Systems and methods for differential message scaling in a decoding process

Information

  • Patent Grant
  • 10164657
  • Patent Number
    10,164,657
  • Date Filed
    Tuesday, June 28, 2016
    7 years ago
  • Date Issued
    Tuesday, December 25, 2018
    5 years ago
Abstract
Systems and method relating generally to data processing, and more particularly to systems and methods for scaling messages in a data decoding circuit. In one embodiment, the systems and methods include applying a variable node algorithm, applying a check node algorithm, calculating a first number of errors, calculating a second number of errors, calculating a difference between the first and second number of errors, multiplying by scalar values to yield a scaled set of messages, and re-applying the variable node algorithm to the scaled set of messages.
Description
FIELD OF THE INVENTION

Systems and method relating generally to data processing, and more particularly to systems and methods for scaling messages in a data decoding circuit.


BACKGROUND

Data transfer devices are operable to transfer data from a transmission device to a receiver device. The transmission device applies an encoding algorithm to yield an encoded data set, and the decoding device applies a decoding algorithm to reverse the encoding algorithm and thereby yield the original data set. In some cases, the data decoding algorithm will stall, and thereby the original data set cannot be recovered. Such situations result in an inability to recover the original data.


Hence, for at least the aforementioned reasons, there exists a need in the art for advanced systems and methods for decoding encoded data sets


SUMMARY

Systems and method relating generally to data processing, and more particularly to systems and methods for scaling messages in a data decoding circuit.


Various embodiments of the present invention provide data processing systems that include a data decoder circuit. The data decoder circuit is operable to: apply a variable node algorithm to a data input to yield a first set of variable node to check node messages, and apply a check node algorithm to the first set of variable node to check node messages to yield a set of check node to variable node messages during a first iteration; calculate a number of errors remaining based upon a preceding set of variable node to check node messages, wherein the preceding set of variable node to check node messages precedes the first set of variable node to check node messages; calculate a number of errors based upon the first set of variable node to check node messages; calculate a difference between the number of errors based upon the first set of variable node to check node messages and the number of errors remaining based upon a preceding set of variable node to check node messages; multiply the set of check node to variable node messages by respective scalar values selected based at least in part on the difference to yield a scaled set of check node to variable node messages; and apply the variable node algorithm to the scaled set of check node to variable node messages to yield a second set of variable node to check node messages.


This summary provides only a general outline of some embodiments of the invention. The phrases “in one embodiment,” “according to one embodiment,” “in various embodiments”, “in one or more embodiments”, “in particular embodiments” and the like generally mean the particular feature, structure, or characteristic following the phrase is included in at least one embodiment of the present invention, and may be included in more than one embodiment of the present invention. Importantly, such phases do not necessarily refer to the same embodiment. Many other embodiments of the invention will become more fully apparent from the following detailed description, the appended claims and the accompanying drawings.





BRIEF DESCRIPTION OF THE FIGURES

A further understanding of the various embodiments of the present invention may be realized by reference to the figures which are described in remaining portions of the specification. In the figures, like reference numerals are used throughout several figures to refer to similar components. In some instances, a sub-label consisting of a lower case letter is associated with a reference numeral to denote one of multiple similar components. When reference is made to a reference numeral without specification to an existing sub-label, it is intended to refer to all such multiple similar components.



FIG. 1 shows a solid state storage device including an iterative data processing circuit having differential decoder message scaling circuitry in accordance with various embodiments of the present invention;



FIG. 2 depicts a data transmission system including an iterative data processing circuit having differential decoder message scaling circuitry in accordance with one or more embodiments of the present invention;



FIG. 3 shows a storage system including differential decoder message scaling circuitry in accordance with various embodiments of the present invention;



FIGS. 4a-4c show a data processing circuit including differential decoder message scaling circuitry in accordance with some embodiments of the present invention; and



FIGS. 5a-5b are flow diagrams showing a method for data processing that includes differential decoder message scaling in a data decode algorithm in accordance with some embodiments of the present invention.





DETAILED DESCRIPTION OF SOME EMBODIMENTS

Systems and method relating generally to data processing, and more particularly to systems and methods for scaling messages in a data decoding circuit.


Various embodiments of the present invention provide data processing systems that include a data decoder circuit. The data decoder circuit is operable to: apply a variable node algorithm to a data input to yield a first set of variable node to check node messages, and apply a check node algorithm to the first set of variable node to check node messages to yield a set of check node to variable node messages during a first iteration; calculate a number of errors remaining based upon a preceding set of variable node to check node messages, wherein the preceding set of variable node to check node messages precedes the first set of variable node to check node messages; calculate a number of errors based upon the first set of variable node to check node messages; calculate a difference between the number of errors based upon the first set of variable node to check node messages and the number of errors remaining based upon a preceding set of variable node to check node messages; multiply the set of check node to variable node messages by respective scalar values selected based at least in part on the difference to yield a scaled set of check node to variable node messages; and apply the variable node algorithm to the scaled set of check node to variable node messages to yield a second set of variable node to check node messages.


In some instances of the aforementioned embodiments, all elements of the set of check node to variable node messages are multiplied by the same scalar value when the difference is greater than a threshold value. In some such instances, the threshold value is user programmable. In one or more instances of the aforementioned embodiments, the decoder circuit is further operable to: identify one or more check node to variable node messages associated with each of the calculated number of errors based upon the first set of variable node to check node messages. In such instances, multiplying the set of check node to variable node messages by respective scalar values includes multiplying each of the one or more check node to variable node messages associated with each of the calculated number of errors based upon the first set of variable node to check node messages by a first scalar value, and multiplying each of the other of the variable node messages by a second scalar value. In some cases, at least one of the first scalar value and the second scalar value is user programmable. In various cases, multiplying each of the one or more check node to variable node messages associated with each of the calculated number of errors based upon the first set of variable node to check node messages by the first scalar value, and multiplying each of the other of the variable node messages by the second scalar value is done when the difference is less than a threshold value; and wherein multiplying the set of check node to variable node messages by respective scalar values includes multiplying all elements of the set of check node to variable node messages are multiplied by the second scalar value when the difference is greater than the threshold value.


A method for data processing that include: applying a variable node algorithm to a data input by a variable node processing circuit to yield a first set of variable node to check node messages; applying a check node algorithm to the first set of variable node to check node messages to yield a set of check node to variable node messages during a first iteration; calculating a number of errors remaining based upon a preceding set of variable node to check node messages, wherein the preceding set of variable node to check node messages precedes the first set of variable node to check node messages; calculating a number of errors based upon the first set of variable node to check node messages; calculating a difference between the number of errors based upon the first set of variable node to check node messages and the number of errors remaining based upon a preceding set of variable node to check node messages; multiplying the set of check node to variable node messages by respective scalar values selected based at least in part on the difference to yield a scaled set of check node to variable node messages; and re-applying the variable node algorithm to the scaled set of check node to variable node messages to yield a second set of variable node to check node messages.


Turning to FIG. 1, a solid state storage device 100 including an iterative data processing circuit 170. Iterative data processing circuit 170 includes differential decoder message scaling circuitry in accordance with various embodiments of the present invention. Storage device 100 additionally includes a host controller circuit 160 that directs read and write access to flash memory cells 140. Flash memory cells 140 may be NAND flash memory cells or another type of solid state memory cells as are known in the art.


A data write is effectuated when host controller circuit 160 provides write data 105 to be written along with an address 110 indicating the location to be written. A memory access controller 120 formats write data 105 and provides an address 123 and an encoded write data 125 to a write circuit 130. Write circuit 130 provides a write voltage 135 corresponding to respective groupings of encoded write data 125 that is used to charge respective flash memory cells addressed by address 123. For example, where flash memory cells are two bit cells (i.e., depending upon the read voltage, a value of ‘11’, ‘10’, ‘00’, or ‘01’ is returned), the following voltages may be applied to store the data:
















Two Bit Data Input
Voltage Output









‘11’
V3



‘10’
V2



‘00’
V1



‘01’
V0











Where V3 is greater than V2, V2 is greater than V1, and V1 is greater than V0. It should be noted that the aforementioned table is merely an example, and that different devices may assign different bit values to the different voltage thresholds. For example in other cases the values in the following table may be used:
















Two Bit Data Input
Voltage Output









‘01’
V3



‘00’
V2



‘10’
V1



‘11’
V0











Of course, other bit patterns may be assigned to different thresholds.


A data read is effectuated when host controller circuit 160 provides address 110 along with a request to read data from the corresponding location in flash memory cells 140. Memory access controller 120 accesses a read voltage 145 from locations indicated by address 123 and compares the voltage to a number of threshold values 154 to reduce the voltage to a multi-bit read data 155. Using the same two bit example, the following multi-bit read data 155 results:
















Voltage Input
Two Bit Data Output









>V2
‘11’



>V1
‘10’



>V0
‘00’



<=V0
‘01’











This multi-bit read data 155 is provided from memory access controller 120 to data processing circuit 170 as read data 107. Iterative data processing circuit 170 applies a data decoding algorithm to read data 107 using soft data 173 that is either accessed or generated by memory access controller circuit 120. Soft data may either be provided from flash memory cells 140 where such are available, or may be generated by memory access controller circuit 120. Such generation of soft information may be done using any approach known in the art for generating soft data. As one example, generation of soft information may be done similar to that disclosed in U.S. patent application Ser. No. 14/047,423 entitled “Systems and Methods for Enhanced Data Recovery in a Solid State Memory System”, and filed by Xia et al. on Oct. 7, 2013. The entirety of the aforementioned application was previously incorporated herein by reference for all purposes.


Iterative data processing circuit 170 repeatedly applies a data decoding algorithm to read data 107 and soft data 174 to yield a decoded output. Where the decoded output converges (i.e., results in a correction of all remaining errors in read data 107), the decoded output is provided as read data 175. Where the decoded output fails to converge (i.e., errors remain in the decoded output), another iteration of the data decoding algorithm is applied to read data 107 guided by the previous decoded output to yield an updated decoded output. A syndrome corresponding to the decoded output is calculated. Where the syndrome is zero, the decoded output has converged. Where the difference between syndrome weights (as used herein, the term “syndrome value” is used in its broadest sense to mean either a value of the resulting syndrome or a weight of the resulting syndrome) of successive iterations is not greater than a threshold value, all of the check node outputs generated as part of the data decoding process are multiplied by a default scaling factor. Alternatively, where the difference between syndrome weights of successive iterations is greater than a threshold value a potential trapping set is indicated. In such a situation, each check node value associated with an unsatisfied check are multiplied by an updated scaling factor and the other check node values that are not associated with an unsatisfied check are multiplied by the default scaling factor. The result of the multiplications are provided as an updated received codeword. The next iteration of the data decoding process is guided by the updated received codeword. This iterative decoding process continues until either all errors are corrected or a timeout condition occurs. In some embodiments of the present invention, the data decoding algorithm is a low density parity check algorithm as is known in the art. Based upon the disclosure provided herein, one of ordinary skill in the art will recognize a variety of data decoding algorithms that may be used in relation to various embodiments of the present invention. The iterative data processing circuit may be implemented similar to that discussed below in relation to FIGS. 4a-4c (although without including the data detector circuit as that is not necessary in a solid state drive), and/or may operate using an approach similar to that discussed below in relation to FIGS. 5a-5b.


Turning to FIG. 2, a data transmission system 291 including a receiver 295 having throughput preservation and clock rate reduction power control circuitry is shown in accordance with various embodiments of the present invention. Data transmission system 291 includes a transmitter 293 that is operable to transmit encoded information via a transfer medium 297 as is known in the art. The encoded data is received from transfer medium 297 by a receiver 295. Receiver 295 processes the received input to yield the originally transmitted data. Receiver 295 provides the processed data as a data output 299 to a host (not shown).


As part of processing the received information, receiver 295 utilizes a data processing circuit that includes both a data detection circuit and a data decode circuit. In some cases, multiple iterations through the data decoder circuit (i.e., local iterations) for each pass through both the data detection circuit and the data decoder circuit (i.e., global iterations). During each pass through the data decoder circuit, selected scaling factors are applied to check node to variable node messages passed as part of the data decode algorithm and the scaling factor is adaptively adjusted in an effort to recover an originally written data set. In this process, where the decoded output fails to converge (i.e., errors remain in the decoded output), another iteration of the data decoding algorithm is applied to input data guided by the previous decoded output to yield an updated decoded output. A syndrome corresponding to the decoded output is calculated. Where the syndrome is zero, the decoded output has converged. Where the difference between syndrome weights of successive iterations is not greater than a threshold value, all of the check node outputs generated as part of the data decoding process are multiplied by a default scaling factor. Alternatively, where the difference between syndrome weights of successive iterations is greater than a threshold value a potential trapping set is indicated. In such a situation, each check node value associated with an unsatisfied check are multiplied by an updated scaling factor and the other check node values that are not associated with an unsatisfied check are multiplied by the default scaling factor. The result of the multiplications are provided as an updated received codeword. The next iteration of the data decoding process is guided by the updated received codeword. This iterative decoding process continues until either all errors are corrected or a timeout condition occurs. In some embodiments of the present invention, the data decoding algorithm is a low density parity check algorithm as is known in the art. The iterative data processing circuit may be implemented similar to that discussed below in relation to FIGS. 4a-4c (although it may additionally include an analog to digital converter circuit and one or more filter circuits used to process an originally received data set), and/or may operate using an approach similar to that discussed below in relation to FIGS. 5a-5b.


Turning to FIG. 3, a storage system 300 including a read channel circuit 310 having differential decoder message scaling circuitry is shown in accordance with various embodiments of the present invention. Storage system 300 may be, for example, a hard disk drive. Storage system 300 also includes a preamplifier 370, an interface controller 320, a hard disk controller 366, a motor controller 368, a spindle motor 372, a disk platter 378, and a read/write head 376. Interface controller 320 controls addressing and timing of data to/from disk platter 378. The data on disk platter 378 consists of groups of magnetic signals that may be detected by read/write head assembly 376 when the assembly is properly positioned over disk platter 378. In one embodiment, disk platter 378 includes magnetic signals recorded in accordance with either a longitudinal or a perpendicular recording scheme.


A data decoder circuit used in relation to read channel circuit 310 may be, but is not limited to, a low density parity check (LDPC) decoder circuit as are known in the art. Such low density parity check technology is applicable to transmission of information over virtually any channel or storage of information on virtually any media. Transmission applications include, but are not limited to, optical fiber, radio frequency channels, wired or wireless local area networks, digital subscriber line technologies, wireless cellular, Ethernet over any medium such as copper or optical fiber, cable channels such as cable television, and Earth-satellite communications. Storage applications include, but are not limited to, hard disk drives, compact disks, digital video disks, magnetic tapes and memory devices such as DRAM, NAND flash, NOR flash, other non-volatile memories and solid state drives.


In a typical read operation, read/write head assembly 376 is accurately positioned by motor controller 368 over a desired data track on disk platter 378. Motor controller 368 both positions read/write head assembly 376 in relation to disk platter 378 and drives spindle motor 372 by moving read/write head assembly to the proper data track on disk platter 378 under the direction of hard disk controller 366. Spindle motor 372 spins disk platter 378 at a determined spin rate (RPMs). Once read/write head assembly 376 is positioned adjacent the proper data track, magnetic signals representing data on disk platter 378 are sensed by read/write head assembly 376 as disk platter 378 is rotated by spindle motor 372. The sensed magnetic signals are provided as a continuous, minute analog signal representative of the magnetic data on disk platter 378. This minute analog signal is transferred from read/write head assembly 376 to read channel circuit 310 via preamplifier 370. Preamplifier 370 is operable to amplify the minute analog signals accessed from disk platter 378. In turn, read channel circuit 310 decodes and digitizes the received analog signal to recreate the information originally written to disk platter 378. This data is provided as read data 303 to a receiving circuit. A write operation is substantially the opposite of the preceding read operation with write data 301 being provided to read channel circuit 310. This data is then encoded and written to disk platter 378.


As part of processing the received information, read channel circuit 310 may utilize a data processing circuit that includes both a data detection circuit and a data decode circuit. In some cases, multiple iterations through the data decoder circuit (i.e., local iterations) for each pass through both the data detection circuit and the data decoder circuit (i.e., global iterations). During each pass through the data decoder circuit, selected scaling factors are applied to check node to variable node messages passed as part of the data decode algorithm and the scaling factor is adaptively adjusted in an effort to recover an originally written data set. In this process, where the decoded output fails to converge (i.e., errors remain in the decoded output), another iteration of the data decoding algorithm is applied to input data guided by the previous decoded output to yield an updated decoded output. A syndrome corresponding to the decoded output is calculated. Where the syndrome is zero, the decoded output has converged. Where the difference between syndrome weights of successive iterations is not greater than a threshold value, all of the check node outputs generated as part of the data decoding process are multiplied by a default scaling factor. Alternatively, where the difference between syndrome weights of successive iterations is greater than a threshold value a potential trapping set is indicated. In such a situation, each check node value associated with an unsatisfied check are multiplied by an updated scaling factor and the other check node values that are not associated with an unsatisfied check are multiplied by the default scaling factor. The result of the multiplications are provided as an updated received codeword. The next iteration of the data decoding process is guided by the updated received codeword. This iterative decoding process continues until either all errors are corrected or a timeout condition occurs. In some embodiments of the present invention, the data decoding algorithm is a low density parity check algorithm as is known in the art. The iterative data processing circuit may be implemented similar to that discussed below in relation to FIGS. 4a-4c (although it may additionally include an analog to digital converter circuit and one or more filter circuits used to process an originally received data set), and/or may operate using an approach similar to that discussed below in relation to FIGS. 5a-5b.


It should be noted that storage system 300 may be integrated into a larger storage system such as, for example, a RAID (redundant array of inexpensive disks or redundant array of independent disks) based storage system. Such a RAID storage system increases stability and reliability through redundancy, combining multiple disks as a logical unit. Data may be spread across a number of disks included in the RAID storage system according to a variety of algorithms and accessed by an operating system as if it were a single disk. For example, data may be mirrored to multiple disks in the RAID storage system, or may be sliced and distributed across multiple disks in a number of techniques. If a small number of disks in the RAID storage system fail or become unavailable, error correction techniques may be used to recreate the missing data based on the remaining portions of the data from the other disks in the RAID storage system. The disks in the RAID storage system may be, but are not limited to, individual storage systems such as storage system 300, and may be located in close proximity to each other or distributed more widely for increased security. In a write operation, write data is provided to a controller, which stores the write data across the disks, for example by mirroring or by striping the write data. In a read operation, the controller retrieves the data from the disks. The controller then yields the resulting read data as if the RAID storage system were a single disk.



FIGS. 4a-4c show a data processing circuit 400 including differential decoder message scaling circuitry in accordance with some embodiments of the present invention. Turning to FIG. 4a, data processing circuit 400 includes a data detector circuit 430 that applies a data detection algorithm to a read input 405 guided by, when available, a de-interleaved output 497. Read input 405 may be derived from an analog front end circuit (not shown) where the received data is an analog input. Based upon the disclosure provided herein, one of ordinary skill in the art will recognize a variety of analog processing circuits that may be used in relation to various embodiments of the present invention.


Data detector circuit 430 may be a single data detector circuit or may be two or more data detector circuits operating in parallel on different codewords. Whether it is a single data detector circuit or a number of data detector circuits operating in parallel, data detector circuit 430 is operable to apply a data detection algorithm to a received codeword (provided as read input 405). In some embodiments of the present invention, data detector circuit 430 is a Viterbi algorithm data detector circuit as are known in the art. In other embodiments of the present invention, data detector circuit 430 is a maximum a posteriori data detector circuit as are known in the art. Of note, the general phrases “Viterbi data detection algorithm” or “Viterbi algorithm data detector circuit” are used in their broadest sense to mean any Viterbi detection algorithm or Viterbi algorithm detector circuit or variations thereof including, but not limited to, bi-direction Viterbi detection algorithm or bi-direction Viterbi algorithm detector circuit. Also, the general phrases “maximum a posteriori data detection algorithm” or “maximum a posteriori data detector circuit” are used in their broadest sense to mean any maximum a posteriori detection algorithm or detector circuit or variations thereof including, but not limited to, simplified maximum a posteriori data detection algorithm and a max-log maximum a posteriori data detection algorithm, or corresponding detector circuits. Based upon the disclosure provided herein, one of ordinary skill in the art will recognize a variety of data detector circuits that may be used in relation to different embodiments of the present invention. In some cases, one data detector circuit included in data detector circuit 430 is used to apply the data detection algorithm to the received codeword for a first global iteration applied to the received codeword, and another data detector circuit included in data detector circuit 430 is operable apply the data detection algorithm to the received codeword guided by a decoded output accessed from a central memory circuit 450 on subsequent global iterations. Data detector circuit 430 applies the data detection algorithm at a rate governed by a variable rate clock 434.


Upon completion of application of the data detection algorithm to the received codeword on the first global iteration, data detector circuit 430 provides a detector output 433. Detector output 433 includes soft data. As used herein, the phrase “soft data” is used in its broadest sense to mean reliability data with each instance of the reliability data indicating a likelihood that a corresponding bit position or group of bit positions has been correctly detected. In some embodiments of the present invention, the soft data is log likelihood data (LLR) as is known in the art. Detected output 433 is provided to a local interleaver circuit 442. Local interleaver circuit 442 is operable to shuffle sub-portions (i.e., local chunks) of the data set included as detected output and provides an interleaved codeword 446 that is stored to central memory circuit 450. Interleaver circuit 442 may be any circuit known in the art that is capable of shuffling data sets to yield a re-arranged data set. Interleaved codeword 446 is stored to central memory circuit 450.


Once a data decoding circuit 470 is available, a previously stored interleaved codeword 446 is accessed from central memory circuit 450 as a stored codeword 486 and globally interleaved by a global interleaver/de-interleaver circuit 484. Global interleaver/De-interleaver circuit 484 may be any circuit known in the art that is capable of globally rearranging codewords. Global interleaver/De-interleaver circuit 484 provides a decoder input 452 into data decoding circuit 470. In some embodiments of the present invention, the data decode algorithm applied by data decoding circuit 470 is a low density parity check algorithm as are known in the art. Based upon the disclosure provided herein, one of ordinary skill in the art will recognize other decode algorithms that may be used in relation to different embodiments of the present invention. Data decoder circuit 470 is augmented to include novel differential decoder message scaling circuitry. One example of such decoder message scaling circuitry is described in more detail below in relation to FIGS. 4b-4c. As more fully described below, data decoder circuit implements a belief-propagation algorithm that passes soft data or log likelihood data as messages along edges of a Tanner graph. These messages are multiplied by respective scaling factors that are selected based upon changes in a calculated syndrome weight between iterations of the data decoding algorithm. In particular, where a the difference between syndrome weights of successive iterations is not greater than a threshold value, all of the check node outputs generated as part of the data decoding process are multiplied by a default scaling factor. Alternatively, where the difference between syndrome weights of successive iterations is greater than a threshold value a potential trapping set is indicated. In such a situation, each check node value associated with an unsatisfied check are multiplied by an updated scaling factor and the other check node values that are not associated with an unsatisfied check are multiplied by the default scaling factor. The result of the multiplications are provided as an updated received codeword 471 that is used to guide a later iteration of the data decoding algorithm applied by data decoding circuit 470.


Local iterations of data decoding circuit 470 may continue until either a current syndrome weight is zero indicating convergence of the data decoding algorithm (i.e., all errors are corrected), or a timeout condition such as a maximum number of local iterations through data decoding circuit 470 has occurred. In a case where the current syndrome weight is calculated as zero, the result of the data decoding is provided as a decoded output 472. Decoded output 472 is provided to a de-interleaver circuit 480 that rearranges the data to reverse both the global and local interleaving applied to the data to yield a de-interleaved output 482. De-interleaved output 482 is provided to a hard decision output circuit 490. Hard decision output circuit 490 is operable to re-order data sets that may complete out of order back into their original order. The originally ordered data sets are then provided as a hard decision output 492.


Where application of the data decoding algorithm fails to converge and a number of local iterations through data decoder circuit 470 exceeds a threshold, the resulting decoded output is provided as a decoded output 454 back to central memory circuit 450 if a maximum number of global iterations as indicated by a global iteration control 498 has not been exceeded. In this case, decoded output 454 is stored awaiting another global iteration through a data detector circuit included in data detector circuit 430. Prior to storage of decoded output 454 to central memory circuit 450, decoded output 454 is globally de-interleaved to yield a globally de-interleaved output 488 that is stored to central memory circuit 450. The global de-interleaving reverses the global interleaving earlier applied to stored codeword 486 to yield decoder input 452. When a data detector circuit included in data detector circuit 430 becomes available, a previously stored de-interleaved output 488 accessed from central memory circuit 450 and locally de-interleaved by a de-interleaver circuit 444. De-interleaver circuit 444 re-arranges decoder output 448 to reverse the shuffling originally performed by interleaver circuit 442. A resulting de-interleaved output 497 is provided to data detector circuit 430 where it is used to guide subsequent detection of a corresponding data set previously received as equalized output 425. Alternatively, where application of the data decoding algorithm fails to converge and the number of local iterations exceeds a maximum and the number of global iterations exceeds a maximum, an error is generated indicating a failure to converge by data decoding circuit 470.


Of note, a solid state drive typically does not include utilize a data detector circuit, and as such only applies local iterations of data decoding circuit 470. In such a case, at least data detector circuit 430, local interleaver circuit 442, local de-interleaver circuit 444, central memory circuit 450 can be eliminated. The algorithm of data decoding circuit 470 is applied directly to read input 405 where read input 405 is connected directly to decoder input 452. Based upon the disclosure provided herein, one of ordinary skill in the art will recognize a variety of adaptations that may be made to data processing circuit 400 to tailor it to the specific implementation.


Turning to FIG. 4b, one implementation of data decoder circuit 370 including differential decoder message scaling circuitry is shown in accordance with some embodiments of the present invention. The implementation is shown as a data decoder circuit 600. Data decoder circuit 600 includes a variable node processing circuit 610 that is operable to calculated variable node to check node messages (V2C messages) based upon a decoder input 605 (corresponding to decoder input 452 of FIG. 4) and, where available, scaled check node to variable node messages (scaled C2V messages) 675. The V2C messages are provided as a variable node data output 615 to a hard output determination circuit 615 and as a variable node data output 617 to a check node processing circuit 660. Any circuit known in the art for performing variable node processing may be used for variable node processing circuit 610.


Hard decision output determination circuit 620 assigns hard decision values to each element of variable node output data 615. This includes selecting a binary value or a symbol value based upon variable node data output 615. Any circuit known in the art for converting variable node information to hard decision data may be used for hard decision output determination circuit 620. The determined hard decisions are provided as a hard decision output 625 to both a syndrome calculation circuit 630, and to a hard decision output circuit 640.


Syndrome calculation circuit 630 calculates a syndrome weight 635 for hard decision output 625. The magnitude of syndrome weight 635 corresponds to a number of errors remaining in hard decision output 625. Where syndrome weight 635 is zero, there are no remaining errors in hard decision output 625, and as such a hard decision output circuit 640 is enabled to provided hard decision output 625 as a decoder output 647.


Alternatively, where syndrome weight 635 is non-zero, errors remain in hard decision output 625. In such a circumstance, syndrome calculation circuit 630 provides a location output 637 to a differential scalar generation circuit 650. Location output 650 indicates which check nodes are unsatisfied. Differential scalar generation circuit 650 includes a buffer (not shown) that stores a previous instance of syndrome weight 635, a summation circuit (not shown) that subtracts a current instance of syndrome weight 635 from the previous instances of syndrome weight 635 to yield a difference output (not shown), and a comparator circuit (not shown) that compares the difference output with a threshold value 639.


Based upon the comparison of the difference output with threshold value 639, differential scalar generation circuit 650 generates an array of scalar values 655 to include an individual scalar value for each check node of data decoding circuit 600. In particular, where the difference value is not greater than threshold value 639, then a default scalar 652 is selected for all of the individual scalar values in array of scalar values 655. Alternatively, where the difference value is greater than threshold value 639, then an update scalar value 654 is selected for the individual scalar values in array of scalar values 655 that correspond to the check nodes identified by location output 637, and default scalar 652 is selected for all other individual scalar values in array of scalar values 655. One or more of default scalar 652, update scalar value 654 and/or threshold value 639 may be user programmable.


Check node processing circuit 660 applies check node processing to variable node data output 617 to yield interim check node to variable node messages (interim C2V messages). Any circuit known in the art for performing check node processing may be used for check node processing circuit 660. The interim C2V messages are provided as a message array 665 along with array of scalar values 655 to a differential scalar multiplier circuit 670. Differential scalar multiplier circuit 670 multiplies each of the interim C2V messages received as message array 665 by the corresponding scalar value from array of scalar values 655 to yield scaled C2V messages 675.


Turning to FIG. 4c, a portion of a Tanner graph 690 representing the belief-propagation algorithm applied by data decoder circuit 470 and data decoder circuit 600. As shown, log-likelihood data passing from C-nodes (i.e., check nodes) 693, 695, 697 to V-nodes (i.e., variable nodes) 680, 682, 684 are provided to respective multiplication circuits 692, 694, 696 where they are multiplied by individual scaling factors 622, 632, 642 received from differential scalar generation circuit 650. Individual scaling factors 622, 632, 642 are respective values in array of scalar values 655. As discussed above, individual scaling factors 622, 632, 642 are individually selected to be either default scalar 652 or update scalar 654 based upon a difference between syndrome weights for suc+cessive iterations of the data decoding algorithm and which of C-nodes 693, 695, 697 are associated with an unsatisfied check.


Turning to FIG. 5a, a flow diagram 500 shows a process for data processing through a data detector circuit and a data decoder circuit that includes differential decoder message scaling. Following flow diagram 500, it is determined whether a data set is ready for application of a data detection algorithm (block 505). In some cases, a data set is ready when it is received from a data decoder circuit via a central memory circuit. In other cases, a data set is ready for processing when it is first made available from an front end processing circuit. Where a data set is ready (block 505), it is determined whether a data detector circuit is available to process the data set (block 510).


Where the data detector circuit is available for processing (block 510), the data set is accessed by the available data detector circuit (block 515). The data detector circuit may be, for example, a Viterbi algorithm data detector circuit or a maximum a posteriori data detector circuit. Where the data set is a newly received data set (i.e., a first global iteration), the newly received data set is accessed. In contrast, where the data set is a previously received data set (i.e., for the second or later global iterations), both the previously received data set and the corresponding decode data available from a preceding global iteration (available from a central memory) is accessed. The accessed data set is then processed by application of a data detection algorithm to the data set (block 518). The data detection is performed at a variable processing rate that is more fully described below. Where the data set is a newly received data set (i.e., a first global iteration), it is processed without guidance from decode data available from a data decoder circuit. Alternatively, where the data set is a previously received data set (i.e., for the second or later global iterations), it is processed with guidance of corresponding decode data available from preceding global iterations. Application of the data detection algorithm yields a detected output. A derivative of the detected output is stored to the central memory (block 520). The derivative of the detected output may be, for example, an interleaved or shuffled version of the detected output. Again, where the method of FIGS. 5a-5b is to be applied to a solid state memory device, the process of data detection discussed in relation to flow diagram 500 may be eliminated as the data detection process is not needed.


In parallel to the previously described data detection process, it is determined whether a data decoder circuit is available (block 506). The data decoder circuit may be, for example, a low density data decoder circuit applying a belief-propagation data decode algorithm as are known in the art. Where the data decoder circuit is available (block 506), a previously stored derivative of a detected output is accessed from the central memory and used as a received codeword (block 511). Variable node processing is applied to the received codeword to yield a set of variable node outputs (block 516). In particular, variable node processing calculates variable node to check node messages (V2C messages) based upon a the received codeword and, where available, an updated received codeword (see blocks 561, 566) in the form of scaled check node to variable node messages (i.e., scaled C2V messages).


Check node processing is applied to the set of variable node outputs (blocks 571). The check node processing yields a set of check node outputs (C2V messages). Any circuit known in the art for performing check node processing may be used to perform the check node processing. In addition, hard decision outputs based upon the set of variable node outputs are determined (block 521). Determining the hard decision outputs includes assigning hard decision values to each element in the set of variable node outputs. This includes selecting a binary value or a symbol value for each element or symbol of the set of variable node outputs. Any approach known in the art for converting variable node information to hard decision data may be used.


A current syndrome weight is calculated based upon the hard decision outputs (block 526). The magnitude of the calculated current syndrome corresponds to a number of errors remaining in the hard decision outputs. Where the calculated current syndrome weight is zero (block 531), there are no remaining errors in hard decision outputs and as such a hard decision outputs are provided as an interleaved decoded output (block 536). The interleaved decoded output is de-interleaved to yield a decoded output (block 541).


Alternatively, where the calculated current syndrome weight is non-zero (block 531), errors remain in hard decision output. In such a circumstance, it is determined whether another local iteration is allowed (block 543). In some cases, as a default seven local iterations are allowed per each global iteration, or a total of one hundred local iterations where only one global iteration is used. In a solid state storage device the data detection process is not used, and in such cases no global iterations are counted, and a total of, for example, one hundred local iterations are allowed. Where another local iteration is not desired (block 543), the decoded output is stored (block 551) and the processes of data detection of FIG. 5a (where relevant) are performed before data decoding processing of FIG. 5b are re-performed.


Alternatively, where another local iteration is not desired (block 543), it is determined whether the previously calculated syndrome weight (i.e., the syndrome weight calculated for the preceding local iteration) less the currently calculated syndrome weight from block 526 is greater than a threshold value (block 556) in accordance with the following equation:

Difference=Previously Calculated Syndrome Weight−Currently Calculated Syndrome Weight; and
Difference?>Threshold Value.

For example, for a code with four checks the previously calculated syndrome weight may be 1101 and the currently calculated syndrome weight may be 1011. In such a case, the syndrome weight is the same for both, and thus the ‘N’ transition from block 556 is taken. In some cases, the threshold value is user programmable. Where the difference is not greater than the threshold value (block 556), each element of the set of check node outputs generated as part of block 571 is multiplied by the same default scaling factor to yield an updated received codeword (block 561). In contrast, where the difference is greater than the threshold value (block 556), each element of the set of check node outputs generated as part of block 571 corresponding to an unsatisfied check (i.e., an error) is multiplied by an update scaling factor, and the other elements of the set of check node outputs are multiplied by the default scaling factor to yield an updated received codeword (block 566). In some embodiments of the present invention, one or both of the default scaling factor and/or the update scaling factor is/are user programmable.


It should be noted that the various blocks discussed in the above application may be implemented in integrated circuits along with other functionality. Such integrated circuits may include all of the functions of a given block, system or circuit, or a subset of the block, system or circuit. Further, elements of the blocks, systems or circuits may be implemented across multiple integrated circuits. Such integrated circuits may be any type of integrated circuit known in the art including, but are not limited to, a monolithic integrated circuit, a flip chip integrated circuit, a multichip module integrated circuit, and/or a mixed signal integrated circuit. It should also be noted that various functions of the blocks, systems or circuits discussed herein may be implemented in either software or firmware. In some such cases, the entire system, block or circuit may be implemented using its software or firmware equivalent. In other cases, the one part of a given system, block or circuit may be implemented in software or firmware, while other parts are implemented in hardware.


In conclusion, the invention provides novel systems, devices, methods and arrangements for data processing. While detailed descriptions of one or more embodiments of the invention have been given above, various alternatives, modifications, and equivalents will be apparent to those skilled in the art without varying from the spirit of the invention. Therefore, the above description should not be taken as limiting the scope of the invention, which is defined by the appended claims.

Claims
  • 1. A data processing system comprising: a data decoder circuit of a storage drive operable to: calculate a first number of errors remaining based upon a preceding set of variable node to check node messages, the preceding set of variable node to check node messages precedes a first set of variable node to check node messages;calculate a second number of errors based upon the first set of variable node to check node messages;determine a scaled set of check node to variable node messages based on one or more scalar values, the one or more scalar values being selected based at least in part on a difference between the first and second number of errors; andapply the variable node algorithm to the scaled set of check node to variable node messages to yield a second set of variable node to check node messages.
  • 2. The data processing system of claim 1, the data decoder circuit operable to: apply a check node algorithm to the first set of variable node to check node messages to yield a set of check node to variable node messages during a first iteration;wherein all elements of the set of check node to variable node messages are multiplied by the same scalar value to determine the scaled set of check node to variable node messages when the difference is greater than a threshold value.
  • 3. The data processing system of claim 2, wherein the threshold value is user programmable.
  • 4. The data processing system of claim 1, wherein the data decoder circuit is further operable to: identify one or more check node to variable node messages associated with each of the calculated second number of errors; andmultiplying each of the one or more check node to variable node messages associated with each of the calculated second number of errors by a first scalar value, and multiplying each of the other of the variable node messages by a second scalar value.
  • 5. The data processing system of claim 4, wherein at least one of the first scalar value and the second scalar value is user programmable.
  • 6. The data processing system of claim 4, wherein multiplying each of the one or more check node to variable node messages associated with each of the calculated second number of errors by the first scalar value, and multiplying each of the other of the variable node messages by the second scalar value is done when the difference is less than a threshold value; andmultiplying all elements of the set of check node to variable node messages by the second scalar value when the difference is greater than the threshold value.
  • 7. The data processing system of claim 6, wherein the threshold value is user programmable.
  • 8. The data processing system of claim 1, wherein the data processing system is implemented as part of an integrated circuit.
  • 9. The data processing system of claim 1, wherein the data decoder circuit is a low density parity check decoder circuit.
  • 10. The data processing system of claim 1, wherein the storage drive is associated with at least one of: a solid state storage device, a hard disk drive, and a communication device, or any combination thereof.
  • 11. The data processing system of claim 1, wherein the data decoder circuit comprises: a variable node processing circuit operable to apply a variable node algorithm to a data input to yield the first set of variable node to check node messages; anda check node processing circuit operable to apply the check node algorithm to the first set of variable node to check node messages to yield a set of check node to variable node messages during a first iteration.
  • 12. The data processing system of claim 11, wherein the data decoder circuit further comprises: a syndrome calculation circuit operable to calculate a syndrome value corresponding to the second number of errors calculated based upon the first set of variable node to check node messages;a buffer circuit operable to store a syndrome value corresponding to the first number of errors remaining calculated based upon the preceding set of variable node to check node messages; anda summation circuit operable to subtract the syndrome value corresponding to the second number of errors calculated from the syndrome value corresponding to the first number of errors remaining calculated.
  • 13. The data processing system of claim 1, wherein the data decoder circuit further comprises: an array of multiplier circuits including one multiplier circuit for each check node to variable node messages in a set of check node to variable node messages, wherein each of the multiplier circuits in the array of multiplier circuits is individually programmable to receive a selected scalar value.
  • 14. The data processing system of claim 1, wherein the data processing system further comprises: a data detector circuit operable to apply a data detection algorithm to a data set to yield a detected output, and wherein a data input is derived from the detected output.
  • 15. A method for data processing, the method comprising: calculating, by a data processing circuit of a storage device, a first number of errors remaining based upon a preceding set of variable node to check node messages, wherein the preceding set of variable node to check node messages precedes a first set of variable node to check node messages;calculating, by the data processing circuit, a second number of errors based upon the first set of variable node to check node messages;determining, by the data processing circuit, a scaled set of check node to variable node messages using one or more scalar values, the one or more scalar values being selected based at least in part on a difference between the first and second number of errors; andapplying, by the data processing circuit, a variable node algorithm to the scaled set of check node to variable node messages to yield a second set of variable node to check node messages.
  • 16. The method of claim 15, further comprising: applying a check node algorithm to the first set of variable node to check node messages to yield a set of check node to variable node messages during a first iteration;wherein all elements of the set of check node to variable node messages are multiplied by the same scalar value when the difference is greater than a threshold value.
  • 17. The method of claim 15, further comprising: identifying one or more check node to variable node messages associated with each of the calculated second number of errors based upon the first set of variable node to check node messages;multiplying each of the one or more check node to variable node messages associated with each of the calculated second number of errors by a first scalar value, and multiplying each of the other of the variable node messages by a second scalar value.
  • 18. The method of claim 17, wherein at least one of the first scalar value and the second scalar value is user programmable.
  • 19. The method of claim 17, wherein: multiplying each of the other of the variable node messages by the second scalar value the difference is less than a threshold value; andmultiplying all elements of the set of check node to variable node messages by the second scalar value when the difference is greater than the threshold value.
  • 20. A storage device, comprising: a storage medium;a data processing circuit operable to process a data input derived from the storage medium, the data processing circuit operable to: calculate a first number of errors remaining based upon a preceding set of variable node to check node messages, the preceding set of variable node to check node messages precedes a first set of variable node to check node messages;calculate a second number of errors based upon the first set of variable node to check node messages;determine a scaled set of check node to variable node messages based on one or more scalar values, the one or more scalar values being selected based at least in part on a difference between the first and second number of errors; andapply the variable node algorithm to the scaled set of check node to variable node messages to yield a second set of variable node to check node messages.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation application of U.S. patent application Ser. No. 14/261,333, filed on 24 Apr. 2014 and entitled SYSTEMS AND METHODS FOR DIFFERENTIAL MESSAGE SCALING IN A DECODING PROCESS, now U.S. Pat. No. 9,378,765, issued on 28 Jun. 2016, which claims the benefit of the filing date of U.S. Provisional Application No. 61/974,894, filed 3 Apr. 2014, and entitled SYSTEMS AND METHODS FOR DIFFERENTIAL MESSAGE SCALING IN A DECODING PROCESS, the disclosures of which are incorporated, in their entireties, by this reference.

US Referenced Citations (269)
Number Name Date Kind
4553221 Hyatt Nov 1985 A
4805174 Kubot Feb 1989 A
5278703 Rub et al. Jan 1994 A
5278846 Okayama Jan 1994 A
5317472 Schweitzer, III May 1994 A
5325402 Ushirokawa Jun 1994 A
5351274 Chennakeshu Sep 1994 A
5392299 Rhines Feb 1995 A
5406593 Chennakeshu Apr 1995 A
5417500 Martinie May 1995 A
5450253 Takahito Sep 1995 A
5513192 Janku Apr 1996 A
5523903 Hetzler Jun 1996 A
5550810 Monogioudis et al. Aug 1996 A
5550870 Blaker Aug 1996 A
5612964 Haraszti Mar 1997 A
5696504 Ernesto Dec 1997 A
5710784 Kindred Jan 1998 A
5717706 Ikeda Feb 1998 A
5719871 Helm Feb 1998 A
5802118 Bliss Sep 1998 A
5844945 Nam Dec 1998 A
5898710 Amrany Apr 1999 A
5923713 Hatakeyama Jul 1999 A
5978414 Nara Nov 1999 A
5983383 Wolf Nov 1999 A
6005897 McCallister et al. Dec 1999 A
6023783 Divsalar Feb 2000 A
6029264 Kobayashi Feb 2000 A
6065149 Yamanaka May 2000 A
6097764 McCallister Aug 2000 A
6145110 Khayrallah Nov 2000 A
6175588 Visotsky et al. Jan 2001 B1
6216249 Bliss et al. Apr 2001 B1
6216251 McGinn Apr 2001 B1
6266795 Wei Jul 2001 B1
6317472 Choi et al. Nov 2001 B1
6351832 Wei Feb 2002 B1
6377610 Hagenauer et al. Apr 2002 B1
6381726 Weng Apr 2002 B1
6393074 Mandyam et al. May 2002 B1
6412088 Patapoutian et al. Jun 2002 B1
6473878 Wei Oct 2002 B1
6535553 Limberg et al. Mar 2003 B1
6625775 Kim Sep 2003 B1
6643814 Cideciyan et al. Nov 2003 B1
6697441 Bottomley et al. Feb 2004 B1
6747827 Bassett et al. Jun 2004 B1
6748034 Hattori et al. Jun 2004 B2
6757862 Marianetti, II Jun 2004 B1
6785863 Blankenship et al. Aug 2004 B2
6807238 Rhee et al. Oct 2004 B1
6810502 Eidson et al. Oct 2004 B2
6839774 Ahn et al. Jan 2005 B1
6948113 Shaver Sep 2005 B1
6970511 Bamette Nov 2005 B1
6975692 Razzell Dec 2005 B2
6986098 Poeppelman et al. Jan 2006 B2
7035327 Nakajima et al. Apr 2006 B2
7047474 Rhee et al. May 2006 B2
7058853 Song et al. Jun 2006 B1
7073118 Greenberg et al. Jul 2006 B2
7093179 Shea Aug 2006 B2
7117427 Ophir et al. Oct 2006 B2
7130875 Abe Oct 2006 B2
7133228 Fung et al. Nov 2006 B2
7136244 Rothberg Nov 2006 B1
7184486 Wu et al. Feb 2007 B1
7191378 Eroz Mar 2007 B2
7203887 Eroz et al. Apr 2007 B2
7230550 Mittal et al. Jun 2007 B1
7237181 Richardson Jun 2007 B2
7308061 Huang et al. Dec 2007 B1
7310768 Eidson et al. Dec 2007 B2
7313750 Feng et al. Dec 2007 B1
7370258 Iancu et al. May 2008 B2
7415651 Argon Aug 2008 B2
7502189 Sawaguchi et al. Mar 2009 B2
7523375 Spencer Apr 2009 B2
7587657 Haratsch Sep 2009 B2
7590168 Raghavan et al. Sep 2009 B2
7596196 Liu et al. Sep 2009 B1
7646829 Ashley et al. Jan 2010 B2
7702986 Bjerke et al. Apr 2010 B2
7738202 Zheng et al. Jun 2010 B1
7752523 Chaichanavong et al. Jul 2010 B1
7779325 Song Aug 2010 B2
7802172 Vila Casado et al. Sep 2010 B2
7952824 Dziak et al. May 2011 B2
7957251 Ratnakar Aravind et al. Jun 2011 B2
7958425 Chugg et al. Jun 2011 B2
7996746 Livshitz et al. Aug 2011 B2
8018360 Nayak Sep 2011 B2
8020069 Feng et al. Sep 2011 B1
8020078 Richardson Sep 2011 B2
8295001 Liu Mar 2012 B2
8161361 Song et al. Apr 2012 B1
8201051 Tan et al. Jun 2012 B2
8225168 Yu et al. Jul 2012 B2
8237597 Liu Aug 2012 B2
8255765 Yeo et al. Aug 2012 B1
8261171 Annampedu Aug 2012 B2
8291284 Savin Oct 2012 B2
8291299 Li et al. Oct 2012 B2
8296637 Varnica et al. Oct 2012 B1
8370711 Alrod et al. Feb 2013 B2
8381069 Liu Feb 2013 B1
8413032 Song et al. Apr 2013 B1
8429498 Anholt et al. Apr 2013 B1
8443267 Zhong et al. May 2013 B2
8443271 Zhang et al. May 2013 B1
8458555 Gunnam Jun 2013 B2
8464142 Gunnam et al. Jun 2013 B2
8495462 Liu Jul 2013 B1
8516339 Lesea et al. Aug 2013 B1
8522120 Sun et al. Aug 2013 B2
8527849 Jakab et al. Sep 2013 B2
8527858 Zhang et al. Sep 2013 B2
8531320 Li et al. Sep 2013 B2
8560900 Bellorado et al. Oct 2013 B1
8560930 Li et al. Oct 2013 B2
8566666 Wang et al. Oct 2013 B2
8578241 Xia et al. Nov 2013 B2
8595576 Yen Nov 2013 B2
8610608 Aravind et al. Dec 2013 B2
8611033 Li et al. Dec 2013 B2
8612826 Li et al. Dec 2013 B2
8625221 Feng et al. Jan 2014 B2
8630053 Yang et al. Jan 2014 B2
8631300 Han et al. Jan 2014 B2
8650451 Krishnan et al. Feb 2014 B2
8656249 Chen et al. Feb 2014 B2
8681441 Yang et al. Mar 2014 B2
8700981 Krachkovsky et al. Apr 2014 B2
8707123 Liu et al. Apr 2014 B2
8719686 Chen et al. May 2014 B2
8731115 Yang et al. May 2014 B2
8749907 Zhang et al. Jun 2014 B2
8751889 Zhang et al. Jun 2014 B2
8751915 Zhang et al. Jun 2014 B2
8756478 Wang et al. Jun 2014 B2
8775896 Li et al. Jul 2014 B2
8782486 Zhang et al. Jul 2014 B2
8788921 Chang et al. Jul 2014 B2
8817404 Li et al. Aug 2014 B1
8819515 Chen et al. Aug 2014 B2
8819527 Xia et al. Aug 2014 B2
8850276 Xu et al. Sep 2014 B2
8854754 Zhang et al. Oct 2014 B2
8862960 Xia et al. Oct 2014 B2
8862972 Seago et al. Oct 2014 B2
8873182 Liao et al. Oct 2014 B2
8880986 Wu et al. Nov 2014 B2
8885276 Yang et al. Nov 2014 B2
8908307 Yang et al. Dec 2014 B1
8917466 Zhang et al. Dec 2014 B1
8930780 Yang et al. Jan 2015 B2
8930792 Li et al. Jan 2015 B2
8949702 Zhang et al. Feb 2015 B2
8959414 Li et al. Feb 2015 B2
8977937 Zhang et al. Mar 2015 B2
9009557 Li et al. Apr 2015 B2
9019644 Han et al. Apr 2015 B2
9019647 Zhang et al. Apr 2015 B2
9041882 Shutou et al. May 2015 B2
9043684 Yang et al. May 2015 B2
9112531 Zhang et al. Aug 2015 B2
9164828 Xia et al. Oct 2015 B2
9196299 Wilson et al. Nov 2015 B2
9214959 Yang et al. Dec 2015 B2
9219503 Li et al. Dec 2015 B2
9230596 Yang Jan 2016 B2
9274889 Zhang et al. Mar 2016 B2
9281843 Li et al. Mar 2016 B2
9378765 Cai Jun 2016 B2
20010010089 Gueguen Jul 2001 A1
20010016114 Van Gestel et al. Aug 2001 A1
20020021519 Rae Feb 2002 A1
20020067780 Razzell Jun 2002 A1
20020168033 Suzuki Nov 2002 A1
20030031236 Dahlman Feb 2003 A1
20030123364 Nakajima et al. Jul 2003 A1
20030126527 Kim et al. Jul 2003 A1
20030138102 Kohn et al. Jul 2003 A1
20030147168 Galbraith et al. Aug 2003 A1
20030188252 Kim Oct 2003 A1
20040042436 Terry et al. Mar 2004 A1
20040194007 Hocevar Sep 2004 A1
20040228021 Yamazaki Nov 2004 A1
20040264284 Priborsky et al. Dec 2004 A1
20050047514 Bolinth Mar 2005 A1
20050149842 Kyung Jul 2005 A1
20050210367 Ashikhmin Sep 2005 A1
20050243456 Mitchell et al. Nov 2005 A1
20060002689 Yang et al. Jan 2006 A1
20060159355 Mizuno Jul 2006 A1
20060195730 Kageyama Aug 2006 A1
20070185902 Messinger et al. Aug 2007 A1
20070297496 Park et al. Dec 2007 A1
20080037676 Kyun et al. Feb 2008 A1
20080069373 Jiang Mar 2008 A1
20080140686 Hong Jun 2008 A1
20080304558 Zhu et al. Dec 2008 A1
20090003301 Reial Jan 2009 A1
20090092174 Wang Apr 2009 A1
20090106633 Fujiwara Apr 2009 A1
20090125780 Taylor May 2009 A1
20090132893 Miyazaki May 2009 A1
20090150745 Langner et al. Jun 2009 A1
20090177852 Chen Jul 2009 A1
20090185643 Fitzpatrick Jul 2009 A1
20090216942 Yen Aug 2009 A1
20090273492 Yang et al. Nov 2009 A1
20100077276 Okamura et al. Mar 2010 A1
20100088575 Sharon et al. Apr 2010 A1
20100150252 Camp Jun 2010 A1
20100172046 Liu et al. Jul 2010 A1
20100241921 Gunnam Sep 2010 A1
20100268996 Yang Oct 2010 A1
20100322048 Yang et al. Dec 2010 A1
20100325511 Oh Dec 2010 A1
20110041040 Su Feb 2011 A1
20110043938 Mathew Feb 2011 A1
20110066768 Brittner et al. Mar 2011 A1
20110167227 Yang Jul 2011 A1
20110258508 Ivkovic Oct 2011 A1
20110264987 Li Oct 2011 A1
20110307760 Pisek Dec 2011 A1
20110320902 Gunnam Dec 2011 A1
20120020402 Ibing Jan 2012 A1
20120038998 George Feb 2012 A1
20120063023 Mathew Mar 2012 A1
20120079353 Liikanen Mar 2012 A1
20120124118 Ivkovic May 2012 A1
20120182643 Zhang Jul 2012 A1
20120185744 Varnica Jul 2012 A1
20120121849 Xu Aug 2012 A1
20120203986 Strasser et al. Aug 2012 A1
20120207201 Xia Aug 2012 A1
20120236428 Xia Sep 2012 A1
20120262814 Li Oct 2012 A1
20120265488 Sun Oct 2012 A1
20120317462 Liu et al. Dec 2012 A1
20130024740 Xia Jan 2013 A1
20130031440 Sharon Jan 2013 A1
20130120169 Li May 2013 A1
20130139022 Chen et al. May 2013 A1
20130139023 Han et al. May 2013 A1
20130194955 Chang Aug 2013 A1
20130198580 Chen Aug 2013 A1
20130238955 D'Abreu Sep 2013 A1
20130254616 Yang Sep 2013 A1
20130254619 Zhang Sep 2013 A1
20130262788 Zhang et al. Oct 2013 A1
20130275717 Wilson et al. Oct 2013 A1
20130322578 Zhang et al. Dec 2013 A1
20140019650 Li et al. Jan 2014 A1
20140068372 Zhang et al. Mar 2014 A1
20140082450 Yang et al. Mar 2014 A1
20140089759 Draper Mar 2014 A1
20140313610 Zhang et al. Oct 2014 A1
20140325303 Yang et al. Oct 2014 A1
20140372836 Li et al. Dec 2014 A1
20150039978 Nguyen et al. Feb 2015 A1
20150081626 Yang et al. Mar 2015 A1
20150082115 Xia et al. Mar 2015 A1
20150113205 Cai et al. Apr 2015 A1
20150143196 Zhang et al. May 2015 A1
20160308556 Cai Oct 2016 A1
Foreign Referenced Citations (3)
Number Date Country
2001319433 Nov 2001 JP
2010059264 May 2010 WO
2010126482 Nov 2010 WO
Non-Patent Literature Citations (35)
Entry
Casado et al., Multiple-rate low- density parity-check codes with constant blocklength, IEEE Translations on commmunications, Jan. 2009, vol. 57, pp. 75-83.
Cui et al., “High-Throughput Layered LDPC Decoding Architecture”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, No. 4 (Apr. 2009).
Fan et al., “Constrained coding techniques for soft iterative decoders” Proc. IEEE Global Telecommun. Conf., vol. 1b, pp. 723-727 (1999).
Fossorier, Marc P.C. “Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Maricies” IEEE Transactions on Information Theory, vol. 50, No. 8 Aug. 8, 2004.
Gross, W., “Stochastic Decoding of LDPC Codes over GF(q)”, HDPCC Workshop, Tel Aviv (Mar. 2, 2010).
Gunnam et al., “VLSI Architectures for Layered Decoding for Irregular LDPC Codes of WiMax”, IEEE ICC Proceedings (2007).
Hagenauer, J. et al 'A Viterbi Algorithm with Soft-Decision Outputs and its Applications in Proc. IEEE Globecom, pp. 47. 11-47 Dallas, TX Nov. 1989.
Han et al., “Pinning Techniques for Low-Floor Detection/Decoding of LDPC-Coded Partial Response Channels”, 5th International Symposium on Turbo Codes &Related Topics, 2008.
Kautz, “Fibonacci Codes for Synchronization Control”, IEEE Trans. Info. Theory, vol. 11, No. 2, pp. 284-292 (Apr. 1965).
Kschischang et al., “Factor Graphs and the Sum-Product Algorithm”, IEEE Transactions on Information Theory, vol. 47, No. 2 (Feb. 2001).
Leduc-Primeau et al., “A Relaxed Half-Stochastic Iterative Decoder for LDPC Codes”, IEEE Communications Society, IEEE Globecom proceedings (2009).
Lee et al., “Partial Zero-Forcing Adaptive Mmse Receiver for OS-CDMA Uplink in Multicell Environments” IEEE Transactions on Vehicular Tech. vol. 51, No. 5, Sep. 2002.
Li et al “Efficient Encoding of Quasi-Cyclic Low-Density Parity Check Codes” IEEE Transactions on Communications on 53 (11) 1973-1973, 2005.
Lim et al. “Convergence Analysis of Constrained Joint Adaptation in Recording Channels” IEEE Trans. on Signal Processing vol. 54, No. 1 Jan. 2006.
Lin et al “An efficient VLSI Architecture for nonbinary LDPC decoders”—IEEE Transaction on Circuits and Systems 11 vol. 57, Issue 1 (Jan. 2010) pp. 51-55.
Moon et al, “Pattern-dependent noise prediction in signal-dependent Noise,” IEEE JSAC, vol. 19, No. 4 pp. 730-743, Apr. 2001.
Moon et al., “Maximum transition run codes for data storage systems”, IEEE Trans. Magn., vol. 32, No. 5, pp. 3992-3994 (Sep. 1996).
Patapoutian et al “Improving Re-Read Strategies by Waveform Averaging” IEEE Transactions on Mag. vol. 37 No. 6, Nov. 2001.
Planjery et al “Finite Alphabet Iterative Decoders, pt 1: Decoding Beyond Beliver Propagation on BSC” Jul. 2012, printed from the internet Apr. 21, 2014 http://arxiv.org/pdf/1207.4800.pd.
Richardson, T., “Error Floors of LDPC Codes” Flarion Technologies Bedminster NJ 07921, tjr@flarion.com (not dated).
Shokrollahi “LDPC Codes: An Introduction”, Digital Fountain, Inc. (Apr. 2, 2003).
Spagnol et al, “Hardware Implementation of GF(2Am) LDPC Decoders”, IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 56, No. 12 (Dec. 2009).
Tehrani et al., “Fully Parallel Stochastic LDPC Decoders”, IEEE Transactions on Signal Processing, vol. 56, No. 11 (Nov. 2008).
Todd et al., “Enforcing Maximum-Transition-Run Code Constraints and Low-Density Parity-Check Decoding,” IEEE Transactions on Magnetics, vol. 40, No. 6, (Nov. 2004).
Vasic, B., “High-Rate Girth-Eight Codes on Rectangular Integer Lattices”, IEEE Trans. Communications, vol. 52, Aug. 2004, pp. 1248-1252.
Vasic, B., “High-Rate Low-Density Parity-Check Codes Based on Anti-Pasch Affine Geometries,” Proc ICC 2002, pp. 1332-1336.
Weon-Cheol Lee et al., “Vitierbi Decoding Method Using Channel State Info. in COFDM System” IEEE Trans. on Consumer Elect., IEEE Service Center, NY, NY vol. 45, No. 3 Aug. 1999.
Xiao, et al “Nested Codes With Multiple Interpretations” retrieved from the Internet URL: http://www.ece.nmsu.edu/-ikliewer/paper/XFKC_CISS06 (retrieved on Dec. 5, 2012).
Yeo et al., “VLSI Architecture for Iterative Decoders in Magnetic Storage Channels”, Mar. 2001, pp. 748-755, IEEE trans. Magnetics, vol. 37, No. 2.
Zhang et al., “Analysis of Verification-Based Decoding on the q-ary Symmetric Channel for Large q”, IEEE Trans. on Information Theory, vol. 57, No. 10 (Oct. 2011).
Zhong et al., “Design of VLSI Implementation-Oriented LDPC Codes”, IEEE, pp. 670-673, 2003.
Zhong et al., “High-Rate Quasi-Cyclic LDPC Codes for Magnetic Recording Channel with Low Error Floor”, ISCAS, IEEE pp. 3546-3549, May 2006.
Zhong et al., “Joint Code-Encoder Design for LDPC Coding System VLSI Implementation”, ISCAS, IEEE pp. 389-392, May 2004.
Zhong et al., “Quasi Cyclic LDPC Codes for the Magnetic Recording Channel: Code Design and VSLI Implementation”, IEEE Transactions on Magnetics, v. 43, pp. 1118-1123, Mar. 2007.
Zhong, “Block-LDPC: A Practical LDPC Coding System Design Approach”, IEEE Trans. on Circuits, Regular Papers, vol. 5, No. 4, pp. 766-775, Apr. 2005.
Related Publications (1)
Number Date Country
20160308556 A1 Oct 2016 US
Provisional Applications (1)
Number Date Country
61974894 Apr 2014 US
Continuations (1)
Number Date Country
Parent 14261333 Apr 2014 US
Child 15195879 US