Systems and methods for determining blood oxygen saturation values using complex number encoding

Information

  • Patent Grant
  • 9622693
  • Patent Number
    9,622,693
  • Date Filed
    Friday, January 30, 2015
    9 years ago
  • Date Issued
    Tuesday, April 18, 2017
    7 years ago
Abstract
The disclosure includes pulse oximetry systems and methods for determining point-by-point saturation values by encoding photoplethysmographs in the complex domain and processing the complex signals. The systems filter motion artifacts and other noise using a variety of techniques, including statistical analysis such as correlation, or phase filtering.
Description
FIELD OF THE INVENTION

The present invention relates to the field of pulse photometery. More specifically, the invention relates to calculating continuous saturation values using complex number analysis.


BACKGROUND OF THE INVENTION

Pulse photometry is a noninvasive technique for measuring blood analytes in living tissue. In this technique, multiple light sources emit light of differing wavelengths, which is transmitted through or reflected from a vascular bed. One or more photodetectors then detect the transmitted or reflected light as an optical signal. As the photons propagate through the tissue, they are subjected to random absorption and scattering processes due to the nonhomogeneous nature of the tissue. These effects manifest themselves as a loss of energy in the optical signal, and are generally referred to as bulk loss. In addition to bulk loss, the optical signal is modulated by the flow of arterial blood into the vascular bed. Moreover, the movement of venous blood into or out of the tissue, local tissue compression and local muscle movements super-impose yet another modulation on the optical signal, usually of lower frequency than the arterial flow. For example, FIG. 1 illustrates detected optical signals that include the foregoing attenuation, arterial flow modulation, and low frequency modulation. Each optical signal, with its combined attenuation and modulations, e.g., each combined optical signal, is generally referred to as a photoplethysmograph (photopleth.)


Pulse oximetry is a special case of pulse photometry where the oxygenation of arterial blood is sought in order to estimate the state of oxygen exchange in the body. In order to calculate the oxygen saturation of arterial blood, two wavelengths of light, e.g. Red, at about 660 nm, and Infrared, at about 900 nm, are used to calculate the ratio of two dominant hemoglobin components, oxygenated hemoglobin (HBO2) and deoxygenated hemoglobin (HB). The detected optical signals, which correspond to the Red and Infrared wavelengths, are first normalized in order to balance the effects of unknown source intensity as well as unknown bulk loss at each wavelength. The arterial pulses are then isolated by filtering each normalized signal, where a high pass or a band-pass filter takes advantage of the typically higher frequency of the pulsatile arterial blood, hence the name pulse oximetry. This normalized and filtered signal is referred to as the AC component and is typically sampled with the help of an analog to digital converter with a rate of about 30 to about 100 samples/second. For example, FIG. 2 illustrates the optical signals of FIG. 1 after they have been normalized and bandpassed.


In order to estimate blood oxygenation, a (Red/Infrared) ratio is calculated by dividing the strength of the Red AC (RdAC) by the corresponding strength of the Infrared AC (IrAC). The (RdAC/IrAC) ratio is then generally plugged into an empirical calibration curve equation that relates it to blood oxygenation. For example, reference can be made to Japanese Patent No. Sho 50/1975-128387, issued to Aoyagi, entitled “Optical Type Blood Measuring Equipment.”


The arterial blood flow generally has a higher fundamental frequency than other components of the photopleth, however, there are cases where the two frequencies may overlap. One such example is the effect of motion artifacts on the optical signal, which is described in detail in U.S. Pat. No 6,157,850, issued to Diab et al., entitled “Signal Processing Apparatus.” Another effect occurs whenever the venous component of the blood is strongly coupled, mechanically, with the arterial component. This condition leads to a venous modulation of the optical signal that has the same or similar frequency as the arterial one. Such conditions are generally difficult to effectively process because of the overlapping effects.


As described in the Aoyagi patent, the strength of each AC waveform may be estimated by measuring its size through, for example, a peak-to-valley subtraction, by a root mean square (RMS) calculations, integrating the area under the waveform, or the like. These calculations are generally least averaged over one or more arterial pulses. It is desirable, however, to calculate instantaneous ratios (RdAC/IrAC) that can be mapped into corresponding instantaneous saturation values, based on the sampling rate of the photopleth. However, such calculations are problematic as the AC signal nears a zero-crossing where the signal to noise ratio (SNR) drops significantly. For example, dividing two signals with low SNR values can render the calculated ratio unreliable, or worse, can render the calculated ratio undefined, such as when a near zero-crossing area causes division by or near zero. To try to avoid division by zero, the Ohmeda Biox pulse oximeter calculated the small changes between consecutive sampling points of each photopleth in order to get instantaneous saturation values. FIG. 3 illustrates various techniques used to try to avoid the foregoing drawbacks related to zero or near zero-crossing, including the differential technique attempted by the Ohmeda Biox.


Note that Ohmeda's differential technique is equivalent to a calculation over a derivative of the photopleth, and the derivative has the same low SNR problem whenever a flattened section of the photopleth is used in the ratios calculations. For example, the derivative will have a zero or near zero value and the RdAC/IrAC ratio will become unreliable or undefined, even in a substantially noise free signal. For example, FIG. 4 illustrates the derivative of the IrAC photopleth plotted along with the photopleth itself. As shown in FIG. 4, the derivative is even more prone to zero-crossing than the original photopleth as it crosses the zero line more often. Also, as mentioned, the derivative of a signal is often very sensitive to electronic noise. For example, according to “Pulse Oximetry: Analysis of Theory, Technology, and Practice,” Journal of Clinical Monitoring, Vol. 4, Oct. 1988, a published paper by the designers of the Ohmeda Biox, the calculated instantaneous saturations over some sections of the photopleth can be off by more than 50 percent (0/0) from the real value over a time as short as 1/10th of a second. As the designers described in their paper, this result is clearly an artifact of the signal processing technique employed in the Biox pulse oximeter since the blood saturation value can not change by that amount in 1/10th of a second.


Because of some of the foregoing drawbacks associated with the determination of instantaneous or point-by-point saturation from RdAC/IrAC ratios, designers now typically unequally weigh the calculated instantaneous saturation values over each photopleth, even when the photopleth is substantially noise free, with the consequence that a significant number of saturation values receive insignificant weights. This is tantamount to filtering out or ignoring valid signal data during the troublesome sections described above.


SUMMARY OF THE INVENTION

The result of the foregoing drawbacks is that the previous attempts fail to determine a stream of point-by-point saturation values. However, it is noteworthy that the sensitivity of the ratio calculation near a zero-crossing section of the waveform is not intrinsic to the photopleth itself, but rather an artifact of passing the detected signal through a high-pass filter. Accordingly, an aspect of the present invention includes a method of determining continuous and reliable calculations of the (RdAC/IrAC) ratio for each sampling point without concern for zero-crossing areas. As discussed in the foregoing and disclosed in the following, such determination of continuous ratios is very advantageous, especially in cases of venous pulsation, intermittent motion artifacts, and the like. Moreover, such determination is advantageous for its sheer diagnostic value.


For purposes of summarizing the invention, certain aspects, advantages and novel features of the invention have been described herein. Of course, it is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular embodiment of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

A general architecture that implements the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention.



FIG. 1 illustrates a photopleths including detected Red and Infrared signals.



FIG. 2 illustrates the photopleths of FIG. 1, after it has been normalized and bandpassed.



FIG. 3 illustrates conventional techniques for calculating strength of one of the photopleths of FIG. 2.



FIG. 4 illustrates the IrAC photopleth of FIG. 2 and its derivative.



FIG. 4A illustrates the photopleth of FIG. 1 and its Hilbert transform, according to an embodiment of the invention.



FIG. 5 illustrates a block diagram of a complex photopleth generator, according to an embodiment of the invention.



FIG. 5A illustrates a block diagram of a complex maker of the generator of FIG. 5.



FIG. 6 illustrates a polar plot of the complex photopleths of FIG. 5.



FIG. 7 illustrates an area calculation of the complex photopleths of FIG. 5.



FIG. 8 illustrates a block diagram of another complex photopleth generator, according to another embodiment of the invention.



FIG. 9 illustrates a polar plot of the complex photopleth of FIG. 8.



FIG. 10 illustrates a three-dimensional polar plot of the complex photopleth of FIG. 8.



FIG. 11 illustrates a block diagram of a complex ratio generator, according to another embodiment of the invention.



FIG. 12 illustrates complex ratios for the type A complex signals illustrated in FIG. 6.



FIG. 13 illustrates complex ratios for the type B complex signals illustrated in FIG. 9.



FIG. 14 illustrates the complex ratios of FIG. 13 in three (3) dimensions.



FIG. 15 illustrates a block diagram of a complex correlation generator, according to another embodiment of the invention.



FIG. 16 illustrates complex ratios generated by the complex ratio generator of FIG. 11 using the complex signals generated by the generator of FIG. 8.



FIG. 17 illustrates complex correlations generated by the complex correlation generator of FIG. 15.



FIG. 18 illustrates the square root of the magnitude of the complex ratios of FIG. 16 vs. the complex correlations of FIG. 17.



FIG. 19 illustrates a plot of the instantaneous saturation of the data used to generate the complex ratios shown in FIG. 12, as well as the corresponding complex photopleth from which the saturation was calculated.



FIG. 20 illustrates an expanded view of the saturation distribution results of FIG. 19.



FIGS. 21 and 22 illustrate Infrared and Red photopleths, respectively, modulated by venous pulsation.



FIG. 23 illustrates an instantaneous saturation which highlights a large spread of values over one photopleth, as compared to that of FIG. 19 and FIG. 20.



FIG. 24 illustrates a histogram of the distribution of the instantaneous saturation values of FIG. 23.



FIGS. 25 and 26 illustrate photopleth signals that are corrupted by motion artifacts.



FIG. 27 illustrates a polar plot for type A complex waveforms generated using the photopleths of FIGS. 25 and 26.



FIG. 28 illustrates a polar plot for type B complex waveforms generated using the photopleths of FIGS. 25 and 26.



FIG. 29 illustrates the complex ratios of FIG. 27 after being filtered, according to embodiments of the invention.



FIG. 30 illustrates a histogram of the filtered saturation points of FIG. 29.



FIG. 31 illustrates plots of unfiltered instantaneous saturation values generated from the photopleths of FIGS. 25 and 26, as well as the phase filtered saturation values of FIGS. 29 and 30.



FIG. 32 illustrates magnitudes of complex frequency ratios calculated from the fundamental and harmonics of the photopleths of FIG. 2.



FIG. 33 illustrates frequency transformed photopleths and phases of the corresponding ratios.



FIG. 34 illustrates the polar plot of the complex frequency ratios of FIG. 32 and FIG. 33.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Complex numbers were generally invented/discovered in the 1500's by Galiermo Cardano in Italy as he was struggling to solve a general third order polynomial equation. Later, Argand suggested that each complex number may be represented as a point in a plane where its imaginary part is plotted on the Y-axis and its real part on the X-axis, this is referred to as the Cartesian form of a complex number. An alternate representation of complex numbers is called the polar form where a magnitude and an angle can designate a unique point in the Argand plane, hence representing a complex number. Although mathematicians at that time looked at complex numbers with great suspicion, it turned out that they were useful for the general solutions of polynomial equations and applicable in such diverse fields as quantum mechanics to describe the state of elementary particles.


In the field of electrical engineering, students learn that circuit analysis, under alternating voltage conditions, can be significantly simplified if the concept of complex currents and voltages is introduced. When a voltage is applied to an electrical element, a current is caused to pass through it. Dividing the applied voltage by the corresponding current gives the resistance of the electrical element. In the complex domain, dividing the complex voltage by the complex current give rise to a complex form of resistance called “impedance,” which is represented again by a complex number. The real part of the impedance is the resistance while the complex part is related to capacitance and inductance. The complex part affects the phase, lead or lag, of the driving signals. It can be shown that the response of a linear system to a sinusoidal excitation is a sinusoid with the same frequency but generally of different amplitude and phase. A resistor element, for example, affects the amplitude only, whereas a capacitor or an inductor affects the phase. A combination of resistors, capacitors and/or inductors can affect the amplitude as well as the phase of the driving excitation and are considered examples of a linear system. Since each complex number consists of amplitude and phase, it is natural that they be used to encode the amplitude and phase and track their evolution throughout a linear system. Therefore, when a linear system is driven by a complex excitation, its output will be the same complex input multiplied by a complex scaling factor that scales its amplitude appropriately and adds a certain phase in accordance with the rules of complex multiplication. Note that the phase in this context is a relative one between two fundamental variables of the system, e.g. for an electrical circuit they might be voltage and current at a certain node of the circuit, or output voltage and input voltage, or the like.


In pulse oximetry, there is no direct analog for voltages or currents. Generally, pulse oximetry deals with two highly correlated optical signals, e.g., the Red and Infrared signals, with fundamentally little or no discernible phase difference. Thus, encoding those signals as complex numbers seems to add little or no value to the signal processing. However, there are several conditions under which a variable phase difference may be introduced between the Red and Infrared signals. For example, motion artifacts create a condition where the sensor may decouple from the skin. In such a condition, the detected optical signals will have components that depend on the refraction through the sensor material itself instead of the wavelength of light, as well as the desired components that have traveled through the vascular bed. Venous pulsation creates another condition, which, as disclosed in the foregoing, affects the phase difference. Under the foregoing conditions where the phase is changing, use of complex number encoding provides advantages in signal processing, including providing the ability to continuously monitor the arterial saturation vs. time without concern about signal zero-crossing, as disclosed in the following.


A Hilbert Transformer is a signal processing technique that takes a real signal and converts it into a related signal which has its frequency components shifted by π/2 radians for positive frequencies, and by −π/2 radians for negative frequencies, without affecting their respective amplitudes. The book, “Theory and Application of Digital Signal Processing, Prentice-Hall, Inc.,” by Rabiner and Gold, introduces the subject. Formation of a complex signal is accomplished by considering the original signal itself as the real part of a complex signal and the output of the Hilbert Transformer as the imaginary part of the same complex signal. Such signals are generally referred to as an “analytical signal” in the signal processing field because the magnitudes of its negative frequencies are equal to zero. In the context of pulse photometry, we shall refer to such a complex signal as complex photopleth or complex AC.


It is noteworthy that the prior methodology of seeking a derivative of a signal shifts that signal's components by π/2 radians, similar to the Hilbert transform. However, the derivative of a signal also multiplies each corresponding amplitude by the value of the radian frequency ω, thus magnifying the signal's frequency components as the components increase in frequency. Thus, the derivative is often more sensitive to electronic noise. In contrast, the Hilbert Transformer generally has a flat response with respect to frequency. However, a skilled artisan will recognize other transforms, derivatives, or the like, can be used to encode the imaginary part of the complex photopleth.


When the foregoing complex encoding is applied to both RdAC and IrAC photopleths, as shown in a complex photopleth generator of FIG. 5, then both complex RdAC and IrAC are in phase. As shown in FIG. 5, the complex photopleth generator 500 includes one or more log filters 502, one or more high pass filters 504, one or more Hilbert transformers 506, and one or more complex makers 508. The log and high pass filter 502 and 508 generally normalize and filter the signals, as disclosed in the foregoing with reference to FIG. 2. The Hilbert transformers 506 converts the real signal into related signals shifted by π/2 and −π/2 radians, also as disclosed in the foregoing. The complex makers 508 combine the output of the Hilbert transformers 506 with the input of the Hilbert transformers 506 to generate complex in phase photopleths, generally referred to herein as type “A” complex signals, as shown in FIG. 5A. FIGS. 6 and 7 illustrate polar plots of the complex photopleths generated from the generator 500 of FIG. 5.



FIG. 8 illustrates a complex photopleth generator 800, according to another embodiment of the invention. As shown in FIG. 8, the generator 800 includes the one or more log filters 502, the one or more high pass filters 504, the one or more Hilbert transformers 506, and the one or more complex makers 508 disclosed with respect to FIG. 5. However, in the generator 800, the Hilbert transformer 506 accepting the exemplary Red signal encodes the real components of the RdAC signal rather than the complex components. Thus, the generator 800 of FIG. 8 generates a complex photopleth, generally referred to herein as type “B” complex signals. FIGS. 9 and 10 illustrate polar plots of the complex photopleths generated from the generator 800 of FIG. 8. Note that as time progresses, the locus of the complex points rotates around the origin but does not pass through it, regardless of type A or type B complex signals. Accordingly, the strength of each of the foregoing AC photopleth complex signals can be encoded in their respective magnitudes, which is the length between the origin and any point on the complex waveform in FIGS. 6, 7, 9 and 10. The morphology of the complex signals depend on the condition of the subject, such as, for example, age, blood pressure, arterial impedance, posture, or the like.


Based on the foregoing disclosure, the complex photopleths of FIGS. 6, 7, 9 and 10 can be classified with techniques like the “Slant Line Transform” or other classification techniques available in the field of image recognition or the like. Such classification techniques can be advantageously employed to help reject photopleths that are corrupted by noise, which can be an invaluable during episodes of motion artifacts.


Generating Complex Ratios



FIG. 11 illustrates a complex ratio generator 1100 for generating what will generally be referred to as the “complex ratio.” The complex ratio is a point-wise complex division of type A or type B RdAC and IrAC complex photopleth signals. The magnitude of each division carries along with it the conventional (RdAC/IrAC) ratio, in addition, its phase encodes the angle variation between the Red and Infrared signals, which as disclosed in the foregoing, can generally be equal to zero for undisturbed signals. Different plots in the complex plane result depending upon whether type A or type B complex waveforms are used to generate the complex ratios. The different plots also enable or suggest different types of signal processing, examples of which are disclosed as follows.


For example, when the arterial saturation is constant and type A complex waveforms are generated, the complex ratio plot in the complex plane looks like a fuzzy point very close to the real axis, as shown in FIG. 12. This is remarkable for it indicates, unlike previous techniques, that the instantaneous ratios over one or several photopleths are nearly constant throughout, which matches the input signal data, i.e., that the saturation is constant. FIG. 19 illustrates a plot of the instantaneous saturation vs. time of the data used to generate the complex ratios shown in FIG. 12, as well as the corresponding photopleth from which the saturation was calculated. Note that the saturation is generally calculated from the magnitudes of the complex ratios vs. time. Also, FIG. 20 illustrates that the maximum deviation from the mean value of the saturation is less than about 0.5 percent (%), which compares favorably to the more than about 50 percent (%) variations calculated using the Biox algorithm. Moreover, FIG. 20 illustrates that the standard deviation of the saturation is a mere about 0.18 percent (%). These results clearly and advantageously indicate that weighing or filtering is not needed to utilize the data, and that all points in the photopleth can be useful in the subsequent analysis.



FIG. 13 is a plot of the complex ratios generated by the photopleths used to generate FIG. 12, but with type B complex waveforms. As shown in FIG. 13, the constant saturation translated into a circle of fixed radius in the complex plane. A myriad of mapping techniques available in the field of complex analysis can be brought to bear to help analyze this type of signal. For example, the logarithm function may be used to map a circle in the complex plane into a line in the same complex plane. FIG. 14 depicts a 3D plot of complex ratios vs. time, where time is plotted along the vertical ‘Z’ axis. As shown in FIG. 14, a constant ratio, i.e. constant saturation, is reflected as a uniform helix.


Generating Confidence Measures


Normally, each of the instantaneous complex ratio values are valid and reliable. However, certain physiological or patient motion conditions may render a some or all of the calculated ratios unusable. Therefore, it is desirable to provide confidence measures by which such unreliable points may be discarded, filtered or corrected. Toward that end, FIG. 15 illustrates a complex correlation generator 1500, which includes one or more conjugate generators 1502, one or more signal multipliers 1504, signal adders 1506 and signal dividers 1508. As shown in FIG. 15, the complex RdAC and the complex IrAC are input into the generator 1502. The complex RdAC is multiplied by the conjugate of the complex IrAC. This product is divided by the sum of the complex IrAC multiplied with its conjugate, and the product of the complex RdAC and its conjugate. The resulting signal is then multiplied by the scalar two (2) to form a measure of the complex correlation, such as, for example, a complex confidence number associated with each calculated complex ratio.


This confidence may be used to gate or preferentially weigh each corresponding complex ratio in a filtering technique to provide more reliable saturation values. For example, FIG. 16 depicts a plot of instantaneous complex ratios calculated over several seconds and FIG. 17 depicts the instantaneous complex correlations associated with the calculated complex ratios. FIG. 18 depicts the joint relationship between the calculated complex ratios of FIG. 16 and associated the complex correlation of FIG. 17. Note that a certain correlation threshold may be established below which all data point can be rejected, thereby advantageously enhancing the final saturation estimation. Note that in FIG. 18, all the data points are acceptable. Situations where not all data points are acceptable, e.g. abnormal waveforms or motion artifacts, will be disclosed in the following.


The phase of the instantaneous complex ratios may also be used to assign a confidence measure to each complex ratio value. Typically the phase value should be very close to zero in the case of complex ratios generated from type A complex waveforms, as shown in FIG. 12. However, example of the use of the phase in the filtering of unreliable complex ratios under the effects of motion artifacts will also be discussed in the following.


Implementing Filtering Techniques


Once the complex waveforms or their corresponding instantaneous complex ratios or saturation values are available, a myriad of linear, nonlinear and statistical filtering techniques may be applied to reliably estimate the blood saturation values. For example, when simple averaging is desired, the areas of the complex photopleth waveforms shown in FIG. 6 can be calculated over a certain span of time or integral number of pulses. The ratio between two values corresponding to the Red and Infrared waveforms' areas is calculated, the result of which can then be used to calculate the blood saturation value. Note that this is the analog of integrating the area of the Red and Infrared photopleths shown in FIG. 2 then taking their ratios. FIG. 3 shows an example of area integration of one real waveform. For the case of a complex waveform the area can be estimated by summing the individual areas of triangles that constitute the complex waveform, as shown in FIG. 7. Introductory calculus textbooks may be consulted on the subject of area integration. This technique does not require the use of complex ratios, rather straightforward real number division of waveform areas can be used.


Another powerful filtering technique takes advantage of the abundance of ratios values available over short period of time. For example, the continuous stream of instantaneous ratio or saturation values can be fed into a weighing filter along with their associated confidence values. The filter can then discard or appropriately weigh the corresponding value of the ratio or the saturation. The high number of values, e.g., 62.5 values per second in the present embodiment, available to the filter makes it more likely that some of them will be within an acceptable limit despite the affect of disturbances or noise.


Statistical techniques such as frequency distribution analysis can further be used alone or in combination with the previous techniques to estimate the true blood saturation values. Exemplary techniques where the statistics of the distribution of the ratio or saturation values can be used to extract a more accurate estimation of the true saturation value, as disclosed in the following.


Managing Abnormal Waveforms


Under certain physiological conditions, venous blood in the vascular bed may undergo pulsation that may or may not be coupled to the arterial pulsation. These pulsation can be strong enough as to disrupt the normal ratio calculations thus giving erroneous saturation readings. When the arterial pulsation has a distinct frequency from the venous pulsation, then the arterial pulsation can be isolated using frequency analysis such as the Fast Fourier Transform used to perform a Saturation Transform, as disclosed in U.S. Pat. No. 6,157,850, mentioned in the foregoing. Strong venous coupling may not be necessarily uniform in time across each arterial pulse, and under certain patient conditions the venous pulse may affect only a portion on the photopleth. This can be advantageous for an algorithm that analyzes the information in the time domain. FIGS. 21 and 22 depict Infrared and Red photopleths that are modulated by venous pulsation. Although their shape may look like a normal photopleth, the instantaneous saturation vs. time curve in FIG. 23 illustrates a large spread in the instantaneous saturation values over one photopleth, as compared to that of FIG. 19 and FIG. 20.


Under such conditions, taking the average value (or determining the area) of all the instantaneous saturation points may not be the best estimate of the true saturation value. For example, the distribution of the instantaneous saturation values of FIG. 23, e.g. the histogram illustrated in FIG. 24 shows a skewed distribution with a mode at about 83.5 percent (%). This is about 1.8 percent (%) below the average saturation value of about 85.3 percent (%). Another possibility is to phase filter the data and the use the distribution in a similar manner. Phase filtering will be discussed in more detail in the section on managing motion artifacts. In yet another approach, averaging the saturation values over a certain subsection of the photopleth, away from the location of the venous pulsation, can generate more accurate saturation values.


Managing Motion Artifacts


In the context of pulse oximetry, “motion artifacts” refer to any extraneous disturbing source that affects the shape or quality of the optically detected photopleth signal. The disturbance may be a deformation of the vascular bed, a decoupling of the photo detector from the skin, the movement of the sensor itself along the skin surface, or the like. The wide dynamic range of the effect, in terms of its frequency and size, as well as its multiple sources, makes the impact of motion artifacts on the photopleth quite dramatic. More importantly, the impact of motion artifacts on the calculated saturation values can also be very large, thus causing drawbacks in many older generations of pulse oximeters. For example, when motion is repetitive and affects the photopleth over its entirety, then a combination of adaptive filtering and frequency-domain techniques can provide the best estimates of the saturation values. On the other hand, when motion is intermittent or non-repetitive, e.g. pseudo random, then a combination of a time-domain analysis and adaptive filtering techniques with fast adaptation rates works better. While each of the foregoing techniques has its strength and weaknesses, use of multiple parallel engines executing two or more of the foregoing techniques in parallel, and then fusing their results together, often provides best overall performance. Toward that end, the present technique of complex analysis can be a valuable addition to a set of parallel engines that advantageously improves the accuracy of pulse oximeters by correcting for a subset of conditions where the previous algorithms have failed. For example, the ability of the present algorithm to explicitly encode the phase of the signal on a point by point basis renders it very valuable in case of sensor decoupling from the skin where phase decorrelation between Red and Infrared photopleths is prevalent.



FIGS. 25 and 26 illustrate photopleth signals that are corrupted by motion artifacts. FIG. 27 illustrates a polar plot for type A complex waveforms generated using the photopleths of FIGS. 25 and 26, while and FIG. 28 illustrates a polar plot for type B complex waveforms generated using the photopleths of FIGS. 25 and 26. It is noteworthy to compare and contrast FIG. 12 with FIG. 27. As disclosed in the foregoing, FIG. 12 illustrates complex ratios where the input signals are motion artifact free. FIG. 12 exhibits a localized point with a magnitude of about 0.53, which generally corresponds to a saturation of about 99 percent (%). Note that the small angle it subtends near the real axis. On the other hand, FIG. 27 illustrates complex ratios where the input signals are riddled with motion artifacts, resulting in ratios with varying magnitudes having widely varying angles.


At the outset, it is difficult to tell which ratios of FIG. 27 are true and which ratios were affected by noise and are therefore, false. However, as shown in FIG. 28, a phase filter can select or pass values similar to those expected, such as, for example, values that subtend low angles from the origin. In one embodiment, the phase filter passes values corresponding to the type and value of phase angles determined, for example, through calibration processes performed and associated with valid data. In an embodiment, the phase filter selects or passes values corresponding to phase angles ranging from about −2.0 to about 3.0 degrees, and more preferably, selects values corresponding to phase angles ranging from about 0.0 to about 1.0 degrees. When the phase filtered saturation points are histogramed, as shown in FIG. 30, the most likely saturation is somewhere near about 98 percent (%), which is only about 1 percent (%) away from the true saturation value of about 99 percent (%). FIG. 31 also includes plots of unfiltered instantaneous saturation values vs. time as well as the phase filtered saturation values plotted on top of them. The corresponding photopleth is also shown for comparison.


Using Frequency Domain Complex Ratios


When a real signal is transformed into the frequency domain, using the Fourier transform for example, the corresponding frequency representation is a series of complex numbers. These complex numbers denote complex frequencies each having a magnitude and a phase. When the Red and Infrared photopleths are transformed into the frequency domain, their corresponding complex frequencies can advantageously be divided to generate complex ratios. Each complex ratio posses a magnitude and a phase similar to the complex ratios generated in the time domain, as disclosed in the foregoing. The frequency domain complex ratios are a representation that has complex ratios vs. frequency, as opposed to representations that have time domain complex ratios vs. time. As disclosed, each technique has its advantages and disadvantages depending on the type of signals present and the nature of the perturbations.


An example of the use of frequency domain complex ratios according to aspects of the present invention are illustrated in FIG. 32 and FIG. 33. A series of ratios are calculated for the fundamental and first two (2) harmonics of the photopleths waveforms shown in FIG. 2. FIG. 32 illustrates the magnitudes of the complex frequency ratios calculated from the fundamental and harmonics of the photopleths of FIG. 2, while FIG. 33 illustrates frequency transformed photopleths and the phases of the corresponding ratios. FIG. 34 illustrates the polar plot of the complex frequency ratios of FIG. 32 and FIG. 33.


Although the foregoing disclosure generally references various signal processing mechanisms, a skilled artisan will recognize from the disclosure herein that the generators 500, 800, 1100, and 1500 can be implemented with software, firmware, or the like executing on hardware, such as, for example a digital signal processor (DSP). Moreover, the calculations incorporated into the generators can be carried out using software, hardware, or combinations of the same. In addition, the DSP can be part of a portable or stationary device, such as an oximeter, personal monitoring device, or the like.


Although the foregoing invention has been described in terms of certain preferred embodiments, other embodiments will be apparent to those of ordinary skill in the art from the disclosure herein. Additionally, other combinations, omissions, substitutions and modifications will be apparent to the skilled artisan in view of the disclosure herein. Accordingly, the present invention is not intended to be limited by the reaction of the preferred embodiments, but is to be defined by reference to the appended claims.


Additionally, all publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.

Claims
  • 1. A physiological monitor that computes arterial oxygen saturation in tissue material, the physiological monitor comprising: a light emitter which emits light of at least first and second wavelengths;a light detector responsive to light from said light emitter attenuated by body tissue, said light detector providing an output signal indicative of at least first and second intensity signals associated with said at least first and second wavelengths; andone or more hardware processors programmed to encode the first and second intensity signals in a complex domain; filter artifacts based on the complex encoding of the first and second intensity signals; compute arterial oxygen saturation from the filtered complex encoding of the first and second intensity signals; and output the calculated arterial oxygen saturation.
  • 2. The physiological monitor of claim 1, wherein the filtering of artifacts comprises filtering ratios corresponding to the encoded first and second intensity signals.
  • 3. The physiological monitor of claim 2, wherein the filtering comprises using a phase filter including a first range of phases.
  • 4. The physiological monitor of claim 3, wherein the first range of phases comprise phase angles from about −2.0 to about 3.0 degrees.
  • 5. The physiological monitor of claim 3, wherein the first range of phases comprise phase angles from about 0 to about 1 degree.
  • 6. The physiological monitor of claim 2, wherein the filtering comprises using a weighing filter on a continuous stream of instantaneous ratios corresponding to the first and the second intensity signals.
  • 7. The physiological monitor of claim 1, wherein the complex domain comprises complex time domain.
  • 8. The physiological monitor of claim 1, wherein the complex domain comprises complex frequency domain.
  • 9. The physiological monitor of claim 1, wherein the one or more hardware processors are further programmed to determine a plurality of ratios over time from the first and the second intensity signals.
  • 10. The physiological monitor of claim 1, wherein the artifacts comprise motion artifacts.
  • 11. The physiological monitor of claim 1, wherein the artifacts comprise venous pulsation.
  • 12. A physiological monitoring method for computing arterial oxygen saturation in tissue material, the physiological monitor method comprising: driving a light emitter configured to emit light of at least first and second wavelengths;receiving an output signal indicative from a light detector of at least first and second intensity signals associated with said at least first and second wavelengths;encoding the first and second intensity signals in a complex domain;filtering artifacts from the complex encoding of the first and second intensity signals;computing arterial oxygen saturation based on the filtered complex encoding of the first and second intensity signals; andoutput the computed arterial oxygen saturation.
  • 13. The physiological monitoring method of claim 12, wherein the filtering comprises using a phase filter including a first range of phases.
  • 14. The physiological monitoring method of claim 13, wherein the first range of phases comprise phase angles from about −2.0 to about 3.0 degrees.
  • 15. The physiological monitoring method of claim 12, wherein the filtering comprises using a weighing filter on a continuous stream of instantaneous ratios corresponding to the first and the second intensity signals.
  • 16. The physiological monitoring method of claim 12, further comprising determining a plurality of ratios over time from the first and the second intensity signals.
  • 17. The physiological monitoring method of claim 12, wherein the artifacts comprise motion artifacts.
REFERENCE TO RELATED APPLICATIONS

The present application claims priority benefit under 35 U.S.C. §120 to, and is a continuation of, U.S. patent application Ser. No. 13/896,731, filed May 17, 2013, entitled “Systems and Methods for Determining Blood Oxygen Saturation Values Using Complex Number Encoding,” which is a continuation of U.S. patent application Ser. No. 12/248,868, filed Oct. 9, 2008, now U.S. Pat. No. 8,447,374, entitled “Systems and Methods for Determining Blood Oxygen Saturation Values Using Complex Number Encoding,” which is a continuation of U.S. patent application Ser. No. 11/288,812, filed Nov. 28, 2005, now U.S. Pat. No. 7,440,787, entitled “Systems and Methods for Determining Blood Oxygen Saturation Values Using Complex Number Encoding,” which is a continuation of U.S. patent application Ser. No. 10/727,348, filed Dec. 3, 2003, now U.S. Pat. No. 6,970,792, entitled “Systems and Methods for Determining Blood Oxygen Saturation Values Using Complex Number Encoding,” which claims priority benefit under 35 U.S.C. §119(e) from U.S. Provisional Application No. 60/430,834, filed Dec. 4, 2002, entitled “Systems and Methods for Determining Blood Oxygen Saturation Values Using Complex Number Encoding.” The present application hereby incorporates the foregoing disclosures herein by reference in their entirety.

US Referenced Citations (645)
Number Name Date Kind
4051522 Healy Sep 1977 A
4085378 Ryan Apr 1978 A
4623248 Sperinde Nov 1986 A
4653498 New Mar 1987 A
4745398 Abel May 1988 A
4765340 Sakai Aug 1988 A
4800495 Smith Jan 1989 A
4802486 Goodman Feb 1989 A
4863265 Flower Sep 1989 A
4870588 Merhav Sep 1989 A
4911167 Corenman Mar 1990 A
4934372 Corenman et al. Jun 1990 A
4942877 Sakai Jul 1990 A
4955379 Hall Sep 1990 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4965840 Subbarao Oct 1990 A
5003252 Nystrom Mar 1991 A
RE33643 Isaacson et al. Jul 1991 E
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5170791 Boos et al. Dec 1992 A
5188108 Secker Feb 1993 A
5190038 Polson Mar 1993 A
5193124 Subbarao Mar 1993 A
5218962 Mannheimer Jun 1993 A
5226417 Swedlow Jul 1993 A
5246002 Prosser Sep 1993 A
5259381 Cheung Nov 1993 A
5270942 Reed Dec 1993 A
5307284 Brunfeldt et al. Apr 1994 A
5319355 Russek Jun 1994 A
5331394 Shalon et al. Jul 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
5345510 Singhi Sep 1994 A
5353356 Waugh et al. Oct 1994 A
5355882 Ukawa Oct 1994 A
5357965 Hall et al. Oct 1994 A
5368224 Richardson Nov 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
5384451 Smith et al. Jan 1995 A
5398003 Heyl et al. Mar 1995 A
5404003 Smith Apr 1995 A
5406952 Barnes Apr 1995 A
D359546 Savage et al. Jun 1995 S
5421329 Casciani Jun 1995 A
5431170 Mathews Jul 1995 A
D361840 Savage et al. Aug 1995 S
5438983 Falcone Aug 1995 A
5442940 Secker Aug 1995 A
5445156 Daft Aug 1995 A
D362063 Savage et al. Sep 1995 S
5448991 Polson et al. Sep 1995 A
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5481620 Vaidyanathan Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5503148 Pologe Apr 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5542421 Erdman Aug 1996 A
5549111 Wright et al. Aug 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5575284 Athan Nov 1996 A
5588435 Weng et al. Dec 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5608820 Vaidyanathan Mar 1997 A
5610996 Eller Mar 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5652566 Lambert Jul 1997 A
5685299 Diab et al. Nov 1997 A
5720293 Quinn Feb 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782237 Casciani Jul 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5820267 Baker, Jr. et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5842979 Jarman Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5890929 Mills et al. Apr 1999 A
5891023 Lynn Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5921921 Potratz et al. Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5950139 Korycan Sep 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6047203 Sackner et al. Apr 2000 A
6064910 Andersson et al. May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6083172 Baker, Jr. et al. Jul 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6119026 McNulty et al. Sep 2000 A
6122535 Kaestle et al. Sep 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6135952 Coetzee Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6188407 Smith et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519486 Edgar, Jr. et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7067893 Mills et al. Jun 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7132641 Schulz et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7526328 Diab et al. Apr 2009 B2
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7618375 Flaherty Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
RE41317 Parker May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Al-Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
6970792 Diab Jan 2013 C1
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8447374 Diab May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
7440787 Diab Mar 2014 C1
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
20020082488 Al-Ali Jun 2002 A1
20020161291 Kiani Oct 2002 A1
20030000522 Lynn Jan 2003 A1
20030018241 Mannheimer Jan 2003 A1
20030073890 Hanna Apr 2003 A1
20030120164 Nielsen Jun 2003 A1
20090247984 Lamego et al. Oct 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20110001605 Kiani et al. Jan 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237911 Lamego et al. Sep 2011 A1
20120059267 Lamego et al. Mar 2012 A1
20120179006 Jansen et al. Jul 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120227739 Kiani Sep 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120296178 Lamego et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20120330112 Lamego et al. Dec 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130045685 Kiani Feb 2013 A1
20130046204 Lamego et al. Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130190581 Al-Ali et al. Jul 2013 A1
20130197328 Diab et al. Aug 2013 A1
20130211214 Olsen Aug 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130317370 Dalvi et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331670 Kiani Dec 2013 A1
20130338461 Lamego et al. Dec 2013 A1
20140034353 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140058230 Abdul-Hafiz et al. Feb 2014 A1
20140066783 Kiani et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140081100 Muhsin et al. Mar 2014 A1
20140081175 Telfort Mar 2014 A1
20140094667 Schurman et al. Apr 2014 A1
20140100434 Diab et al. Apr 2014 A1
20140114199 Lamego et al. Apr 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140121483 Kiani May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140129702 Lamego et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140142401 Al-Ali et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140194709 Al-Ali et al. Jul 2014 A1
20140194711 Al-Ali Jul 2014 A1
20140194766 Al-Ali et al. Jul 2014 A1
20140206963 Al-Ali Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140243627 Diab et al. Aug 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140275881 Lamego et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140303520 Telfort et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140333440 Kiani Nov 2014 A1
20140336481 Shakespeare et al. Nov 2014 A1
20140343436 Kiani Nov 2014 A1
20150018650 Al-Ali et al. Jan 2015 A1
Foreign Referenced Citations (11)
Number Date Country
3328862 Feb 1985 DE
0104771 Apr 1984 EP
0352923 Jan 1990 EP
0645117 Mar 1995 EP
0659384 Jun 1995 EP
WO 8403032 Aug 1984 WO
WO 9211803 Jul 1992 WO
WO 9215955 Sep 1992 WO
WO 9220273 Nov 1992 WO
WO 9521567 Aug 1995 WO
WO 9843071 Oct 1998 WO
Non-Patent Literature Citations (78)
Entry
US 8,845,543, 09/2014, Diab et al. (withdrawn)
Edward Bedrosian, The Analytic Signal Representation of Modulating Waveforms (1962).
Boualem Boashash, Note on the Use of the Wigner Distribution for Time-Frequency Signal Analysis, IEEE on Acoustics, Speech and Signal Processing, vol. 36, No. 9 (Sep. 1988).
Boualem Boashash, Estimating and Interpreting the Instantaneous Frequency of a Signal—Part 1: Fundamentals, Proceedings of the IEEE, vol. 80, No. 4 (Apr. 1992).
Wukitsch, M.W., BA, et al. Pulse Oximetry: Analysis of Theory, Technology, and Practice, Journal of Clinical Monitoring, vol. 4, (1988), pp. 290-301.
U.S. Appl. No. 90/012,403, filed Jul. 23, 2012, requesting ex parte reexamination of U.S. Pat. No. 6,263,222, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,409, filed Aug. 17, 2012, requesting ex parte reexamination of U.S. Pat. No. 6,699,194, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,463, filed Sep. 5, 2012, requesting ex parte reexamination of of U.S. Pat. No. 7,215,984, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,532, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,499,835, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,534, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,962,188, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,538, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,377,899, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,541, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,899,507, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,542, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 8,180,420, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,543, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 6,850,787, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,546, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,438,683, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,548, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,880,606, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,553, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,024,233, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,555, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,440,787, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,557, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 8,150,487, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,559, filed Sep. 13, 2012, requesting ex parte reexamination of U.S. Pat. No. 8,190,223, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,561, filed Sep. 14, 2012, requesting ex parte reexamination of U.S. Pat. No. 8,019,400, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,562, filed Sep. 14, 2012 requesting ex parte reexamination of U.S. Pat. No. 6,463,311, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,566, filed Sep. 14, 2012, requesting ex parte reexamination of U.S. Pat. No. 7,530,955, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,567, filed Sep. 14, 2012, requesting ex parte reexamination of U.S. Pat. No. 6,684,090, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,568, filed Sep. 14, 2012, requesting ex parte reexamination of U.S. Pat. No. 8,128,572, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 90/012,699, filed Oct. 4, 2012, requesting ex parte reexamination of U.S. Pat. No. 6,002,952, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.510 and 35 U.S.C. § 302.
U.S. Appl. No. 95/002,183, filed Sep. 12, 2012, requesting inter partes reexamination of U.S. Pat. No. 7,530,955, including accompanying Reexam Request, claim charts, and other documentation filed under 37 C.F.R. § 1.913 and 35 U.S.C. § 311.
Blitt, Casey D., Monitoring in Anesthesia and Critical Care Medicine, (2d ed. 1990).
Business Wire, “Mallinckrodt Announces the Nellcor N-395 Pulse Oximeter With Oxismart XL and SatSeconds,” Oct. 7, 1999.
Hanzo et al., “A Portable Multimedia Communicator Scheme”, Multimedia Technologies and Future Applications: Proceedings of the IEEE International Symposium (1994).
Maciej Niedzwiecki et al. “Smoothing of Discontinuous Signals: The Competitive Approach,” IEEE Transactions on Signal Processing, vol. 43, No. 1, Jan. 1995, pp. 1-13.
Steven W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, § 8 (1st ed. 1997).
Declaration of Perry D. Oldham in Support of Masimo Opposition to Defendant's Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 7,215,984, vol. 1, Doc. 556, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted).
Declaration of Perry D. Oldham in Support of Masimo's Opposition to Defendant's Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 7,215,984, vol. 2, Doc. 558, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted).
Masimo Corporation's Answering Brief in Opposition to Defendant's Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 7,215,984, Doc. 555, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted).
Philip's Opening Brief in Support of Defendant's Motion for Summary Judgment of Invalidity and Nonnigringement of U.S. Pat. No. 7,215,984, Doc. 442, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 21, 2012. (Redacted).
Philip Defendant's Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 7,215,984, Doc. 394, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 14, 2012.
Reply Brief in Support of Defendants' Motion for Summary Judgment of invalidity and Noninfringement of U.S. Pat. No. 7,216,984, Doc. 609, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Oct. 26, 2012. (Redacted).
Declaration of Gail Baura, Ph.D. in Support of Masimo's Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 7,215,984, Doc. 561, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted).
Declaration of Gail Baura, Ph.D. in Support of Masimo's Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 5,632,272, Doc. 554, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted).
Declaration of Perry D. Oldham in Support of Masimo Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 5,632,272, Doc. 553, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted).
Masimo Corporation's Answering Brief in Opposition to Defendant's Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 5,632,272, Doc. 552, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted).
Opening Brief in Support of Defendants' Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 5,632,272, Doc. 444, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 21, 2012. (Redacted).
Defendants' Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 5,632,272, Doc. 402, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 14, 2012.
Reply Brief in Support of Defendants' Motion for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. No. 5,632,272, Doc. 614, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Oct. 26, 2012 (Redacted).
Declaration of Mohammed K. Diab in Support of Masimo's Oppositions to Defendants' Motions for Summary Judgment of Invalidity and Noninfringement of U.S. Pat. Nos. 5,632,272 and 7,215,984, Doc. 563, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012 (Redacted).
Declaration of Perry D. Oldham in Support of Masimo's Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,263,222, Doc. 550, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012 (Redacted).
Masimo Corporation's Answering Brief in Opposition to Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,263,222, Doc. 549, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012 (Redacted).
Philips' Opening Brief in Support of Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,263,222, Doc. 413, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv00080 (LPS/MPT) dated Aug. 14, 2012.
Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,263,222, Doc. 410, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 14, 2012.
Reply Brief in Support of Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,263,222, Doc. 613, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Oct. 26, 2012 (Redacted).
Declaration of Gail Baura, Ph.D. in Support of Masimo's Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,263,222, Doc. 551, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted).
V. Ya. Volkov, “Enhancing the Reliability and Accuracy of Pulse Oximetry with a Built-In Expert System,” Biomedical Engineering, vol. 27, No. 3 (May-Jun. 1993) (translated from Russian).
Declaration of Gail Baura, Ph.D. in Support of Masimo's Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,699,194, Doc. 508, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 21, 2012.
Opening Brief in Support of Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,699,194, Doc. 445, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 21, 2012. (Redacted).
Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,699,194, Doc. 406, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Aug. 14, 2012.
Reply Brief in Support of Defendants' Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,699,194, Doc. 610, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Oct. 26, 2012. (Redacted).
Declaration of Perry D. Oldham in Support of Masimo Opposition to Defendant's Motion for Summary Judgment of Invalidity of U.S. Pat. No. 6,699,194, Doc. 548, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Sep. 28, 2012. (Redacted).
Scharf, “Optimization of Portable Pulse Oximetry Through Fourier Analysis”.
Scharf, “Pulse Oximetry Through Spectral Analysis”.
Rusch, “Master's Thesis,” Graduate School University of South Florida, Tampa, Florida (Dec. 1994).
Philips' Response to Masimo Corporation's Objections to the Report and Recommendation Regarding Claim Construction, Doc. 230, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 24, 2011.
Masimo Corporation's Objections to the Report and Recommendation Regarding Claim Construction, Doc. 219, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 8, 2011.
Defendants' Objections to Magistrate Judge Thynge's Report and Recommendation Regarding Claim Construction, Doc. 218, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 7, 2011.
Report and Recommendation Regarding Claim Construction, Doc. 210, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Feb. 18, 2011.
Memorandum Order Adopting Report and Recommendation Regarding Claim Construction, Doc. 319, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Jan. 17, 2011.
Masimo Corporation's Response to Defendants' Objections to the Report and Recommendation Regarding Claim Construction, Doc. 232, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 24, 2011.
V. Ya. Volkov, “Principles and Algroithms for Determining Blood Oxygenation Level by Pulse Oximetry,” Biomedical Engineering, vol. 27, No. 1 (Jan.-Feb. 1993) (translated from Russian).
Supplemental Expert Report of Dr. Robert Stone Regarding the invalidity of Masimo's Patents-in-Suit (U.S. Pat. No. 5,632,272, U.S. Pat. No. 6,263,222, U.S. Pat. No. 7,215,984, and U.S. Pat. No. 6,699,194, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 18, 2012.
Appendixes for Expert Report of Dr. Robert Stone Regarding the invalidity of Masimo's Patents-in-Suit (U.S. Pat. No. 5,632,272, U.S. Pat. No. 6,263,222, U.S. Pat. No. 7,215,984, and U.S. Pat. No. 6,699,194, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 7, 2012.
Expert Report of Dr. Robert Stone Regarding the invalidity of Masimo's Patents-in-Suit (U.S. Pat. No. 5,632,272, U.S. Pat. No. 6,263,222, U.S. Pat. No. 7,215,984, and U.S. Pat. No. 6,699,194, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 7, 2012.
Revised Expert Report of Dr. Robert Stone Regarding the invalidity of Masimo's Patents-in-Suit (U.S. Pat. No. 5,632,272, U.S. Pat. No. 6,263,222, U.S. Pat. No. 7,215,984, and U.S. Pat. No. 6,699,194, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:09-cv-00080 (LPS/MPT) dated Mar. 7, 2012.
Wukitsch, et al., “Knowing Your Monitoring Equipment,” Journal of Clinical Monitoring, vol. 4, No. 4 (Oct. 1998).
Second Amended Complaint for Patent Infringement, Doc. 42, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:11-cv-00742 (LPS/MPT) dated Apr. 25, 2012.
Masimo's Answer to Philips' Counterclaims, Doc. 28, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:11-cv-00742 (LPS/MPT) dated Dec. 30, 2011.
Defendants' Answer and Philips Electronics North America Corp.'s Counterclaims to Masimo's First Amended Complaint, Doc. 11, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:11-cv-00742 (LPS/MPT) dated Nov. 7, 2011.
Masimo's Answer to Philips' Counterclaims to Masimo's Second Amended Complaint, Doc. 358, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:11-cv-00742 (LPS/MPT) dated Jun. 4, 2012.
Defendants' Answer and Philips Electronics North America Corp.'s Counterclaims to Masimo's Second Amended Complaint, Doc. 43, Masimo Corporation v. Philips Electronics North America Corporation and Philips Medizin Systeme Böblingen GMBH, (District of Delaware, Case No. 1:11-cv-00742 (LPS/MPT) dated May 11, 2012.
Related Publications (1)
Number Date Country
20150201874 A1 Jul 2015 US
Provisional Applications (1)
Number Date Country
60430834 Dec 2002 US
Continuations (4)
Number Date Country
Parent 13896731 May 2013 US
Child 14609841 US
Parent 12248868 Oct 2008 US
Child 13896731 US
Parent 11288812 Nov 2005 US
Child 12248868 US
Parent 10727348 Dec 2003 US
Child 11288812 US