This application generally relates to systems and methods for assessing vasculature of a subject.
Coronary microvascular disease, also known as small vessel disease, is a condition in which the small arteries in the heart become narrow. Typically, the walls of the small arteries are damaged or diseased. Coronary microvascular disease affects the vessels differently from traditional coronary artery disease. Coronary artery disease is an obstruction of blood flow through the coronary artery due to plaque accumulation and blood clots that form as a result of the accumulated plaque. However, the accumulation of plaque and resultant blockages are not always present in coronary microvasculature disease. Instead, coronary microvasculature disease is caused by an adverse constriction/relaxation of the small blood vessels. This adverse constriction/relation is believed to be caused by changes in the arterial cells and the surrounding muscle tissues. Coronary microvascular disease is especially problematic in women, who are more likely to experience the disease relative to men.
Diagnosing coronary microvascular disease has been a challenge. Conventional methods (such as angiography, stress test, and cardiac MRI stress test, etc.) are designed to detect blockages in the arteries. These tests are unable to consistently diagnose coronary microvascular disease because the small diseased vessels are often unrestricted by plaque, and thus are not visible on angiograms and MRI scans. Accordingly, women and other susceptible groups, such as diabetics, experiencing unexplainable fatigue, chest pain, or overall malaise associated with heart disease may test negative for heart disease.
The invention overcomes the limitations of conventional methods for detecting coronary microvascular disease by mapping one or more functional flow measurements to an image of the vasculature. Functional flow measurements allow one to determine abnormal constriction or relaxation of blood vessels, even in the absence of a stenosis, by monitoring blood flow velocity and pressure. When functional flow measurements are mapped or co-registered to a vasculature image, one may determine the location and severity of damaged blood vessels that are otherwise not indicated in the vasculature image obtained by an external imaging modality.
Methods of the invention are accomplished by receiving functional flow data of a subject with a data collector co-located with a radiopaque label, and receiving imaging data of the vasculature including the radiopaque label. Using the received functional flow data and imaging data, a vasculature map image corresponding to the functional flow data is generated and displayed on a monitor. In certain embodiments, the vasculature map image corresponding to the functional flow data is generated by co-registering the functional flow data with the imaging data. By co-locating a radiopaque label with the data collector, it is easier to identify the exact location of the data collector and to correlate given functional flow measurements with a specific location within the vasculature. This makes possible systems that can simultaneously display functional flow measurements and pinpoint the location of those functional flow measurements on a corresponding vasculature map image.
Methods of the invention also provide for displaying a composite image including the vasculature map image and a functional flow image. The functional flow image may include the functional flow measurements specific to a certain location in the vasculature as shown on the vasculature map image. The vasculature map image may show a location of the data collector, which directly corresponds to the displayed functional flow image. In some embodiments, the location of the data collector is the real-time location of the data collector, e.g. the current location of the data collector as inserted in the vasculature.
According to certain aspects, methods of the invention further include analyzing the functional flow data for one or more parameters, and providing an alert on the vasculature map image when the one or more parameters are at or beyond a threshold level. In certain embodiments, the alert is a visual alert. The visual alert may include a color-coded indicator, a pulsating indicator, a color map of the one or more parameters, a callout marker, or a combination thereof.
The data collector may be located on a guidewire, catheter, or other intraluminal device configured to access the vasculature. Typically, the data collector for obtaining functional flow data is a pressure sensor, flow sensor, or combination thereof. Preferably, the intraluminal device is a guidewire with both a pressure sensor and a flow sensor on a distal portion of the device. Pressure sensors are able to obtain pressure measurements and flow sensors are able to obtain velocity measurements within a blood vessel. The ability to measure and compare both the pressure and flow significantly improves the diagnostic accuracy of ischemic testing.
The imaging data may be obtained using any external imaging modality, including e.g. computed tomography, angiography, and magnetic resonance imaging. When the external imaging modality requires flow contrast, the flow contrast may not enter the all of the vessels of the vasculature (such as the small vessels associated with coronary microvasculature disease) in adequate amounts for proper imaging, which may prevent mapping of vessels without contrast. Consequently, the external imaging modality used preferably does not require a flow contrast for imaging to increase the likelihood that the small vessels associated with coronary microvasculature disease are imaged and mapped.
Methods and systems of the invention include functional flow and image data acquisition equipment and data/image processors that generate views on a single display that simultaneously provides positional information and functional flow data associated with a data collector (e.g., a pressure sensor, flow sensor, temperature sensor, or combination thereof). The data collector is mounted upon a flexible elongate member (e.g, a catheter, guidewire, etc.) and co-located with a radiopaque label that can be tracked with an external imaging modality.
Turning initially to
With regard to portions of the system associated with acquiring functional flow data, an functional flow device 20 (preferably a pressure guidewire, flow guidewire, or combined pressure/flow guidewire) is inserted within the patient 10 so that its distal portion, including a data collector 22 (e.g. a pressure sensor, flow sensor, or both), is in the vicinity of a desired region of the vasculature. While not specifically identified in
The proximal connector 24 of the functional flow device 20 is communicatively coupled to a functional flow data processor 26. The functional flow data processor 26 converts the signals received via the proximal connector 24 into, for example, pressure measurements, flow measurements, Fractional Flow Reserve measurements, Coronary Flow Reserve measurements, etc. Additionally, the functional flow processor 26 generates a functional flow image by converting the functional flow data into a displayable format. The functional flow data rendered by the functional flow processor 26 is initially stored within the processor 26.
The type of diagnostic functional flow data acquired by the data collector 22 and processed by the functional flow processor 26 varies in accordance with alternative embodiments of the invention. In accordance with a particular embodiment, the diagnostic probe 22 is equipped with one or more sensors (e.g., Doppler flow and/or pressure) for providing hemodynamic information (e.g., blood flow velocity and pressure)—also referred to as functional flow data. It is thus noted that the term “functional flow image” is intended to be broadly interpreted to encompass a variety of ways of representing vascular information including blood pressure, blood flow velocity/volume, blood vessel cross-sectional composition, shear stress throughout the blood, shear stress at the blood/blood vessel wall interface, etc. In the case of acquiring hemodynamic data for particular portions of a blood vessel, effective diagnosis relies upon the ability to visualize a current location of the data collector 22 within a vasculature while simultaneously observing functional flow metrics indicative of cardiovascular disease. Co-registration of hemodynamic and external vasculature images facilitates precise treatment of diseased vessels. In addition, it is contemplated that the functional flow device includes one or more imaging collector to provide, for example, cross-sectional images of the vasculature along with the functional flow data. Data obtained by the imaging collectors may also be processed by the functional flow processor 26 and co-registered with the external imaging data.
A co-registration processor 30 receives functional flow data from the functional flow processor 26 via line 32 and vasculature image data from the external imaging modality processor 18 via line 34. Alternatively, the communications between the sensors and the processors are carried out via wireless media. The co-registration processor 30 renders a vasculature map image corresponding to the functional flow data. For example, a vasculature map image is provided showing a location of the data collector within the vasculature, for example, as indicated by the radiopaque label. In accordance with an embodiment of the present invention, indicia (e.g., a radiopaque marker artifact) are provided on the vasculature map images of a location corresponding to a simultaneously-displayed functional flow image. In preferred embodiments, software tagging provides other visual indicia (e.g. callout marker, box, arrow, or other computing icons) to show the radiopaque marker artifact. In one embodiment, a composite image is displayed showing the vasculature map image with the indicia and the functional flow data image specific to the location of the indicia in the vasculature map image. The vasculature map image and the functional flow image may be simultaneously displayed on a monitor, or each displayed independently on a monitor by minimizing or maximizing the vasculature map image or the functional flow image via a user interface.
The co-registration processor 30 initially buffers external imaging data received via line 34 from the external imaging modality processor 18 in a first portion 36 of image data memory 40. This provides an initial background vasculature map image, which can be updated with time-stamp vasculature map image frames. Thereafter, during the course of a catheterization procedure functional flow data and vasculature map image data received via lines 32 and 34, respectively, is stored within a second portion 38 and a third portion 42, respectively, of the image data memory 40. The individually rendered frames of stored image data are appropriately tagged (e.g., time stamp, sequence number, etc.) to correlate functional flow data frames and corresponding vasculature map (including the radiopaque marker indicia) image data frames. The stored functional flow data frames corresponding to certain vasculature image map frames can be used to track functional flow data across various locations within the vasculature. In certain embodiments, an alert is provided on the vasculature map image that indicates a level of the functional flow data obtained at various locations in the vasculature by the data collector. In addition, additional markers can be placed on the surface of the patient or within the vicinity of the patient within the field of view of the external imaging modality device. The locations of these markers are then used to position the radiopaque label upon the angiographic image in an accurate location.
The co-registration processor 30 renders a co-registration image from the data previously stored within the first portion 36, second portion 38 and third portion 42 of the image data memory 40. By way of example, a functional flow data frame is selected from the second portion 38. The co-registration processor 30 identifies vasculature map image frame within the third portion 42 corresponding to the selected functional flow data frame from the second portion 38. Thereafter, the co-registration processor 30 superimposes the vasculature map image frame from the third portion 42 upon the initial vasculature map image retrieved from the first portion 36. In addition, the functional flow data may be processed to determine clinically relevant measurements from the functional flow data, such as Fractional Flow reserve measurements, Coronary Flow reserve measurements, combined P-V curves, and to display those measurements along with, e.g. pressure and flow readings, in a functional flow image. Thereafter, the co-registered vasculature map image and functional flow image may be simultaneously displayed, along-side one another, upon a graphical display device 50. The co-registered image and functional flow data frames driving the display device 50 are also stored upon a long-term storage device 60 for later review in a session separate from a procedure that acquired the vasculature image data and functional flow data stored in the image data memory 40.
While not shown in
Turning to
In some embodiments, image tagging software can be used to automatically identify the location of the radiopaque label, which may appear as a small spot having a darker color than the rest of the image. The image tagging software can automatically locate a box corresponding to the position of the data collector on the vasculature map image, e.g., as shown in
In addition to the embodiments described above, the devices, methods, and systems of the invention can be used to catalogue and display overlapping images of intravascular imaging and vascular structure, as is shown in
The system also takes heart motion into account when generating/acquiring the external image data of the vasculature (e.g. radiological) and functional flow data. By way of example, by only acquiring the image data for the vasculature map during the peak R-wave of the EKG, heart motion is much less a factor and good overlay correlation exists between the angiogram and fluoroscope fields of view. The peak R-wave is selected because it represents end-diastole, during which the heart has the least amount of motion, and thus, a more consistent condition from which to obtain the external image data. The peak R-wave is also an easy point in the EKG for the system to detect.
With continued reference to
The simultaneous display of both the composite image with the vasculature map and the functional flow data allows instant awareness of both disease state of a vessel segment and the location of the vessel segment within a patient. Such comprehensive information is not readily discernible in conventional methods for assessing cardiovascular disease. In addition, the functional flow measurements allow one to identify defects and conditions that are not readily visible in vasculature image alone, such as symptoms of microvasculature disease. Neither flythrough nor stacked images alone allows for the simultaneous appreciation of 1) all of the information in a cross-section, 2) a feel for the shape of the vessel and 3) the location of the cross-section along the length of the vessel.
The above-described “co-registration” of a vasculature map image including the radiopaque label and functional flow images/information delivers all three of these items in a presentation that is straight forward to an operator with even average visual and spatial abilities. The co-registration display is presented, by way of example, either on a console display for the functional flow device, or the co-registration display is presented on one or more external imaging modality monitors, either in the room where the procedure is occurring or in a remote location. For example, one monitor over the table in the procedure room allows the attending physician to view the procedure, while at the same time a second consulting physician who has not scrubbed for the case is also able to view the case via a second monitor containing the co-registration display from a separate control room. Control room viewing is also possible without having to wear leaded covering.
With regard to the persistence of the background vasculature map image portion of the enhanced vasculature map image 410 (including the radiopaque label), a single initial image is, by way of example, obtained/generated and stored in the first portion 36 of the memory 40 for a given procedure/patient position. If the field of view changes or the patient's position changes, then an updated background vasculature image is generated and stored in the first portion 36. Alternatively, the background vasculature map image is live or continuously updated. The projection of the roadmap vasculature map image onto the enhanced vasculature image 410 is preferably in an orientation and magnification that best displays the entire vessel to be viewed, taking into account the foreshortening that is present in a tortuous/winding vessel. Alternatively, two background vasculature images (or even two enhanced radiological images 410) can be used/displayed in place of the one image 410.
According to certain aspects, systems and methods of the invention provide for analyzing the functional flow data for one or more parameters and providing an alert on the vasculature map image when the one or more parameters are above the threshold level. Threshold levels may be established to set forth acceptable data ranges that are indicative of stenosis, vessel constriction or other vessel damage. For example, threshold levels may be established for a parameter to categorize the parameter as normal or abnormal. In addition, a threshold level may be established for an intermediate range between normal and abnormal. In one embodiment, parameters for function flow data include levels for Coronary flow reserve, Fractional flow reserve, pressure-volume (P-V) curves/loops, or combinations thereof.
Coronary flow reserve is defined as the ratio of maximal coronary flow with hyperemia to normal flow. Coronary flow reserve signifies the ability of the myocardium to increase blood flow in response to maximal exercise. A ratio at or above 2 is considered normal. Abnormal CFR (a ratio below 2) indicates stenosis, abnormal constriction of microarteries, or both. Coronary flow reserve measures the velocity of the flow. Fractional flow reserve measure pressure differences across a portion of a vessel to determine whether a level of constriction or stenosis of the vessel will impede oxygen delivery to the heart muscle. Specifically, Fractional flow reserve is a ratio of a level of pressure distal to a portion of a vessel under examination to a level of pressure proximal to a portion of a vessel under examination. Often a cut-off point is 0.75 to 0.80 has been used, in which high values indicate a non-significant stenosis or constriction and lower values indicate a significant stenosis and lesion.
P-V loops provide a framework for understanding cardiac mechanics. Such loops can be generated by real time measurement of pressure and volume within the left ventricle. Several physiologically relevant hemodynamic parameters such as stroke volume, cardiac output, ejection fraction, myocardial contractility, etc. can be determined from these loops. To generate a P-V loop for the left ventricle, the LV pressure is plotted against LV volume at multiple time points during a single cardiac cycle. The presence of a stenosis or constriction can alter the curve/shape of P-V loop from a normal P-V loop.
It has been shown that distal pressure and velocity measurements, particularly regarding the pressure drop-velocity relationship such as Fractional Flow reserve (FFR), Coronary flow reserve (CFR) and combined P-V curves, reveal information about the stenosis severity. For example, in use, the functional flow device may be advanced to a location on the distal side of the stenosis. The pressure and flow velocity may then be measured at a first flow state. Then, the flow rate may be significantly increased, for example by the use of drugs such as adenosine, and the pressure and flow measured in this second, hyperemic, flow state. The pressure and flow relationships at these two flow states are then compared to assess the severity of the stenosis and provide improved guidance for any coronary interventions. The ability to take the pressure and flow measurements at the same location and same time with a combined pressure/flow guidewire, improves the accuracy of these pressure-velocity loops and therefore improves the accuracy of the diagnostic information.
Coronary flow reserve, Fractional flow reserve, and P-V loops may require measurements taken at different locations in the artery. In order to provide measurements for these parameters, systems and methods of the invention may assess pressure and flow at a first location of the data collector against a second location of the data collector within the vasculature. For example, a first location that is distal to a segment of a vessel under examination and a second location that is proximal to that segment of a vessel. The obtained measurements across the two locations are then assessed against the one or more threshold levels, and an alert is provided on the vasculature image map when the one or more parameters are at or beyond a threshold level. The alert, for example, may be indicated for a single location of the data collector on the vasculature map image corresponding to one or more parameters, or may be indicated for several locations of the data collector corresponding to a plurality of parameters, or may be indicated over one or more location points of the data collector that correspond to a single parameter on the vasculature image map.
In some embodiments, the alert is a color coded indicator, a pulsating indicator, a color map of the one or more parameters, a callout marker, or a combination thereof. If functional flow data corresponding to one or more locations on the vasculature image map is above or at a threshold level, an alert is provided at those one or more locations. Any combination of alerts used to indicate areas of interest on the vasculature map image are contemplated herein. In one example, the alert is a color-coded callout marker. In another example, the alert is a color map with a call-out marker.
As shown in
Functional flow devices suitable for use in methods and systems of the invention may be a guidewire or a catheter. Preferably, the functional flow device is a guidewire sized to fit within the interior of a microvascular vessel. Exemplary guidewires include FloWire Doppler Guidewire and the ComboWire XT Guidewire by Volcano Corporation.
A proximal end of the core member 150 may be connected to a handle. The proximal end of core member 150 can be removeably coupled to a connector housing 106. In addition to receiving the proximal end of the core member 150, the connector housing 106 may also removeably connect to and receive one or more electrical connection wires (not shown) that run the length of the elongate body 100 and connect to one or more sensors on the distal portion 102. This removable connection allows one to disconnect the guidewire from the connector housing 106 when placing a catheter over the guidewire and reconnect the guidewire thereafter to prove electrical communication to the sensors. The connector housing 106 may include one or more electrical connections that mate with the electrical conductor wires. The connector housing 106 may be connected to an output connector 72 via a cable 108. The output connector 72 may be the proximal connector 24 shown in
A sensor housing 120 may be positioned on the elongate member 100. The sensor housing 120 includes a housing body that defines a lumen. One or more cavities may be shaped into the walls of the sensor housing to form windows for sensors disposed or mounted therein. The sensor housing is preferably positioned between the coil segment 112 and the distal tip 110. The sensor housing 120 contains one or more data collectors configured to receive and transmit functional flow data to functional flow processor 26.
Data collectors suitable for use in methods and devices of the invention include, for example, a pressure sensor, flow sensor, or combination thereof. The data collectors are co-located with a radiopaque label so that the location of the functional flow data can be determined.
A pressure sensor allows one to obtain pressure measurements within a body lumen. A particular benefit of pressure sensors is that pressure sensors allow one to measure of FFR in vessel. FFR is a comparison of the pressure within a vessel at positions prior to the stenosis and after the stenosis. The level of FFR determines the significance of the stenosis, which allows physicians to more accurately identify clinically relevant stenosis. For example, an FFR measurement above 0.80 indicates normal coronary blood flow and a non-significant stenosis. Another benefit is that a physician can measure the pressure before and after an intraluminal intervention procedure to determine the impact of the procedure.
A pressure sensor can be mounted on the distal portion of a flexible elongate member. In certain embodiments, the pressure sensor is positioned distal to the compressible and bendable coil segment of the elongate member. This allows the pressure sensor to move along with the along coil segment as bended and away from the longitudinal axis. The pressure sensor can be formed of a crystal semiconductor material having a recess therein and forming a diaphragm bordered by a rim. A reinforcing member is bonded to the crystal and reinforces the rim of the crystal and has a cavity therein underlying the diaphragm and exposed to the diaphragm. A resistor having opposite ends is carried by the crystal and has a portion thereof overlying a portion of the diaphragm. Electrical conductor wires can be connected to opposite ends of the resistor and extend within the flexible elongate member to the proximal portion of the flexible elongate member. Additional details of suitable pressure sensors that may be used with devices of the invention are described in U.S. Pat. No. 6,106,476. U.S. Pat. No. 6,106,476 also describes suitable methods for mounting the pressure sensor 104 within a sensor housing.
A flow sensor can be used to measure blood flow velocity within the vessel, which can be used to assess coronary flow reserve (CFR). The flow sensor can be, for example, an ultrasound transducer, a Doppler flow sensor or any other suitable flow sensor, disposed at or in close proximity to the distal tip of the guidewire. The ultrasound transducer may be any suitable transducer, and may be mounted in the distal end using any conventional method, including the manner described in U.S. Pat. Nos. 5,125,137, 6,551,250 and 5,873,835.
External imaging modality devices for use in methods and devices of the invention include, for example, X-ray angiography imaging, computed tomography imaging, and magnetic resonance imaging devices. Preferably, the imaging modality is computed tomography which does not require the use of a contrast, which may not enter the small vessels of the microvasculature or stenosis vessels in adequate amounts for proper imaging.
A system of the invention may be implemented in a number of formats. An embodiment of a system 300 of the invention is shown in
In advanced embodiments, system 300 may comprise an imaging engine 370 which has advanced image processing features, such as image tagging, that allow the system 300 to more efficiently process and display combined functional flow and vasculature map images. The imaging engine 370 may automatically highlight or otherwise denote areas of interest in the vasculature. The imaging engine 370 may also produce 3D renderings of the vasculature map images. In some embodiments, the imaging engine 370 may additionally include data acquisition functionalities (DAQ) 375, which allow the imaging engine 370 to receive the imaging data directly from the functional flow device 325 or collector 347 to be processed into images for display.
Other advanced embodiments use the I/O functionalities 362 of computer 360 to control the intravascular imaging 320 or the external imaging modality 340. In these embodiments, computer 360 may cause the data collector of the functional flow device 325 to travel to a specific location, e.g., if the functional flow device 325 is a pull-back type. The computer 360 may also cause source 343 to irradiate the field to obtain a refreshed image of the vasculature, or to clear collector 347 of the most recent image. While not shown here, it is also possible that computer 360 may control a manipulator, e.g., a robotic manipulator, connected to functional flow device 325 to improve the placement of the functional flow device 325.
A system 400 of the invention may also be implemented across a number of independent platforms which communicate via a network 409, as shown in
As shown in
As shown in
In some embodiments, the system may render three dimensional imaging of the vasculature or the intravascular images. An electronic apparatus within the system (e.g., PC, dedicated hardware, or firmware) such as the host workstation 433 stores the three dimensional image in a tangible, non-transitory memory and renders an image of the 3D tissues on the display 380. In some embodiments, the 3D images will be coded, as previously-discussed, for faster viewing. In certain embodiments, systems of the invention render a GUI with elements or controls to allow an operator to interact with three dimensional data set as a three dimensional view. In other embodiments an operator may select points from within one of the images or the three dimensional data set by choosing start and stop points while a dynamic progress view is displayed in display. In other embodiments, a user may cause a functional flow device to be relocated to a new position in the body by interacting with the vasculature map image.
In some embodiments, a user interacts with a visual interface and puts in parameters or makes a selection. Input from a user (e.g., parameters or a selection) are received by a processor in an electronic device such as, for example, host workstation 433, terminal 467, or computer 360. The selection can be rendered into a visible display. In some embodiments, an operator uses host workstation 433, computer 360, or terminal 467 to control system 400 or to receive images. An image may be displayed using an I/O 362, 437, or 471, which may include a monitor. Any I/O may include a keyboard, mouse or touch screen to communicate with any of processor 365, 441, or 475, for example, to cause data to be stored in any tangible, nontransitory memory 367, 445, or 479. Server generally includes an interface module to effectuate communication over network or write data to data file. Methods of the invention can be performed using software, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions can also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations (e.g., imaging apparatus in one room and host workstation in another, or in separate buildings, for example, with wireless or wired connections). In certain embodiments, host workstation 433 and imaging engine 855 are included in a bedside console unit to operate system 400.
Processors suitable for the execution of computer program include, by way of example, both general and special purpose microprocessors, and any one or more processor of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, (e.g., EPROM, EEPROM, NAND-based flash memory, solid state drive (SSD), and other flash memory devices); magnetic disks, (e.g., internal hard disks or removable disks); magneto-optical disks; and optical disks (e.g., CD and DVD disks). The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
To provide for interaction with a user, the subject matter described herein can be implemented on a computer having an I/O device, e.g., a CRT, LCD, LED, or projection device for displaying information to the user and an input or output device such as a keyboard and a pointing device, (e.g., a mouse or a trackball), by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well. For example, feedback provided to the user can be any form of sensory feedback, (e.g., visual feedback, auditory feedback, or tactile feedback), and input from the user can be received in any form, including acoustic, speech, or tactile input.
The subject matter described herein can be implemented in a computing system that includes a back-end component (e.g., a data server), a middleware component (e.g., an application server), or a front-end component (e.g., a client computer 360 having a graphical user interface or a web browser through which a user can interact with an implementation of the subject matter described herein), or any combination of such back-end, middleware, and front-end components. The components of the system can be interconnected through network 409 by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include cell networks (3G, 4G), a local area network (LAN), and a wide area network (WAN), e.g., the Internet.
The subject matter described herein can be implemented as one or more computer program products, such as one or more computer programs tangibly embodied in an information carrier (e.g., in a non-transitory computer-readable medium) for execution by, or to control the operation of, data processing apparatus (e.g., a programmable processor, a computer, or multiple computers). A computer program (also known as a program, software, software application, app, macro, or code) can be written in any form of programming language, including compiled or interpreted languages (e.g., C, C++, Perl), and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. Systems and methods of the invention can include programming language known in the art, including, without limitation, C, C++, Perl, Java, ActiveX, HTML5, Visual Basic, or JavaScript.
A computer program does not necessarily correspond to a file. A program can be stored in a portion of file that holds other programs or data, in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub-programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.
A file can be a digital file, for example, stored on a hard drive, SSD, CD, or other tangible, non-transitory medium. A file can be sent from one device to another over network 409 (e.g., as packets being sent from a server to a client, for example, through a Network Interface Card, modem, wireless card, or similar).
Writing a file according to the invention involves transforming a tangible, non-transitory computer-readable medium, for example, by adding, removing, or rearranging particles (e.g., with a net charge or dipole moment) into patterns of magnetization by read/write heads, the patterns then representing new collocations of information desired by, and useful to, the user. In some embodiments, writing involves a physical transformation of material in tangible, non-transitory computer readable media with certain properties so that optical read/write devices can then read the new and useful collocation of information (e.g., burning a CD-ROM). In some embodiments, writing a file includes using flash memory such as NAND flash memory and storing information in an array of memory cells include floating-gate transistors. Methods of writing a file are well-known in the art and, for example, can be invoked automatically by a program or by a save command from software or a write command from a programming language.
In certain embodiments, display 380 is rendered within a computer operating system environment, such as Windows, Mac OS, or Linux or within a display or GUI of a specialized system. Display 380 can include any standard controls associated with a display (e.g., within a windowing environment) including minimize and close buttons, scroll bars, menus, and window resizing controls. Elements of display 380 can be provided by an operating system, windows environment, application programming interface (API), web browser, program, or combination thereof (for example, in some embodiments a computer includes an operating system in which an independent program such as a web browser runs and the independent program supplies one or more of an API to render elements of a GUI). Display 380 can further include any controls or information related to viewing images (e.g., zoom, color controls, brightness/contrast) or handling files comprising three-dimensional image data (e.g., open, save, close, select, cut, delete, etc.). Further, display 380 can include controls (e.g., buttons, sliders, tabs, switches) related to operating a three dimensional image capture system (e.g., go, stop, pause, power up, power down).
In certain embodiments, display 380 includes controls related to three dimensional imaging systems that are operable with different imaging modalities. For example, display 380 may include start, stop, zoom, save, etc., buttons, and be rendered by a computer program that interoperates with functional flow device and external imaging modalities. Thus display 380 can display an image derived from a three-dimensional data set with or without regard to the imaging mode of the system.
References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.
Various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full contents of this document, including references to the scientific and patent literature cited herein. The subject matter herein contains important information, exemplification and guidance that can be adapted to the practice of this invention in its various embodiments and equivalents thereof
The present application is a continuation of U.S. application Ser. No. 14/204,277, filed Mar. 11, 2014, now U.S. Pat. No. 10,638,939, which claims the benefit of and priority to U.S. provisional patent application Ser. No. 61/776,863, filed Mar. 12, 2013, the content of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3301258 | Werner | Jan 1967 | A |
3617880 | Cormack et al. | Nov 1971 | A |
3789841 | Antoshkiw | Feb 1974 | A |
3841308 | Tate | Oct 1974 | A |
4140364 | Yamashita et al. | Feb 1979 | A |
4274423 | Mizuno et al. | Jun 1981 | A |
4344438 | Schultz | Aug 1982 | A |
4398791 | Dorsey | Aug 1983 | A |
4432370 | Hughes et al. | Feb 1984 | A |
4552554 | Gould et al. | Nov 1985 | A |
4577543 | Wilson | Mar 1986 | A |
4676980 | Segal et al. | Jun 1987 | A |
4682895 | Costello | Jul 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4744619 | Cameron | May 1988 | A |
4762129 | Bonze | Aug 1988 | A |
4766386 | Oliver et al. | Aug 1988 | A |
4771774 | Simpson et al. | Sep 1988 | A |
4794931 | Yock | Jan 1989 | A |
4800886 | Nestor | Jan 1989 | A |
4803639 | Steele et al. | Feb 1989 | A |
4816567 | Cabilly et al. | Mar 1989 | A |
4819740 | Warrington | Apr 1989 | A |
4821731 | Martinelli et al. | Apr 1989 | A |
4824435 | Giesy et al. | Apr 1989 | A |
4830023 | de Toledo et al. | May 1989 | A |
4834093 | Littleford et al. | May 1989 | A |
4841977 | Griffith et al. | Jun 1989 | A |
4864578 | Proffitt et al. | Sep 1989 | A |
4873690 | Adams | Oct 1989 | A |
4877314 | Kanamori | Oct 1989 | A |
4887606 | Yock et al. | Dec 1989 | A |
4917085 | Smith | Apr 1990 | A |
4917097 | Proudian, deceased et al. | Apr 1990 | A |
4928693 | Goodin et al. | May 1990 | A |
4932413 | Shockey et al. | Jun 1990 | A |
4932419 | de Toledo | Jun 1990 | A |
4948229 | Soref | Aug 1990 | A |
4951677 | Crowley et al. | Aug 1990 | A |
4969742 | Falk et al. | Nov 1990 | A |
4987412 | Vaitekunas et al. | Jan 1991 | A |
4993412 | Murphy-Chutorian | Feb 1991 | A |
4998972 | Chin et al. | Mar 1991 | A |
5000185 | Yock | Mar 1991 | A |
5024234 | Leary et al. | Jun 1991 | A |
5025445 | Anderson et al. | Jun 1991 | A |
5032123 | Katz et al. | Jul 1991 | A |
5037169 | Chun | Aug 1991 | A |
5039193 | Snow et al. | Aug 1991 | A |
5040548 | Yock | Aug 1991 | A |
5041108 | Fox et al. | Aug 1991 | A |
5054492 | Scribner et al. | Oct 1991 | A |
5065010 | Knute | Nov 1991 | A |
5065769 | de Toledo | Nov 1991 | A |
5085221 | Ingebrigtsen et al. | Feb 1992 | A |
5095911 | Pomeranz | Mar 1992 | A |
5100424 | Jang et al. | Mar 1992 | A |
5120308 | Hess | Jun 1992 | A |
5125137 | Corl et al. | Jun 1992 | A |
5135486 | Eberle et al. | Aug 1992 | A |
5135516 | Sahatjian et al. | Aug 1992 | A |
5148809 | Biegeleisen-Knight | Sep 1992 | A |
5155439 | Holmbo et al. | Oct 1992 | A |
5158548 | Lau et al. | Oct 1992 | A |
5163445 | Christian et al. | Nov 1992 | A |
5167233 | Eberle et al. | Dec 1992 | A |
5174295 | Christian et al. | Dec 1992 | A |
5176141 | Bom et al. | Jan 1993 | A |
5176674 | Hofmann | Jan 1993 | A |
5178159 | Christian | Jan 1993 | A |
5183048 | Eberle | Feb 1993 | A |
5188632 | Goldenberg | Feb 1993 | A |
5201316 | Pomeranz et al. | Apr 1993 | A |
5202745 | Sorin et al. | Apr 1993 | A |
5203779 | Muller et al. | Apr 1993 | A |
5220922 | Barany | Jun 1993 | A |
5224953 | Morgentaler | Jul 1993 | A |
5226421 | Frisbie et al. | Jul 1993 | A |
5240003 | Lancee et al. | Aug 1993 | A |
5240437 | Christian | Aug 1993 | A |
5242460 | Klein et al. | Sep 1993 | A |
5243988 | Sieben et al. | Sep 1993 | A |
5257974 | Cox | Nov 1993 | A |
5266302 | Peyman et al. | Nov 1993 | A |
5267954 | Nita | Dec 1993 | A |
5301001 | Murphy et al. | Apr 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5313949 | Yock | May 1994 | A |
5313957 | Little | May 1994 | A |
5319492 | Dorn et al. | Jun 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5325198 | Hartley et al. | Jun 1994 | A |
5336178 | Kaplan et al. | Aug 1994 | A |
5346689 | Peyman et al. | Sep 1994 | A |
5348017 | Thornton et al. | Sep 1994 | A |
5348481 | Ortiz | Sep 1994 | A |
5353798 | Sieben | Oct 1994 | A |
5358409 | Obara | Oct 1994 | A |
5358478 | Thompson et al. | Oct 1994 | A |
5368037 | Eberle et al. | Nov 1994 | A |
5373845 | Gardineer et al. | Dec 1994 | A |
5373849 | Maroney et al. | Dec 1994 | A |
5375602 | Lancee et al. | Dec 1994 | A |
5377682 | Ueno et al. | Jan 1995 | A |
5383853 | Jung et al. | Jan 1995 | A |
5387193 | Miraki | Feb 1995 | A |
5396328 | Jestel et al. | Mar 1995 | A |
5397355 | Marin et al. | Mar 1995 | A |
5405377 | Cragg | Apr 1995 | A |
5411016 | Kume et al. | May 1995 | A |
5419777 | Hofling | May 1995 | A |
5421338 | Crowley et al. | Jun 1995 | A |
5423806 | Dale et al. | Jun 1995 | A |
5427118 | Nita et al. | Jun 1995 | A |
5431673 | Summers et al. | Jul 1995 | A |
5436759 | Dijaili et al. | Jul 1995 | A |
5439139 | Brovelli | Aug 1995 | A |
5443457 | Ginn et al. | Aug 1995 | A |
5453575 | O'Donnell et al. | Sep 1995 | A |
5456693 | Conston et al. | Oct 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5480388 | Zadini et al. | Jan 1996 | A |
5485845 | Verdonk et al. | Jan 1996 | A |
5492125 | Kim et al. | Feb 1996 | A |
5496997 | Pope | Mar 1996 | A |
5507761 | Duer | Apr 1996 | A |
5512044 | Duer | Apr 1996 | A |
5514128 | Hillsman et al. | May 1996 | A |
5529674 | Hedgcoth | Jun 1996 | A |
5541730 | Chaney | Jul 1996 | A |
5546717 | Penczak et al. | Aug 1996 | A |
5546948 | Hamm et al. | Aug 1996 | A |
5565332 | Hoogenboom et al. | Oct 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5581638 | Givens et al. | Dec 1996 | A |
5586054 | Jensen et al. | Dec 1996 | A |
5592939 | Martinelli | Jan 1997 | A |
5596079 | Smith et al. | Jan 1997 | A |
5598844 | Diaz et al. | Feb 1997 | A |
5609606 | O'Boyle | Mar 1997 | A |
5630806 | Inagaki et al. | May 1997 | A |
5651366 | Liang et al. | Jul 1997 | A |
5660180 | Malinowski et al. | Aug 1997 | A |
5667499 | Welch et al. | Sep 1997 | A |
5667521 | Keown | Sep 1997 | A |
5672877 | Liebig et al. | Sep 1997 | A |
5674232 | Halliburton | Oct 1997 | A |
5693015 | Walker et al. | Dec 1997 | A |
5713848 | Dubrul et al. | Feb 1998 | A |
5745634 | Garrett et al. | Apr 1998 | A |
5771895 | Slager | Jun 1998 | A |
5779731 | Leavitt | Jul 1998 | A |
5780958 | Strugach et al. | Jul 1998 | A |
5798521 | Froggatt | Aug 1998 | A |
5800450 | Lary et al. | Sep 1998 | A |
5803083 | Buck et al. | Sep 1998 | A |
5814061 | Osborne et al. | Sep 1998 | A |
5817025 | Alekseev et al. | Oct 1998 | A |
5820594 | Fontirroche et al. | Oct 1998 | A |
5824520 | Mulligan-Kehoe | Oct 1998 | A |
5827313 | Ream | Oct 1998 | A |
5830222 | Makower | Nov 1998 | A |
5848121 | Gupta et al. | Dec 1998 | A |
5851464 | Davila et al. | Dec 1998 | A |
5857974 | Eberle et al. | Jan 1999 | A |
5872829 | Wischmann et al. | Feb 1999 | A |
5873835 | Hastings et al. | Feb 1999 | A |
5882722 | Kydd | Mar 1999 | A |
5912764 | Togino | Jun 1999 | A |
5916194 | Jacobsen et al. | Jun 1999 | A |
5921931 | O'Donnell et al. | Jul 1999 | A |
5925055 | Adrian et al. | Jul 1999 | A |
5949929 | Hamm | Sep 1999 | A |
5951586 | Berg et al. | Sep 1999 | A |
5974521 | Akerib | Oct 1999 | A |
5976120 | Chow et al. | Nov 1999 | A |
5978391 | Das et al. | Nov 1999 | A |
5997523 | Jang | Dec 1999 | A |
6021240 | Murphy et al. | Feb 2000 | A |
6022319 | Willard et al. | Feb 2000 | A |
6031071 | Mandeville et al. | Feb 2000 | A |
6036889 | Kydd | Mar 2000 | A |
6043883 | Leckel et al. | Mar 2000 | A |
6050949 | White et al. | Apr 2000 | A |
6059738 | Stoltze et al. | May 2000 | A |
6068638 | Makower | May 2000 | A |
6074362 | Jang et al. | Jun 2000 | A |
6078831 | Belef et al. | Jun 2000 | A |
6080109 | Baker et al. | Jun 2000 | A |
6091496 | Hill | Jul 2000 | A |
6094591 | Foltz et al. | Jul 2000 | A |
6095976 | Nachtomy et al. | Aug 2000 | A |
6097755 | Guenther, Jr. et al. | Aug 2000 | A |
6099471 | Torp et al. | Aug 2000 | A |
6099549 | Bosma et al. | Aug 2000 | A |
6102938 | Evans et al. | Aug 2000 | A |
6106476 | Corl | Aug 2000 | A |
6120445 | Grunwald | Sep 2000 | A |
6123673 | Eberle et al. | Sep 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6135893 | Probert | Oct 2000 | A |
6139510 | Palermo | Oct 2000 | A |
6141089 | Thoma et al. | Oct 2000 | A |
6146328 | Chiao et al. | Nov 2000 | A |
6148095 | Prause et al. | Nov 2000 | A |
6151433 | Dower et al. | Nov 2000 | A |
6152877 | Masters | Nov 2000 | A |
6152878 | Nachtomy et al. | Nov 2000 | A |
6159225 | Makower | Dec 2000 | A |
6165127 | Crowley | Dec 2000 | A |
6176842 | Tachibana et al. | Jan 2001 | B1 |
6179809 | Khairkhahan et al. | Jan 2001 | B1 |
6186949 | Hatfield et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6200266 | Shokrollahi et al. | Mar 2001 | B1 |
6200268 | Vince et al. | Mar 2001 | B1 |
6203537 | Adrian | Mar 2001 | B1 |
6208415 | De Boer et al. | Mar 2001 | B1 |
6210332 | Chiao et al. | Apr 2001 | B1 |
6210339 | Kiepen et al. | Apr 2001 | B1 |
6212308 | Donald | Apr 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6245066 | Morgan et al. | Jun 2001 | B1 |
6249076 | Madden et al. | Jun 2001 | B1 |
6254543 | Grunwald et al. | Jul 2001 | B1 |
6256090 | Chen et al. | Jul 2001 | B1 |
6258052 | Milo | Jul 2001 | B1 |
6261246 | Pantages et al. | Jul 2001 | B1 |
6275628 | Jones et al. | Aug 2001 | B1 |
6283921 | Nix et al. | Sep 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6295308 | Zah | Sep 2001 | B1 |
6299622 | Snow et al. | Oct 2001 | B1 |
6312384 | Chiao | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6328696 | Fraser | Dec 2001 | B1 |
6343168 | Murphy et al. | Jan 2002 | B1 |
6343178 | Burns et al. | Jan 2002 | B1 |
6350240 | Song et al. | Feb 2002 | B1 |
6364841 | White et al. | Apr 2002 | B1 |
6366722 | Murphy et al. | Apr 2002 | B1 |
6367984 | Stephenson et al. | Apr 2002 | B1 |
6373970 | Dong et al. | Apr 2002 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6375618 | Chiao et al. | Apr 2002 | B1 |
6375628 | Zadno-Azizi et al. | Apr 2002 | B1 |
6376830 | Froggatt et al. | Apr 2002 | B1 |
6379352 | Reynolds et al. | Apr 2002 | B1 |
6381350 | Klingensmith et al. | Apr 2002 | B1 |
6387124 | Buscemi et al. | May 2002 | B1 |
6396976 | Little et al. | May 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6417948 | Chowdhury et al. | Jul 2002 | B1 |
6419644 | White et al. | Jul 2002 | B1 |
6421164 | Tearney et al. | Jul 2002 | B2 |
6423012 | Kato et al. | Jul 2002 | B1 |
6426796 | Pulliam et al. | Jul 2002 | B1 |
6428041 | Wohllebe et al. | Aug 2002 | B1 |
6428498 | Uflacker | Aug 2002 | B2 |
6429421 | Meller et al. | Aug 2002 | B1 |
6440077 | Jung et al. | Aug 2002 | B1 |
6443894 | Sumanaweera | Sep 2002 | B1 |
6443903 | White et al. | Sep 2002 | B1 |
6450964 | Webler | Sep 2002 | B1 |
6457365 | Stephens et al. | Oct 2002 | B1 |
6459844 | Pan | Oct 2002 | B1 |
6468290 | Weldon et al. | Oct 2002 | B1 |
6475149 | Sumanaweera | Nov 2002 | B1 |
6480285 | Hill | Nov 2002 | B1 |
6491631 | Chiao et al. | Dec 2002 | B2 |
6491636 | Chenal et al. | Dec 2002 | B2 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6504286 | Porat et al. | Jan 2003 | B1 |
6508824 | Flaherty et al. | Jan 2003 | B1 |
6514237 | Maseda | Feb 2003 | B1 |
6520269 | Geiger et al. | Feb 2003 | B2 |
6520677 | Iizuka | Feb 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6538778 | Leckel et al. | Mar 2003 | B1 |
6544217 | Gulachenski | Apr 2003 | B1 |
6544230 | Flaherty et al. | Apr 2003 | B1 |
6545760 | Froggatt et al. | Apr 2003 | B1 |
6546272 | MacKinnon et al. | Apr 2003 | B1 |
6551250 | Khalil | Apr 2003 | B2 |
6566648 | Froggatt | May 2003 | B1 |
6570894 | Anderson | May 2003 | B2 |
6572555 | White et al. | Jun 2003 | B2 |
6579311 | Makower | Jun 2003 | B1 |
6584335 | Haar et al. | Jun 2003 | B1 |
6592612 | Samson et al. | Jul 2003 | B1 |
6594448 | Herman et al. | Jul 2003 | B2 |
6602241 | Makower et al. | Aug 2003 | B2 |
6611322 | Nakayama et al. | Aug 2003 | B1 |
6611720 | Hata et al. | Aug 2003 | B2 |
6612992 | Hossack et al. | Sep 2003 | B1 |
6615062 | Ryan et al. | Sep 2003 | B2 |
6615072 | Izatt et al. | Sep 2003 | B1 |
6621562 | Durston | Sep 2003 | B2 |
6631284 | Nutt et al. | Oct 2003 | B2 |
6638227 | Bae | Oct 2003 | B2 |
6645152 | Jung et al. | Nov 2003 | B1 |
6646745 | Verma et al. | Nov 2003 | B2 |
6655386 | Makower et al. | Dec 2003 | B1 |
6659957 | Vardi et al. | Dec 2003 | B1 |
6660024 | Flaherty et al. | Dec 2003 | B1 |
6663565 | Kawagishi et al. | Dec 2003 | B2 |
6665456 | Dave et al. | Dec 2003 | B2 |
6669716 | Gilson et al. | Dec 2003 | B1 |
6671055 | Wavering et al. | Dec 2003 | B1 |
6673015 | Glover et al. | Jan 2004 | B1 |
6673064 | Rentrop | Jan 2004 | B1 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6689144 | Gerberding | Feb 2004 | B2 |
6696173 | Naundorf et al. | Feb 2004 | B1 |
6701044 | Arbore et al. | Mar 2004 | B2 |
6701176 | Halperin et al. | Mar 2004 | B1 |
6709444 | Makower | Mar 2004 | B1 |
6712836 | Berg et al. | Mar 2004 | B1 |
6714703 | Lee et al. | Mar 2004 | B2 |
6719717 | Johnson et al. | Apr 2004 | B1 |
6725073 | Motamedi et al. | Apr 2004 | B1 |
6726677 | Flaherty et al. | Apr 2004 | B1 |
6730107 | Kelley et al. | May 2004 | B2 |
6733474 | Kusleika | May 2004 | B2 |
6738144 | Dogariu | May 2004 | B1 |
6740113 | Vrba | May 2004 | B2 |
6746464 | Makower | Jun 2004 | B1 |
6780157 | Stephens et al. | Aug 2004 | B2 |
6795188 | Ruck et al. | Sep 2004 | B2 |
6795196 | Funakawa | Sep 2004 | B2 |
6798522 | Stolte et al. | Sep 2004 | B2 |
6822798 | Wu et al. | Nov 2004 | B2 |
6830559 | Schock | Dec 2004 | B2 |
6832024 | Gerstenberger et al. | Dec 2004 | B2 |
6842639 | Winston et al. | Jan 2005 | B1 |
6847449 | Bashkansky et al. | Jan 2005 | B2 |
6855115 | Fonseca et al. | Feb 2005 | B2 |
6856138 | Bohley | Feb 2005 | B2 |
6856400 | Froggatt | Feb 2005 | B1 |
6856472 | Herman et al. | Feb 2005 | B2 |
6860867 | Seward et al. | Mar 2005 | B2 |
6866670 | Rabiner et al. | Mar 2005 | B2 |
6878113 | Miwa et al. | Apr 2005 | B2 |
6886411 | Kjellman et al. | May 2005 | B2 |
6891984 | Petersen et al. | May 2005 | B2 |
6895106 | Wang et al. | May 2005 | B2 |
6898337 | Averett et al. | May 2005 | B2 |
6900897 | Froggatt | May 2005 | B2 |
6912051 | Jensen | Jun 2005 | B2 |
6916329 | Zhao | Jul 2005 | B1 |
6922498 | Shah | Jul 2005 | B2 |
6937346 | Nebendahl et al. | Aug 2005 | B2 |
6937696 | Mostafavi | Aug 2005 | B1 |
6943939 | DiJaili et al. | Sep 2005 | B1 |
6947147 | Motamedi et al. | Sep 2005 | B2 |
6947787 | Webler | Sep 2005 | B2 |
6949094 | Yaron | Sep 2005 | B2 |
6952603 | Gerber et al. | Oct 2005 | B2 |
6954737 | Kalantar et al. | Oct 2005 | B2 |
6958042 | Honda | Oct 2005 | B2 |
6961123 | Wang et al. | Nov 2005 | B1 |
6966891 | Ookubo et al. | Nov 2005 | B2 |
6969293 | Thai | Nov 2005 | B2 |
6969395 | Eskuri | Nov 2005 | B2 |
6985234 | Anderson | Jan 2006 | B2 |
7004963 | Wang et al. | Feb 2006 | B2 |
7006231 | Ostrovsky et al. | Feb 2006 | B2 |
7010458 | Wilt | Mar 2006 | B2 |
7024025 | Sathyanarayana | Apr 2006 | B2 |
7027211 | Ruffa | Apr 2006 | B1 |
7027743 | Tucker et al. | Apr 2006 | B1 |
7033347 | Appling | Apr 2006 | B2 |
7035484 | Silberberg et al. | Apr 2006 | B2 |
7037269 | Nix et al. | May 2006 | B2 |
7042573 | Froggatt | May 2006 | B2 |
7044915 | White et al. | May 2006 | B2 |
7044964 | Jang et al. | May 2006 | B2 |
7048711 | Rosenman et al. | May 2006 | B2 |
7049306 | Konradi et al. | May 2006 | B2 |
7058239 | Singh et al. | Jun 2006 | B2 |
7060033 | White et al. | Jun 2006 | B2 |
7060421 | Naundorf et al. | Jun 2006 | B2 |
7063679 | Maguire et al. | Jun 2006 | B2 |
7068852 | Braica | Jun 2006 | B2 |
7074188 | Nair et al. | Jul 2006 | B2 |
7095493 | Harres | Aug 2006 | B2 |
7110119 | Maestle | Sep 2006 | B2 |
7113875 | Terashima et al. | Sep 2006 | B2 |
7123777 | Rondinelli et al. | Oct 2006 | B2 |
7130054 | Ostrovsky et al. | Oct 2006 | B2 |
7139440 | Rondinelli et al. | Nov 2006 | B2 |
7153299 | Tu et al. | Dec 2006 | B1 |
7171078 | Sasaki et al. | Jan 2007 | B2 |
7175597 | Vince et al. | Feb 2007 | B2 |
7177491 | Dave et al. | Feb 2007 | B2 |
7190464 | Alphonse | Mar 2007 | B2 |
7215802 | Klingensmith et al. | May 2007 | B2 |
7218811 | Shigenaga et al. | May 2007 | B2 |
7236812 | Ballerstadt et al. | Jun 2007 | B1 |
7245125 | Harer et al. | Jul 2007 | B2 |
7245789 | Bates et al. | Jul 2007 | B2 |
7249357 | Landman et al. | Jul 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7292715 | Furnish | Nov 2007 | B2 |
7292885 | Scott et al. | Nov 2007 | B2 |
7294124 | Eidenschink | Nov 2007 | B2 |
7300460 | Levine et al. | Nov 2007 | B2 |
7335161 | Von Arx et al. | Feb 2008 | B2 |
7337079 | Park et al. | Feb 2008 | B2 |
7355716 | de Boer et al. | Apr 2008 | B2 |
7356367 | Liang et al. | Apr 2008 | B2 |
7358921 | Snyder et al. | Apr 2008 | B2 |
7359062 | Chen et al. | Apr 2008 | B2 |
7359554 | Klingensmith et al. | Apr 2008 | B2 |
7363927 | Ravikumar | Apr 2008 | B2 |
7366376 | Shishkov et al. | Apr 2008 | B2 |
7382949 | Bouma et al. | Jun 2008 | B2 |
7387636 | Cohn et al. | Jun 2008 | B2 |
7391520 | Zhou et al. | Jun 2008 | B2 |
7397935 | Kimmel et al. | Jul 2008 | B2 |
7399095 | Rondinelli | Jul 2008 | B2 |
7408648 | Kleen et al. | Aug 2008 | B2 |
7414779 | Huber et al. | Aug 2008 | B2 |
7440087 | Froggatt et al. | Oct 2008 | B2 |
7447388 | Bates et al. | Nov 2008 | B2 |
7449821 | Dausch | Nov 2008 | B2 |
7450165 | Ahiska | Nov 2008 | B2 |
7458967 | Appling et al. | Dec 2008 | B2 |
7463362 | Lasker et al. | Dec 2008 | B2 |
7463759 | Klingensmith et al. | Dec 2008 | B2 |
7491226 | Palmaz et al. | Feb 2009 | B2 |
7515276 | Froggatt et al. | Apr 2009 | B2 |
7527594 | Vardi et al. | May 2009 | B2 |
7534251 | WasDyke | May 2009 | B2 |
7535797 | Peng et al. | May 2009 | B2 |
7547304 | Johnson | Jun 2009 | B2 |
7564949 | Sattler et al. | Jul 2009 | B2 |
7577471 | Camus et al. | Aug 2009 | B2 |
7583857 | Xu et al. | Sep 2009 | B2 |
7603165 | Townsend et al. | Oct 2009 | B2 |
7612773 | Magnin et al. | Nov 2009 | B2 |
7633627 | Choma et al. | Dec 2009 | B2 |
7645229 | Armstrong | Jan 2010 | B2 |
7658715 | Park et al. | Feb 2010 | B2 |
7660452 | Zwirn et al. | Feb 2010 | B2 |
7660492 | Bates et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7672790 | McGraw et al. | Mar 2010 | B2 |
7680247 | Atzinger et al. | Mar 2010 | B2 |
7684991 | Stohr et al. | Mar 2010 | B2 |
7711413 | Feldman et al. | May 2010 | B2 |
7720322 | Prisco | May 2010 | B2 |
7728986 | Lasker et al. | Jun 2010 | B2 |
7734009 | Brunner et al. | Jun 2010 | B2 |
7736317 | Stephens et al. | Jun 2010 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
7743189 | Brown et al. | Jun 2010 | B2 |
7762954 | Nix et al. | Jul 2010 | B2 |
7766896 | Kornkven Volk et al. | Aug 2010 | B2 |
7773792 | Kimmel et al. | Aug 2010 | B2 |
7775981 | Guracar et al. | Aug 2010 | B1 |
7777399 | Eidenschink et al. | Aug 2010 | B2 |
7781724 | Childers et al. | Aug 2010 | B2 |
7783337 | Feldman et al. | Aug 2010 | B2 |
7787127 | Galle et al. | Aug 2010 | B2 |
7792342 | Barbu et al. | Sep 2010 | B2 |
7801343 | Unal et al. | Sep 2010 | B2 |
7801590 | Feldman et al. | Sep 2010 | B2 |
7813609 | Petersen et al. | Oct 2010 | B2 |
7831081 | Li | Nov 2010 | B2 |
7846101 | Eberle et al. | Dec 2010 | B2 |
7853104 | Oota et al. | Dec 2010 | B2 |
7853316 | Milner et al. | Dec 2010 | B2 |
9107639 | Arvidsson | Aug 2015 | B2 |
10076301 | Millett | Sep 2018 | B2 |
20010007940 | Tu et al. | Jul 2001 | A1 |
20010029337 | Pantages et al. | Oct 2001 | A1 |
20010037073 | White et al. | Nov 2001 | A1 |
20010046345 | Snyder et al. | Nov 2001 | A1 |
20010049548 | Vardi et al. | Dec 2001 | A1 |
20020034276 | Hu et al. | Mar 2002 | A1 |
20020041723 | Ronnekleiv et al. | Apr 2002 | A1 |
20020069676 | Kopp et al. | Jun 2002 | A1 |
20020089335 | Williams | Jul 2002 | A1 |
20020099289 | Crowley | Jul 2002 | A1 |
20020163646 | Anderson | Nov 2002 | A1 |
20020186818 | Arnaud et al. | Dec 2002 | A1 |
20020196446 | Roth et al. | Dec 2002 | A1 |
20020197456 | Pope | Dec 2002 | A1 |
20030004412 | Izatt et al. | Jan 2003 | A1 |
20030016604 | Hanes | Jan 2003 | A1 |
20030018273 | Corl et al. | Jan 2003 | A1 |
20030023153 | Izatt et al. | Jan 2003 | A1 |
20030032886 | Dgany et al. | Feb 2003 | A1 |
20030050871 | Broughton | Mar 2003 | A1 |
20030065371 | Satake | Apr 2003 | A1 |
20030069723 | Hegde | Apr 2003 | A1 |
20030077043 | Hamm et al. | Apr 2003 | A1 |
20030085635 | Davidsen | May 2003 | A1 |
20030090753 | Takeyama et al. | May 2003 | A1 |
20030092995 | Thompson | May 2003 | A1 |
20030093059 | Griffin et al. | May 2003 | A1 |
20030103212 | Westphal et al. | Jun 2003 | A1 |
20030152259 | Belykh et al. | Aug 2003 | A1 |
20030181802 | Ogawa | Sep 2003 | A1 |
20030187369 | Lewis et al. | Oct 2003 | A1 |
20030194165 | Silberberg et al. | Oct 2003 | A1 |
20030195419 | Harada | Oct 2003 | A1 |
20030208116 | Liang et al. | Nov 2003 | A1 |
20030212491 | Mitchell et al. | Nov 2003 | A1 |
20030219202 | Loeb et al. | Nov 2003 | A1 |
20030220749 | Chen et al. | Nov 2003 | A1 |
20030228039 | Green | Dec 2003 | A1 |
20040015065 | Panescu et al. | Jan 2004 | A1 |
20040023317 | Motamedi et al. | Feb 2004 | A1 |
20040028333 | Lomas | Feb 2004 | A1 |
20040037742 | Jen et al. | Feb 2004 | A1 |
20040042066 | Kinoshita et al. | Mar 2004 | A1 |
20040054287 | Stephens | Mar 2004 | A1 |
20040067000 | Bates et al. | Apr 2004 | A1 |
20040068161 | Couvillon | Apr 2004 | A1 |
20040082844 | Vardi et al. | Apr 2004 | A1 |
20040092830 | Scott et al. | May 2004 | A1 |
20040106853 | Moriyama | Jun 2004 | A1 |
20040111552 | Arimilli et al. | Jun 2004 | A1 |
20040126048 | Dave et al. | Jul 2004 | A1 |
20040143160 | Couvillon | Jul 2004 | A1 |
20040146546 | Gravett et al. | Jul 2004 | A1 |
20040186369 | Lam | Sep 2004 | A1 |
20040186558 | Pavonik et al. | Sep 2004 | A1 |
20040195512 | Crosetto | Oct 2004 | A1 |
20040220606 | Goshgarian | Nov 2004 | A1 |
20040225220 | Rich | Nov 2004 | A1 |
20040239938 | Izatt | Dec 2004 | A1 |
20040242990 | Brister et al. | Dec 2004 | A1 |
20040248439 | Gernhardt et al. | Dec 2004 | A1 |
20040260236 | Manning et al. | Dec 2004 | A1 |
20050013778 | Green et al. | Jan 2005 | A1 |
20050031176 | Hertel et al. | Feb 2005 | A1 |
20050036150 | Izatt et al. | Feb 2005 | A1 |
20050078317 | Law et al. | Apr 2005 | A1 |
20050101859 | Maschke | May 2005 | A1 |
20050140582 | Lee et al. | Jun 2005 | A1 |
20050140682 | Sumanaweera et al. | Jun 2005 | A1 |
20050140981 | Waelti | Jun 2005 | A1 |
20050140984 | Hitzenberger | Jun 2005 | A1 |
20050147303 | Zhou et al. | Jul 2005 | A1 |
20050165439 | Weber et al. | Jul 2005 | A1 |
20050171433 | Boppart et al. | Aug 2005 | A1 |
20050171438 | Chen et al. | Aug 2005 | A1 |
20050182297 | Gravenstein et al. | Aug 2005 | A1 |
20050196028 | Kleen et al. | Sep 2005 | A1 |
20050197585 | Brockway et al. | Sep 2005 | A1 |
20050213103 | Everett et al. | Sep 2005 | A1 |
20050215942 | Abrahamson et al. | Sep 2005 | A1 |
20050234445 | Conquergood et al. | Oct 2005 | A1 |
20050243322 | Lasker et al. | Nov 2005 | A1 |
20050249391 | Kimmel et al. | Nov 2005 | A1 |
20050251567 | Ballew et al. | Nov 2005 | A1 |
20050254059 | Alphonse | Nov 2005 | A1 |
20050264823 | Zhu et al. | Dec 2005 | A1 |
20060013523 | Childlers et al. | Jan 2006 | A1 |
20060015126 | Sher | Jan 2006 | A1 |
20060029634 | Berg et al. | Feb 2006 | A1 |
20060036167 | Shina | Feb 2006 | A1 |
20060038115 | Maas | Feb 2006 | A1 |
20060039004 | de Boer et al. | Feb 2006 | A1 |
20060041180 | Viswanathan et al. | Feb 2006 | A1 |
20060045536 | Arahira | Mar 2006 | A1 |
20060052700 | Svanerudh | Mar 2006 | A1 |
20060055936 | Yun et al. | Mar 2006 | A1 |
20060058622 | Tearney et al. | Mar 2006 | A1 |
20060064009 | Webler et al. | Mar 2006 | A1 |
20060067620 | Shishkov et al. | Mar 2006 | A1 |
20060072808 | Grimm et al. | Apr 2006 | A1 |
20060074442 | Noriega et al. | Apr 2006 | A1 |
20060098927 | Schmidt et al. | May 2006 | A1 |
20060100694 | Globerman | May 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060132790 | Gutin | Jun 2006 | A1 |
20060135870 | Webler | Jun 2006 | A1 |
20060142703 | Carter et al. | Jun 2006 | A1 |
20060142733 | Forsberg | Jun 2006 | A1 |
20060173299 | Romley et al. | Aug 2006 | A1 |
20060179255 | Yamazaki | Aug 2006 | A1 |
20060184048 | Saadat | Aug 2006 | A1 |
20060187537 | Huber et al. | Aug 2006 | A1 |
20060195269 | Yeatman et al. | Aug 2006 | A1 |
20060204119 | Feng et al. | Sep 2006 | A1 |
20060229591 | Lee | Oct 2006 | A1 |
20060239312 | Kewitsch et al. | Oct 2006 | A1 |
20060241342 | Macaulay et al. | Oct 2006 | A1 |
20060241465 | Huennekens | Oct 2006 | A1 |
20060241503 | Schmitt et al. | Oct 2006 | A1 |
20060244973 | Yun et al. | Nov 2006 | A1 |
20060258895 | Maschke | Nov 2006 | A1 |
20060264743 | Kleen et al. | Nov 2006 | A1 |
20060267756 | Kates | Nov 2006 | A1 |
20060270976 | Savage et al. | Nov 2006 | A1 |
20060276709 | Khamene et al. | Dec 2006 | A1 |
20060279742 | Tearney et al. | Dec 2006 | A1 |
20060279743 | Boesser et al. | Dec 2006 | A1 |
20060285638 | Boese et al. | Dec 2006 | A1 |
20060287595 | Maschke | Dec 2006 | A1 |
20060293597 | Johnson et al. | Dec 2006 | A1 |
20070015969 | Feldman et al. | Jan 2007 | A1 |
20070016029 | Donaldson et al. | Jan 2007 | A1 |
20070016034 | Donaldson | Jan 2007 | A1 |
20070016062 | Park et al. | Jan 2007 | A1 |
20070027390 | Maschke et al. | Feb 2007 | A1 |
20070036417 | Argiro et al. | Feb 2007 | A1 |
20070038061 | Huennekens et al. | Feb 2007 | A1 |
20070038121 | Feldman et al. | Feb 2007 | A1 |
20070038125 | Kleen et al. | Feb 2007 | A1 |
20070043292 | Camus et al. | Feb 2007 | A1 |
20070043597 | Donaldson | Feb 2007 | A1 |
20070049847 | Osborne | Mar 2007 | A1 |
20070060973 | Ludvig et al. | Mar 2007 | A1 |
20070065077 | Childers et al. | Mar 2007 | A1 |
20070066888 | Maschke | Mar 2007 | A1 |
20070066890 | Maschke | Mar 2007 | A1 |
20070066983 | Maschke | Mar 2007 | A1 |
20070084995 | Newton et al. | Apr 2007 | A1 |
20070100226 | Yankelevitz et al. | May 2007 | A1 |
20070135887 | Maschke | Jun 2007 | A1 |
20070142707 | Wiklof et al. | Jun 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070161893 | Milner et al. | Jul 2007 | A1 |
20070161896 | Adachi et al. | Jul 2007 | A1 |
20070161963 | Smalling | Jul 2007 | A1 |
20070162860 | Muralidharan et al. | Jul 2007 | A1 |
20070165141 | Srinivas et al. | Jul 2007 | A1 |
20070167710 | Unal et al. | Jul 2007 | A1 |
20070167804 | Park et al. | Jul 2007 | A1 |
20070191682 | Rolland et al. | Aug 2007 | A1 |
20070201736 | Klingensmith et al. | Aug 2007 | A1 |
20070206193 | Pesach | Sep 2007 | A1 |
20070208276 | Kornkven Volk et al. | Sep 2007 | A1 |
20070213669 | Eskuri | Sep 2007 | A1 |
20070225220 | Ming et al. | Sep 2007 | A1 |
20070225590 | Ramos | Sep 2007 | A1 |
20070229801 | Tearney et al. | Oct 2007 | A1 |
20070232872 | Prough et al. | Oct 2007 | A1 |
20070232874 | Ince | Oct 2007 | A1 |
20070232890 | Hirota | Oct 2007 | A1 |
20070232891 | Hirota | Oct 2007 | A1 |
20070232892 | Hirota | Oct 2007 | A1 |
20070232893 | Tanioka | Oct 2007 | A1 |
20070232933 | Gille et al. | Oct 2007 | A1 |
20070238957 | Yared | Oct 2007 | A1 |
20070247033 | Eidenschink et al. | Oct 2007 | A1 |
20070250000 | Magnin et al. | Oct 2007 | A1 |
20070250036 | Volk et al. | Oct 2007 | A1 |
20070258094 | Izatt et al. | Nov 2007 | A1 |
20070260138 | Feldman et al. | Nov 2007 | A1 |
20070278389 | Ajgaonkar et al. | Dec 2007 | A1 |
20070287914 | Cohen | Dec 2007 | A1 |
20080002183 | Yatagai et al. | Jan 2008 | A1 |
20080013093 | Izatt et al. | Jan 2008 | A1 |
20080021275 | Tearney et al. | Jan 2008 | A1 |
20080027481 | Gilson et al. | Jan 2008 | A1 |
20080043024 | Schiwietz et al. | Feb 2008 | A1 |
20080045842 | Furnish | Feb 2008 | A1 |
20080051660 | Kakadaris et al. | Feb 2008 | A1 |
20080063304 | Russak et al. | Mar 2008 | A1 |
20080085041 | Breeuwer | Apr 2008 | A1 |
20080095465 | Mullick et al. | Apr 2008 | A1 |
20080095714 | Castella et al. | Apr 2008 | A1 |
20080097194 | Milner | Apr 2008 | A1 |
20080101667 | Begelman et al. | May 2008 | A1 |
20080108867 | Zhou | May 2008 | A1 |
20080114254 | Matcovitch et al. | May 2008 | A1 |
20080119739 | Vardi et al. | May 2008 | A1 |
20080124495 | Horn et al. | May 2008 | A1 |
20080125772 | Stone et al. | May 2008 | A1 |
20080139897 | Ainsworth et al. | Jun 2008 | A1 |
20080143707 | Mitchell | Jun 2008 | A1 |
20080146941 | Dala-Krishna | Jun 2008 | A1 |
20080147111 | Johnson et al. | Jun 2008 | A1 |
20080154128 | Milner | Jun 2008 | A1 |
20080161696 | Schmitt et al. | Jul 2008 | A1 |
20080171944 | Brenneman et al. | Jul 2008 | A1 |
20080175465 | Jiang et al. | Jul 2008 | A1 |
20080177183 | Courtney et al. | Jul 2008 | A1 |
20080180683 | Kemp | Jul 2008 | A1 |
20080181477 | Izatt et al. | Jul 2008 | A1 |
20080187201 | Liang et al. | Aug 2008 | A1 |
20080228086 | Ilegbusi et al. | Sep 2008 | A1 |
20080247622 | Aylward et al. | Oct 2008 | A1 |
20080247716 | Thomas et al. | Oct 2008 | A1 |
20080262470 | Lee et al. | Oct 2008 | A1 |
20080262489 | Steinke | Oct 2008 | A1 |
20080269599 | Csavoy et al. | Oct 2008 | A1 |
20080281205 | Naghavi et al. | Nov 2008 | A1 |
20080281248 | Angheloiu et al. | Nov 2008 | A1 |
20080285043 | Fercher et al. | Nov 2008 | A1 |
20080287795 | Klingensmith et al. | Nov 2008 | A1 |
20080291463 | Milner et al. | Nov 2008 | A1 |
20080292173 | Hsieh et al. | Nov 2008 | A1 |
20080294034 | Krueger et al. | Nov 2008 | A1 |
20080298655 | Edwards | Dec 2008 | A1 |
20080306766 | Ozeki et al. | Dec 2008 | A1 |
20090009801 | Tabuki | Jan 2009 | A1 |
20090018393 | Dick et al. | Jan 2009 | A1 |
20090034813 | Dikmen et al. | Feb 2009 | A1 |
20090043191 | Castella et al. | Feb 2009 | A1 |
20090046295 | Kemp et al. | Feb 2009 | A1 |
20090052614 | Hempel et al. | Feb 2009 | A1 |
20090069843 | Agnew | Mar 2009 | A1 |
20090079993 | Yatagai et al. | Mar 2009 | A1 |
20090088650 | Cort | Apr 2009 | A1 |
20090093980 | Kemp et al. | Apr 2009 | A1 |
20090122320 | Petersen et al. | May 2009 | A1 |
20090138544 | Wegenkittl et al. | May 2009 | A1 |
20090149739 | Maschke | Jun 2009 | A9 |
20090156941 | Moore | Jun 2009 | A1 |
20090174886 | Inoue | Jul 2009 | A1 |
20090174931 | Huber et al. | Jul 2009 | A1 |
20090177090 | Grunwald et al. | Jul 2009 | A1 |
20090177183 | Pinkernell et al. | Jul 2009 | A1 |
20090192412 | Sela | Jul 2009 | A1 |
20090195514 | Glynn et al. | Aug 2009 | A1 |
20090196470 | Carl et al. | Aug 2009 | A1 |
20090198125 | Nakabayashi et al. | Aug 2009 | A1 |
20090203991 | Papaioannou et al. | Aug 2009 | A1 |
20090264768 | Courtney et al. | Oct 2009 | A1 |
20090269014 | Winberg et al. | Oct 2009 | A1 |
20090270695 | Mceowen | Oct 2009 | A1 |
20090284322 | Harrison et al. | Nov 2009 | A1 |
20090284332 | Moore et al. | Nov 2009 | A1 |
20090284749 | Johnson et al. | Nov 2009 | A1 |
20090290167 | Flanders et al. | Nov 2009 | A1 |
20090292048 | Li et al. | Nov 2009 | A1 |
20090299195 | Muller et al. | Dec 2009 | A1 |
20090299284 | Holman et al. | Dec 2009 | A1 |
20090318951 | Kashkarov et al. | Dec 2009 | A1 |
20090326634 | Vardi | Dec 2009 | A1 |
20100007669 | Bethune et al. | Jan 2010 | A1 |
20100030042 | Denninghoff et al. | Feb 2010 | A1 |
20100056923 | Hyun | Mar 2010 | A1 |
20100061611 | Xu et al. | Mar 2010 | A1 |
20100063400 | Hall et al. | Mar 2010 | A1 |
20100087732 | Eberle et al. | Apr 2010 | A1 |
20100094125 | Younge et al. | Apr 2010 | A1 |
20100094127 | Xu | Apr 2010 | A1 |
20100094135 | Fang-Yen et al. | Apr 2010 | A1 |
20100094143 | Mahapatra et al. | Apr 2010 | A1 |
20100113919 | Maschke | May 2010 | A1 |
20100125238 | Lye et al. | May 2010 | A1 |
20100125268 | Gustus et al. | May 2010 | A1 |
20100125648 | Zaharia et al. | May 2010 | A1 |
20100128348 | Taverner | May 2010 | A1 |
20100152717 | Keeler | Jun 2010 | A1 |
20100160788 | Davies et al. | Jun 2010 | A1 |
20100161023 | Cohen et al. | Jun 2010 | A1 |
20100168714 | Burke et al. | Jul 2010 | A1 |
20100179421 | Tupin | Jul 2010 | A1 |
20100179426 | Davies et al. | Jul 2010 | A1 |
20100220334 | Condit et al. | Sep 2010 | A1 |
20100226607 | Zhang et al. | Sep 2010 | A1 |
20100234736 | Cori | Sep 2010 | A1 |
20100249601 | Courtney | Sep 2010 | A1 |
20100256616 | Katoh et al. | Oct 2010 | A1 |
20100272432 | Johnson | Oct 2010 | A1 |
20100284590 | Peng et al. | Nov 2010 | A1 |
20100290693 | Cohen et al. | Nov 2010 | A1 |
20100331950 | Strommer | Dec 2010 | A1 |
20110010925 | Nix et al. | Jan 2011 | A1 |
20110021926 | Spencer et al. | Jan 2011 | A1 |
20110025853 | Richardson | Feb 2011 | A1 |
20110026797 | Declerck et al. | Feb 2011 | A1 |
20110032533 | Izatt et al. | Feb 2011 | A1 |
20110034801 | Baumgart | Feb 2011 | A1 |
20110044546 | Pan et al. | Feb 2011 | A1 |
20110066073 | Kuiper et al. | Mar 2011 | A1 |
20110071401 | Hastings et al. | Mar 2011 | A1 |
20110072405 | Chen et al. | Mar 2011 | A1 |
20110077528 | Kemp et al. | Mar 2011 | A1 |
20110080591 | Johnson et al. | Apr 2011 | A1 |
20110087104 | Moore et al. | Apr 2011 | A1 |
20110137140 | Tearney et al. | Jun 2011 | A1 |
20110144502 | Zhou et al. | Jun 2011 | A1 |
20110152771 | Milner et al. | Jun 2011 | A1 |
20110157597 | Lu et al. | Jun 2011 | A1 |
20110160586 | Li et al. | Jun 2011 | A1 |
20110178413 | Schmitt | Jul 2011 | A1 |
20110190586 | Kemp | Aug 2011 | A1 |
20110196237 | Pelissier | Aug 2011 | A1 |
20110216378 | Poon et al. | Sep 2011 | A1 |
20110220985 | Son et al. | Sep 2011 | A1 |
20110238061 | van der Weide et al. | Sep 2011 | A1 |
20110238083 | Moll et al. | Sep 2011 | A1 |
20110245669 | Zhang | Oct 2011 | A1 |
20110249094 | Wang et al. | Oct 2011 | A1 |
20110257545 | Suri | Oct 2011 | A1 |
20110264125 | Wilson et al. | Oct 2011 | A1 |
20110274329 | Mathew et al. | Nov 2011 | A1 |
20110282334 | Groenhoff | Nov 2011 | A1 |
20110301684 | Fischell et al. | Dec 2011 | A1 |
20110306995 | Moberg | Dec 2011 | A1 |
20110319752 | Steinberg et al. | Dec 2011 | A1 |
20120004529 | Tolkowsky et al. | Jan 2012 | A1 |
20120004668 | Wallace et al. | Jan 2012 | A1 |
20120013914 | Kemp et al. | Jan 2012 | A1 |
20120016344 | Kusakabe | Jan 2012 | A1 |
20120016395 | Olson | Jan 2012 | A1 |
20120022360 | Kemp | Jan 2012 | A1 |
20120026503 | Lewandowski et al. | Feb 2012 | A1 |
20120029007 | Graham et al. | Feb 2012 | A1 |
20120059253 | Wang et al. | Mar 2012 | A1 |
20120059368 | Takaoka et al. | Mar 2012 | A1 |
20120062843 | Ferguson et al. | Mar 2012 | A1 |
20120065481 | Hunter et al. | Mar 2012 | A1 |
20120071823 | Chen | Mar 2012 | A1 |
20120071838 | Fojtik | Mar 2012 | A1 |
20120075638 | Rollins et al. | Mar 2012 | A1 |
20120083696 | Kitamura | Apr 2012 | A1 |
20120095340 | Smith | Apr 2012 | A1 |
20120095372 | Sverdlik et al. | Apr 2012 | A1 |
20120108943 | Bates et al. | May 2012 | A1 |
20120113108 | Dala-Krishna | May 2012 | A1 |
20120116353 | Arnold et al. | May 2012 | A1 |
20120130243 | Balocco et al. | May 2012 | A1 |
20120130247 | Waters et al. | May 2012 | A1 |
20120136259 | Milner et al. | May 2012 | A1 |
20120136427 | Palmaz et al. | May 2012 | A1 |
20120137075 | Vorbach | May 2012 | A1 |
20120155734 | Barratt et al. | Jun 2012 | A1 |
20120158101 | Stone et al. | Jun 2012 | A1 |
20120162660 | Kemp | Jun 2012 | A1 |
20120165661 | Kemp et al. | Jun 2012 | A1 |
20120170848 | Kemp et al. | Jul 2012 | A1 |
20120170963 | Lou | Jul 2012 | A1 |
20120172698 | Teo et al. | Jul 2012 | A1 |
20120176607 | Ott | Jul 2012 | A1 |
20120184853 | Waters | Jul 2012 | A1 |
20120184859 | Shah et al. | Jul 2012 | A1 |
20120184977 | Wolf | Jul 2012 | A1 |
20120215094 | Rahimian et al. | Aug 2012 | A1 |
20120220836 | Alpert et al. | Aug 2012 | A1 |
20120220851 | Razansky et al. | Aug 2012 | A1 |
20120220865 | Brown et al. | Aug 2012 | A1 |
20120220874 | Hancock et al. | Aug 2012 | A1 |
20120220883 | Manstrom et al. | Aug 2012 | A1 |
20120224751 | Kemp et al. | Sep 2012 | A1 |
20120226153 | Brown et al. | Sep 2012 | A1 |
20120230565 | Steinberg et al. | Sep 2012 | A1 |
20120232400 | Dickinson et al. | Sep 2012 | A1 |
20120238869 | Schmitt et al. | Sep 2012 | A1 |
20120238956 | Yamada et al. | Sep 2012 | A1 |
20120244043 | Leblanc et al. | Sep 2012 | A1 |
20120250028 | Schmitt et al. | Oct 2012 | A1 |
20120253186 | Simpson et al. | Oct 2012 | A1 |
20120253192 | Cressman | Oct 2012 | A1 |
20120253276 | Govari et al. | Oct 2012 | A1 |
20120257210 | Whitney et al. | Oct 2012 | A1 |
20120262720 | Brown et al. | Oct 2012 | A1 |
20120265077 | Gille et al. | Oct 2012 | A1 |
20120265268 | Blum et al. | Oct 2012 | A1 |
20120265296 | McNamara et al. | Oct 2012 | A1 |
20120271170 | Emelianov et al. | Oct 2012 | A1 |
20120271175 | Moore et al. | Oct 2012 | A1 |
20120271339 | O'Beirne et al. | Oct 2012 | A1 |
20120274338 | Baks et al. | Nov 2012 | A1 |
20120276390 | Ji et al. | Nov 2012 | A1 |
20120277722 | Gerber et al. | Nov 2012 | A1 |
20120279764 | Jiang et al. | Nov 2012 | A1 |
20120283758 | Miller et al. | Nov 2012 | A1 |
20120289987 | Wilson et al. | Nov 2012 | A1 |
20120299439 | Huang | Nov 2012 | A1 |
20120310081 | Adler et al. | Dec 2012 | A1 |
20120310332 | Murray et al. | Dec 2012 | A1 |
20120319535 | Dausch | Dec 2012 | A1 |
20120323075 | Younge et al. | Dec 2012 | A1 |
20120323127 | Boyden et al. | Dec 2012 | A1 |
20120330141 | Brown et al. | Dec 2012 | A1 |
20130015975 | Huennekens et al. | Jan 2013 | A1 |
20130023762 | Huennekens et al. | Jan 2013 | A1 |
20130023763 | Huennekens et al. | Jan 2013 | A1 |
20130026655 | Lee et al. | Jan 2013 | A1 |
20130030295 | Huennekens et al. | Jan 2013 | A1 |
20130030303 | Ahmed | Jan 2013 | A1 |
20130030410 | Drasler et al. | Jan 2013 | A1 |
20130053949 | Pintor et al. | Feb 2013 | A1 |
20130066197 | Pruvot | Mar 2013 | A1 |
20130109958 | Baumgart et al. | May 2013 | A1 |
20130109959 | Baumgart et al. | May 2013 | A1 |
20130137980 | Waters et al. | May 2013 | A1 |
20130150716 | Stigall et al. | Jun 2013 | A1 |
20130158594 | Carrison et al. | Jun 2013 | A1 |
20130218201 | Obermiller et al. | Aug 2013 | A1 |
20130218267 | Braido et al. | Aug 2013 | A1 |
20130223789 | Lee et al. | Aug 2013 | A1 |
20130223798 | Jenner et al. | Aug 2013 | A1 |
20130296704 | Magnin et al. | Nov 2013 | A1 |
20130303907 | Cort | Nov 2013 | A1 |
20130303920 | Cort | Nov 2013 | A1 |
20130310698 | Judell et al. | Nov 2013 | A1 |
20130331820 | Itou et al. | Dec 2013 | A1 |
20130338766 | Hastings et al. | Dec 2013 | A1 |
20130339958 | Droste et al. | Dec 2013 | A1 |
20140039294 | Jiang | Feb 2014 | A1 |
20140121513 | Tolkowsky | May 2014 | A1 |
20140180067 | Stigall et al. | Jun 2014 | A1 |
20140180128 | Cori | Jun 2014 | A1 |
20140181717 | Lahti | Jun 2014 | A1 |
20140200438 | Millett et al. | Jul 2014 | A1 |
20140229881 | Schadewaldt | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
1041373 | Oct 2000 | EP |
01172637 | Jan 2002 | EP |
2438877 | Apr 2012 | EP |
2280261 | Jan 1995 | GB |
2000-262461 | Sep 2000 | JP |
2000-292260 | Oct 2000 | JP |
2001-125009 | May 2001 | JP |
2001-272331 | Oct 2001 | JP |
2002-374034 | Dec 2002 | JP |
2003-143783 | May 2003 | JP |
2003-172690 | Jun 2003 | JP |
2003-256876 | Sep 2003 | JP |
2003-287534 | Oct 2003 | JP |
2005-274380 | Oct 2005 | JP |
2006-184284 | Jul 2006 | JP |
2006-266797 | Oct 2006 | JP |
2006-313158 | Nov 2006 | JP |
2007-024677 | Feb 2007 | JP |
2009-233001 | Oct 2009 | JP |
2011-56786 | Mar 2011 | JP |
9101156 | Feb 1991 | WO |
9216865 | Oct 1992 | WO |
9306213 | Apr 1993 | WO |
9308829 | May 1993 | WO |
9838907 | Sep 1998 | WO |
9857583 | Dec 1998 | WO |
0011511 | Mar 2000 | WO |
00044296 | Aug 2000 | WO |
0111409 | Feb 2001 | WO |
03062802 | Jul 2003 | WO |
03073950 | Sep 2003 | WO |
2004010856 | Feb 2004 | WO |
2004023992 | Mar 2004 | WO |
2004096049 | Nov 2004 | WO |
2005047813 | May 2005 | WO |
2005106695 | Nov 2005 | WO |
2006029634 | Mar 2006 | WO |
2006037132 | Apr 2006 | WO |
2006039091 | Apr 2006 | WO |
2006061829 | Jun 2006 | WO |
2006068875 | Jun 2006 | WO |
2006111704 | Oct 2006 | WO |
2006119416 | Nov 2006 | WO |
2006121851 | Nov 2006 | WO |
2006130802 | Dec 2006 | WO |
2007002685 | Jan 2007 | WO |
2007025230 | Mar 2007 | WO |
2007045690 | Apr 2007 | WO |
2007058895 | May 2007 | WO |
2007067323 | Jun 2007 | WO |
2007084995 | Jul 2007 | WO |
2008058084 | May 2008 | WO |
2008069991 | Jun 2008 | WO |
2008107905 | Sep 2008 | WO |
2009009799 | Jan 2009 | WO |
2009009801 | Jan 2009 | WO |
2009046431 | Apr 2009 | WO |
2009121067 | Oct 2009 | WO |
2009137704 | Nov 2009 | WO |
201106886 | Jan 2011 | WO |
2011038048 | Mar 2011 | WO |
2011081688 | Jul 2011 | WO |
2012003369 | Jan 2012 | WO |
2012061935 | May 2012 | WO |
2012071388 | May 2012 | WO |
2012087818 | Jun 2012 | WO |
2012098194 | Jul 2012 | WO |
2012109676 | Aug 2012 | WO |
2012130289 | Oct 2012 | WO |
2012154767 | Nov 2012 | WO |
2012155040 | Nov 2012 | WO |
20120170963 | Dec 2012 | WO |
2013033414 | Mar 2013 | WO |
2013033415 | Mar 2013 | WO |
2013033418 | Mar 2013 | WO |
2013033489 | Mar 2013 | WO |
2013033490 | Mar 2013 | WO |
2013033592 | Mar 2013 | WO |
2013126390 | Aug 2013 | WO |
2014109879 | Jul 2014 | WO |
Entry |
---|
Li et al., 2000, Optical Coherence Tomography: Advanced Technology for the Endoscopic Imaging of Barrett's Esophagus, Endoscopy, 32(12):921-930. |
Little et al., 1991, The underlying coronary lesion in myocardial infarction:implications for coronary angiography, Clinica Cardiology, 14(11):868-874. |
Loo, 2004, Nanoshell Enabled Photonics-Based Imaging and Therapy of Cancer, Technology in Cancer Research & Treatment 3(1):33-40. |
Machine translation of JP 2000-097846. |
Machine translation of JP 2000-321034. |
Machine translation of JP 2000-329534. |
Machine translation of JP 2004-004080. |
Maintz et al., 1998, An Overview of Medical Image Registration Methods, Technical Report UU-CS, (22 pages). |
Mamas et al., 2010, Resting Pd/Pa measured with intracoronary pressure wire strongly predicts fractional flow reserve, Journal of Invasive Cardiology 22(6):260-265. |
Marks et al., 1991, By-passing Immunization Human Antibodies from V-gene Libraries Displayed on Phage, J. Mol. Biol. 222:581-597. |
Marks et al., 1992, By-Passing Immunization:Building High Affinity Human Antibodies by Chain Shuffling, BioTechnol., 10:779-783. |
Maruno et al., 1991, Fluorine containing optical adhesives for optical communications systems, J. Appl. Polymer. Sci. 42:2141-2148. |
McCafferty et al., 1990, Phage antibodies: filamentous phage displaying antibody variable domains, Nature 348:552-554. |
Mendieta et al., 1996, Complementary sequence correlations with applications to reflectometry studies, Instrumentation and Development 3(6):37-46. |
Mickley, 2008, Steal Syndrome-strategies to preserve vascular access and extremity, Nephrol Dial Transplant 23:19-24. |
Miller et al., 2010, The MILLER banding procedure is an effective method for treating dialysis-associated steal syndrome, Kidney International 77:359-366. |
Milstein et al., 1983, Hybrid hybridomas and their use in immunohistochemistry, Nature 305:537-540. |
Mindlin et al., 1936, A force at a point of a semi-infinite solid, Physics, 7:195-202. |
Morrison et al., 1984, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains, PNAS 81:6851-6855. |
Munson et al., 1980, Ligand: a versatile computerized approach for characterization of ligand-binding systems, Analytical Biochemistry, 107:220-239. |
Nezam, 2008, High Speed Polygon-Scanner-Based Wavelength-Swept Laser Source in the Telescope-Less Configurations with Application in Optical Coherence Tomography, Optics Letters 33(15): 1741-1743. |
Nissen, 2001, Coronary Angiography and Intravascular Ultrasound, American Journal of Cardiology, 87(suppl):15A-20A. |
Nitenberg et al., 1995, Coronary vascular reserve in humans: a critical review of methods of evaluation and of interpretation of the results, Eur Heart J. 16(Suppl 1):7-21. |
Notice of Reason(s) for Refusal dated Apr. 30, 2013, for Japanese Patent Application No. 2011-508677 for Optical Imaging Catheter for Aberation Balancing to Volcano Corporation, which application is a Japanese national stage entry of PCT/US2009/043181 with international filing date May 7, 2009, of the same title, published on Nov. 12, 2009, as WO 2009/137704, and accompanying English translation of the Notice of Reason(s) for Refusal and machine translations of JP11-56786 and JP2004-290548 (56 pages). |
Nygren, 1982, Conjugation of horseradish peroxidase to Fab fragments with different homobifunctional and heterobifunctional cross-linking reagents. A comparative study, J. Histochem. and Cytochem. 30:407-412. |
Oesterle et al., 1986, Angioplasty at coronary bifurcations: single-guide, two-wire technique, Cathet Cardiovasc Diagn., 12:57-63. |
Okuno et al., 2003, Recent Advances in Optical Switches Using Silica-based PLC Technology, NTT Technical Review 1(7):20-30. |
Oldenburg et al., 1998, Nanoengineering of Optical Resonances, Chemical Physics Letters 288:243-247. |
Oldenburg et al., 2003, Fast-Fourier-Domain Delay Line for In Vivo Optical Coherence Tomography with a Polygonal Scanner, Applied Optics, 42(22):4606-4611. |
Othonos, 1997, Fiber Bragg gratings, Review of Scientific Instruments 68(12):4309-4341. |
Owens et al., 2007, A Survey of General-Purpose Computation on Graphics Hardware, Computer Graphics Forum 26(1):80-113. |
Pain et al., 1981, Preparation of protein A-peroxidase mono conjugate using a heterobifunctional reagent, and its use in enzyme immunoassays, J Immunol Methods, 40:219-30. |
Park et al., 2005, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 um., Optics Express 13(11):3931-3944. |
Pasquesi et al., 2006, In vivo detection of exercise induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography, Optics Express 14(4):1547-1556. |
Pepe et al., 2004, Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker, American Journal of Epidemiology 159(9):882-890. |
Persson et al., 1985, Acoustic impedance matching of medical ultrasound transducers, Ultrasonics, 23(2):83-89. |
Placht et al., 2012, Fast time-of-flight camera based surface registration for radiotherapy patient positioning, Medical Physics 39(1):4-17. |
Rabbani et al., 1999, Review: Strategies to achieve coronary arterial plaque stabilization, Cardiovascular Research 41:402-417. |
Radvany et al., 2008, Plaque Excision in Management of Lower Extremity Peripheral Arterial Disease with the SilverHawk Atherectomy Catheter, Seminars in Interventional Radiology, 25(1):11-19. |
Reddy et al., 1996, An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration, IEEE Transaction on Image Processing 5(8):1266-1271. |
Riechmann et al., 1988, Reshaping human antibodies for therapy, Nature, 332:323-327. |
Rivers et al., 1992, Correction of steal syndrome secondary to hemodialysis access fistulas: a simplified quantitative technique, Surgery, 112(3):593-7. |
Robbin et al., 2002, Hemodialysis Arteriovenous Fistula Maturity: US Evaluation, Radiology 225:59-64. |
Rollins et al., 1998, In vivo video rate optical coherence tomography, Optics Express 3:219-229. |
Sarunic et al., 2005, Instantaneous Complex Conjugate Resolved Spectral Domain and Swept-Source OCT Using 3x3 Fiber Couplers, Optics Express 13(3):957-967. |
Satiani et al., 2009, Predicted Shortage of Vascular Surgeons in the United States, J. Vascular Surgery 50:946-952. |
Schneider et al., 2006, T-banding: A technique for flow reduction of a hyper-functioning arteriovenous fistula, J Vase Surg. 43(2):402-405. |
Sen et al., 2012, Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis, Journal of the American College of Cardiology 59(15):1392-1402. |
Setta et al., 2005, Soft versus firm embryo transfer catheters for assisted reproduction: a systematic review and meta-analysis, Human Reproduction, 20(11):3114-3121. |
Seward et al., 1996, Ultrasound Cardioscopy: Embarking on New Journey, Mayo Clinic Proceedings 71(7):629-635. |
International Search Report and Written Opinion mailed Nov. 2, 2012, for International Patent Application No. PCT/US12/53168, filed Aug. 30, 2013 (8 pages). |
International Search Report and Written Opinion mailed on Apr. 14, 2014, for International Patent Application No. PCT/US2013/076148, filed Dec. 18, 2013 (8 pages). |
International Search Report and Written Opinion mailed on Apr. 21, 2014, for International Patent Application No. PCT/US2013/076015, filed Dec. 18, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Apr. 23, 2014, for International Patent Application No. PCT/US2013/075328, filed Dec. 16, 2013 (8 pages). |
International Search Report and Written Opinion mailed on Apr. 29, 2014, for International Patent Application No. PCT/US13/76093, filed Dec. 18, 2013 (6 pages). |
International Search Report and Written Opinion mailed on Apr. 9, 2014, for International Patent Application No. PCT/US13/75089, filed Dec. 13, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Feb. 21, 2014, for International Patent Application No. PCT/US13/76053, filed Dec. 18, 2013 (9 pages). |
International Search Report and Written Opinion mailed on Feb. 21, 2014, for International Patent Application No. PCT/US2013/076965, filed Dec. 20, 2013 (6 pages). |
International Search Report and Written Opinion mailed on Feb. 27, 2014, for International Patent Application No. PCT/US13/75416, filed Dec. 16, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Feb. 28, 2014, for International Patent Application No. PCT/US13/75653, filed Dec. 17, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Feb. 28, 2014, for International Patent Application No. PCT/US13/75990, filed Dec. 18, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Jan. 16, 2009, for International Patent Application No. PCT/US08/78963 filed on Oct. 6, 2008 (7 Pages). |
International Search Report and Written Opinion mailed on Jul. 16, 2014, for International Patent Application No. PCT/US2014/023241, filed Mar. 11, 2014 (14 pages). |
International Search Report and Written Opinion mailed on Jul. 30, 2014, for International Patent Application No. PCT/US14/21659, filed Mar. 7, 2014 (15 pages). |
International Search Report and Written Opinion mailed on Mar. 10, 2014, for International Patent Application No. PCT/US2013/076212, filed Dec. 18, 2013 (8 pages). |
International Search Report and Written Opinion mailed on Mar. 11, 2014, for International Patent Application No. PCT/US13/76173, filed Dec. 16, 2013 (9 pages). |
International Search Report and Written Opinion mailed on Mar. 11, 2014, for International Patent Application No. PCT/US13/76449, filed Dec. 19, 2013 (9 pages). |
International Search Report and Written Opinion mailed on Mar. 18, 2014, for International Patent Application No. PCT/US2013/076502, filed Dec. 19, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Mar. 18, 2014, for International Patent Application No. PCT/US2013/076788, filed Dec. 20, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Mar. 19, 2014, for International Patent Application No. PCT/US13/75349, filed Dec. 16, 2013 (10 pages). |
International Search Report and Written Opinion mailed on Mar. 19, 2014, for International Patent Application No. PCT/US2013/076587, filed Dec. 19, 2013 (10 pages). |
International Search Report and Written Opinion mailed on Mar. 19, 2014, for International Patent Application No. PCT/US2013/076909, filed Dec. 20, 2013 (7 pages). |
International Search Report and Written Opinion mailed on Mar. 7, 2014, for International Patent Application No. PCT/US2013/076304, filed Dec. 18, 2013 (9 pages). |
International Search Report and Written Opinion mailed on Mar. 7, 2014, for International Patent Application No. PCT/US2013/076480, filed Dec. 19, 2013 (8 pages). |
International Search Report and Written Opinion mailed on Mar. 7, 2014, for International Patent Application No. PCT/US2013/076512, filed Dec. 19, 2013 (8 pages). |
International Search Report and Written Opinion mailed on Mar. 7, 2014, for International Patent Application No. PCT/US2013/076531, filed Dec. 19, 2013 (10 pages). |
Jakobovits et al., 1993, Analysis of homozygous mutant chimeric mice:deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production, PNAS USA 90:2551-255. |
Jakobovits et al., 1993, Germ-line transmission and expression of a human-derived yeast artificial chromosome, Nature 362:255-258. |
Jang et al., 2002, Visualization of Coronary Atherosclerotic Plaques in Patients Using Optical Coherence Tomography: Comparison With Intravascular Ultrasound, Journal of the American College of Cardiology 39:604-609. |
Jiang et al., 1992, Image registration of multimodality 3-D medical images by chamfer matching, Proc. SPIE 1660, Biomedical Image Processing and Three-Dimensional Microscopy, 356-366. |
Johnson et al., 1993, Human antibody engineering: Current Opinion in Structural Biology, 3:564-571. |
Jones et al., 1986, Replacing the complementarity-determining regions in a human antibody with those from a mouse, Nature, 321:522-525. |
Juviler et al., 2008, Anorectal sepsis and fistula-in-ano, Surgical Technology International, 17:139-149. |
Karapatis et al., 1998, Direct rapid tooling:a review of current research, Rapid Prototyping Journal, 4(2):77-89. |
Karp et al., 2009, The benefit of time-of-flight in PET imaging, J Nucl Med 49:462-470. |
Kelly et al., 2005, Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle, Circulation Research 96:327-336. |
Kemp et al., 2005, Depth Resolved Optic Axis Orientation in Multiple Layered Anisotropic Tissues Measured with Enhanced Polarization Sensitive Optical Coherence Tomography, Optics Express 13(12):4507-4518. |
Kersey et al., 1991, Polarization insensitive fiber optic Michelson interferometer, Electron. Lett. 27:518-520. |
Kheir et al., 2012, Oxygen Gas-Filled Microparticles Provide Intravenous Oxygen Delivery, Science Translational Medicine 4(140):140ra88 (10 pages). |
Khuri-Yakub et al., 2011, Capacitive micromachined ultrasonic transducers for medical imaging and therapy, J Micromech Microeng. 21(5):054004-054014. |
Kirkman, 1991, Technique for flow reduction in dialysis access fistulas, Surg Gyn Obstet, 172(3):231-3. |
Kohler et al., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256:495-7. |
Koo et al., 2011, Diagnosis of IschemiaCausing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms, J Am Coll Cardiol 58(19):1989-1997. |
Kozbor et al., 1984, A human hybrid myeloma for production of human monoclonal antibodies, J. Immunol., 133:3001-3005. |
Kruth et al., 2003, Lasers and materials in selective laser sintering, Assembly Automation, 23(4):357-371. |
Kumagai et al., 1994, Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm, Applied Physics Letters, 65(14):1850-1852. |
Larin et al., 2002, Noninvasive Blood Glucose Monitoring with Optical Coherence Tomography: a pilot study in human subjects, Diabetes Care, 25(12):2263-7. |
Larin et al., 2004, Measurement of Refractive Index Variation of Physiological Analytes using Differential Phase OCT, Proc of SPIE 5325:31-34. |
Laufer, 1996, Introduction to Optics and Lasers in Engineering, Cambridge University Press, Cambridge UK:156-162. |
Lefevre et al., 2001, Stenting of bifurcation lesions:a rational approach, J. Interv. Cardiol., 14(6):573-585. |
Abdi et al., 2010, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics 2:433-459. |
Adler et al., 2007, Phase-Sensitive Optical Coherence Tomography at up to 370,000 Lines Per Second Using Buffered Fourier Domain Mode-Locked Lasers, Optics Letters, 32(6):626-628. |
Agresti, 1996, Models for Matched Pairs, Chapter 8, An Introduction to Categorical Data Analysis, Wiley-Interscience A John Wiley & Sons, Inc., Publication, Hoboken, New Jersey. |
Akasheh et al., 2004, Development of piezoelectric micromachined ultrasonic transducers, Sensors and Actuators A Physical, 111:275-287. |
Amini et al., 1990, Using dynamic programming for solving variational problems in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9):855-867. |
Bail et al., 1996, Optical coherence tomography with the “Spectral Radar”—Fast optical analysis in volume scatterers by short coherence interferometry, Optics Letters 21(14):1087-1089. |
Bain, 2011, Privacy protection and face recognition, Chapter 3, Handbook of Face Recognition, Stan et al., Springer-Verlag. |
Barnea et al., 1972, A class of algorithms for fast digital image registration, IEEE Trans. Computers, 21(2):179-186. |
Blanchet et al., 1993, Laser Ablation and the Production of Polymer Films, Science, 262(5134):719-721. |
Bonnema, 2008, Imaging Tissue Engineered Blood Vessel Mimics with Optical Tomography, College of Optical Sciences dissertation, University of Arizona (252 pages). |
Bouma et al., 1999, Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography, Optics Letters, 24(8):531-533. |
Breiman, 2001, Random forests, Machine Learning 45:5-32. |
Brown, 1992, A survey of image registration techniques, ACM Computing Surveys 24(4):325-376. |
Bruining et al., 2009, Intravascular Ultrasound Registration/Integration with Coronary Angiography, Cardiology Clinics, 27(3):531-540. |
Brummer, 1997, An euclidean distance measure between covariance matrices of speechcepstra for text-independent speaker recognition, in Proc. South African Symp. Communications and Signal Processing:167-172. |
Burr et al., 2005, Searching for the Center of an Ellipse in Proceedings of the 17th Canadian Conference on Computational Geometry:260-263. |
Canny, 1986, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell. 8:679-698. |
Cavalli et al., 2010, Nanosponge formulations as oxygen delivery systems, International Journal of Pharmaceutics 402:254-257. |
Choma et al., 2003, Sensitivity Advantage of Swept Source and Fourier Domain Optical Coherence Tomography, Optics Express 11(18):2183-2189 . |
Clarke et al., 1995, Hypoxia and myocardial ischaemia during peripheral angioplasty, Clinical Radiology, 50(5):301-303. |
Collins, 1993, Coronary flow reserve, British Heart Journal 69:279-281. |
Communication Mechanisms for Distributed Real-Time Applications, NI Developer Zone, http://zone.ni.com/devzone/cda/tut/p/id/3105, accessed Jul. 23, 2007. |
Cook, 2007, Use and misuse of receiver operating characteristic curve in risk prediction, Circulation 115(7):928-35. |
D'Agostino et al., 2001, Validation of the Framingham coronary heart disease prediction score: results of a multiple ethnic group investigation, JAMA 286:180-187. |
David et al., 1974, Protein iodination with solid-state lactoperoxidase, Biochemistry 13:1014-1021. |
Davies et al., 1985, Plaque fissuring-the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina, British Heart Journal 53:363-373. |
Davies et al., 1993, Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content, British Heart Journal 69:377-381. |
Deterministic Data Streaming in Distributed Data Acquisition Systems, NI Developer Zone, “What is Developer Zone?”, http://zone.ni.com/devzone/cda/tut/p/id/3105, accessed Jul. 23, 2007. |
Eigenwillig, 2008, K-Space Linear Fourier Domain Mode Locked Laser and Applications for Optical Coherence Tomography, Optics Express 16(12):8916-8937. |
Elghanian et al., 1997, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 277(5329):1078-1080. |
Ergun et al., 2003, Capacitive Micromachined Ultrasonic Transducers:Theory and Technology, Journal of Aerospace Engineering, 16(2):76-84. |
Evans et al., 2006, Optical coherence tomography to identify intramucosa carcinoma and high-grade dysplasia in Barrett's esophagus, Clin Gast Hepat 4(1):38-43. |
Fatemi et al., 1999, Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission, PNAS U.S.A., 96(12):6603-6608. |
Felzenszwalb et al., 2005, Pictorial Structures for Object Recognition, International Journal of Computer Vision, 61(1):55-79. |
Ferring et al., 2008, Vasculature ultrasound for the pre-operative evaluation prior to arteriovenous fistula formation for haemodialysis: review of the evidence, Nephrol. Dial. Transplant. 23(6):1809-1815. |
Fischler et al., 1973, The representation and matching of pictorial structures, IEEE Transactions on Computer 22:67-92. |
Fleming et al., 2010, Real-time monitoring of cardiac radio-frequency ablation lesion formation using an optical coherence tomography forward-imaging catheter, Journal of Biomedical Optics 15 (3):030516-1 (3 pages). |
Fookes et al., 2002, Rigid and non-rigid image registration and its association with mutual information:A review, Technical Report ISBN:1 86435 569 7, RCCVA, QUT. |
Forstner & Moonen, 1999, A metric for covariance matrices, In Technical Report of the Dpt of Geodesy and Geoinformatics, Stuttgart University, 113-128. |
Goel et al., 2006, Minimally Invasive Limited Ligation Endoluminal-assisted Revision (MILLER) for treatment of dialysis access-associated steal syndrome, Kidney Int 70(4):765-70. |
Gotzinger et al., 2005, High speed spectral domain polarization sensitive optical coherence tomography of the human retina, Optics Express 13(25):10217-10229. |
Gould et al., 1974, Physiologic basis for assessing critical coronary stenosis, American Journal of Cardiology, 33:87-94. |
Griffiths et al., 1993, Human anti-self antibodies with high specificity from phage display libraries, The EMBO Journal, 12:725-734. |
Griffiths et al., 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires, The EMBO Journal, 13(14):3245-3260. |
Grund et al., 2010, Analysis of biomarker data:logs, odds, ratios and ROC curves, Curr Opin HIV AIDS 5(6):473-479. |
Harrison et al., 2011, Guidewire Stiffness: What's in a name?, J Endovasc Ther, 18(6):797-801. |
Huber et al., 2005, Amplified, Frequency Swept Lasers for Frequency Domain Reflectometry and OCT Imaging: Design and Scaling Principles, Optics Express 13(9):3513-3528. |
Huber et al., 2006, Fourier Domain Mode Locking (FDML): A New Laser Operating Regime and Applications for Optical Coherence Tomography, Optics Express 14(8):3225-3237. |
International Search Report and Written Opinion mailed Mar. 11, 2014, for International Patent Application No. PCT/US13/75675, filed Dec. 17, 2013 (7 pages). |
International Search Report and Written Opinion mailed Mar. 19, 2014, for International Patent Application No. PCT/US13/075353, filed Dec. 16, 2013 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20200260964 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
61776863 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14204277 | Mar 2014 | US |
Child | 16865870 | US |