et al. | Aug 2017 | A1 |
20170238980 | Lauf et al. | Aug 2017 | A1 |
20180049787 | Davison et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
201987653 | Sep 2011 | CN |
202313691 | Jul 2012 | CN |
202821574 | Mar 2013 | CN |
202821575 | Mar 2013 | CN |
203506858 | Apr 2014 | CN |
203815563 | Sep 2014 | CN |
105982727 | Oct 2016 | CN |
3178423 | Jun 2017 | EP |
3348218 | Jul 2018 | EP |
2846870 | May 2004 | FR |
2928259 | Sep 2009 | FR |
2003210478 | Jul 2003 | JP |
2010-536427 | Dec 2010 | JP |
2015-519144 | Jul 2015 | JP |
2018-110864 | Jul 2018 | JP |
201316942 | May 2013 | TW |
2011109127 | Sep 2011 | WO |
2016079504 | May 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20190000518 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15238772 | Aug 2016 | US |
Child | 16122995 | US |